The Prym-Hitchin Connection and Anti-Invariant Level-Rank Duality
Résumé
We construct a "Hitchin-type" connection on bundles of non-abelian theta functions on higher-rank Prym varieties, for unramified double covers of curves. We formulate a version of level-rank duality in this Prym setting (building on work of Zelaci), show it holds for level one, and establish that the duality respects the flat connections at all levels.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|