Study of passive and active devices for fan-OGV interaction noise reduction
Etude de dispositifs passifs et actifs de réduction du bruit d’interaction soufflante–redresseur
Résumé
Two approaches to reduce aeroacoustic noise associated with the OGV of aircraft engines have been examined in this thesis. The first relies on passive solutions, using materials such as porous foam and wire mesh to attenuate noise. The effectiveness of these materials has been tested in various configurations, demonstrating a noise reduction capacity of up to 6 dB under certain conditions, although this efficiency may be affected by factors such as flow velocity. The second part of the study focused on active techniques, particularly the use of piezoelectric cells for noise control. These technologies have shown a notable reduction in noise, reaching up to 15 dB in some cases, although noise amplification has been noted in other situations, emphasizing the importance of precise design in the application of these technologies. Finally, numerical optimization of acoustic impedance on aerodynamic profiles was explored, aiming to further reduce noise generated by turbulent flows. This approach identified optimal impedance values, leading to significant noise reductions for certain frequencies. The results suggest that precise selection of acoustic impedance on profile surfaces can be an effective method for minimizing aeroacoustic noise, although profile geometry may influence the results. Overall, these studies highlight the potential of different strategies for aeroacoustic noise reduction, while emphasizing the need for careful application tailored to specific conditions to maximize their effectiveness.
Deux approches de diminution du bruit d'origine aéroacoustique associé à l'OGV des moteurs d'avion ont été examinées dans cette thèse. La première repose sur des solutions passives, utilisant des matériaux comme de la mousse poreuse et du tissu métallique (wire mesh) pour atténuer le bruit. L'efficacité de ces matériaux a été testée dans diverses configurations, montrant une capacité de réduction du bruit jusqu'à 6 dB sous certaines conditions, bien que cette efficacité puisse être affectée par des facteurs comme la vitesse de l'écoulement. La seconde partie de l'étude s'est intéressée aux techniques actives, notamment à l'utilisation de cellules piézoélectriques pour le contrôle du bruit. Ces technologies ont montré une réduction notable du bruit, atteignant jusqu'à 15 dB dans certains cas, bien qu'une amplification du bruit ait été notée dans d'autres situations, soulignant l'importance de la précision du design dans l'application de ces technologies. Enfin, l'optimisation numérique de l'impédance acoustique sur les profils aérodynamiques a été explorée, avec pour objectif de réduire davantage le bruit généré par les écoulements turbulents. Cette démarche a permis d'identifier des valeurs d'impédance optimales, conduisant à des réductions significatives de bruit pour certaines fréquences. Les résultats suggèrent qu'un choix précis de l'impédance acoustique sur les surfaces des profils peut être une méthode efficace pour minimiser le bruit d'origine aéroacoustique, bien que la géométrie du profil puisse influencer les résultats. Dans l'ensemble, ces études mettent en évidence le potentiel de différentes stratégies pour la réduction du bruit aéroacoustique, tout en soulignant la nécessité d'une application soigneuse et adaptée aux conditions spécifiques pour maximiser leur efficacité.
Mots clés
Reduction of noise
OGV (Outlet Guide Vanes)
Fan
Turbulent wake
Active control
Piezoelectric
Acoustic impedance
Passive reduction
Porous foam
Wire mesh
Blade grid
Electromechanical coupling
Aerodynamic profile
Turbulent flow
Linearized Euler equations
Numerical optimization and civil aircraft engine noise
Réduction du bruit
OGV (aubes directrices de sortie)
Soufflante
Sillage turbulent
Contrôle actif
Piézoélectrique
Impédance acoustique
Réduction passive
Mousse poreuse
Tissu métallique
Grille d’aubes
Couplage électromécanique
Profil aérodynamique
Écoulement turbulent
Équations d’Euler linéarisées
Optimisation numérique et bruit du moteur d’avion civil
Domaines
AutreOrigine | Version validée par le jury (STAR) |
---|