A general martingale approach to large noise homogenization - INRIA 2
Article Dans Une Revue Electronic Journal of Probability Année : 2024

A general martingale approach to large noise homogenization

Résumé

We consider Markov processes with generator of the form $γ\mathcal{L}_{1} + \mathcal{L}_{0}$, in which $\mathcal{L}_{1}$ generates a so-called dominant process that converges at large times towards a random point in a fixed subset called the effective state space. Using the usual characterization through martingales problems, we give general conditions under which homogenization holds true: the original process converges, when $γ$ is large and for the Meyer-Zheng pseudo-path topology and for finite-dimensional time marginals, towards an identified effective Markov process on the effective space. Few simple model examples for diffusions are studied.
Fichier principal
Vignette du fichier
main.pdf (585.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04363393 , version 1 (24-12-2023)
hal-04363393 , version 2 (20-12-2024)

Licence

Identifiants

Citer

Dimitri Faure, Mathias Rousset. A general martingale approach to large noise homogenization. Electronic Journal of Probability, 2024, 29, pp.1-49. ⟨10.1214/24-EJP1177⟩. ⟨hal-04363393v2⟩
46 Consultations
39 Téléchargements

Altmetric

Partager

More