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A SPATIAL AND TEMPORAL AUTOREGRESSIVE LOCAL ESTIMATION  
FOR THE PARIS HOUSING MARKET 

 
 
 

ABSTRACT: 
 

This original study examines the potential of a spatiotemporal autoregressive Local (LSTAR) approach in 
modelling transaction prices for the housing market in inner Paris. We use a data set from the Paris Region 
notary office (“Chambre des notaires d’Île-de-France”) which consists of approximately 250,000 transactions 
units between the first quarter of 1990 and the end of 2005. We use the exact X -- Y coordinates and transaction 
date to spatially and temporally sort each transaction. 
We first choose to use the spatiotemporal autoregressive (STAR) approach proposed by Pace, Barry, Clapp and 
Rodriguez (1998). This method incorporates a spatiotemporal filtering process into the conventional hedonic 
function and attempts to correct for spatial and temporal correlative effects. We find significant estimates of 
spatial dependence effects.  
Moreover, using an original methodology, we find evidence of a strong presence of both spatial and temporal 
heterogeneity in the model. It suggests that spatial and temporal drifts in households socio-economic profiles 
and local housing market structure effects are certainly major determinants of the price level for the Paris 
Housing Market. 
 
Key-Words: 
 
- Hedonic Prices 
- Heterogeneity 
- Paris Housing Market 
- STAR Model 
 
RÉSUMÉ :  
 
Cette étude originale évalue l’apport d’une modélisation spatio-temporelle autorégressive (STAR) pour 
expliquer l’évolution des prix des transactions de logements sur Paris et sa première couronne. Nous utilisons la 
méthode STAR introduite par Pace, Barry, Clapp and Rodriguez (1998), qui incorpore un filtre spatio-temporel 
à la fonction hédonique standard. La recherche indique une forte présence d’interdépendances spatiales et 
temporelles dans ces sous-marchés qui semblent déterminantes dans l’analyse des prix immobiliers de 
logements à Paris. 
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- Hétérogénéité temporelle 
- Marché des logements  parisiens 
- Modélisation spatio-temporelle auto-régressive 
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A Spatial and Temporal Autoregressive Local Estimation 
for the Paris Housing Market 

 

I) Introduction 

 

The analysis of house prices using hedonic modeling makes it possible to estimate the 
specific contribution of each property attribute. Consequently, the hedonic method is now widely 
used in real estate literature, especially for housing. House values are explained by structural, 
locational and temporal attributes and one unique coefficient is derived for each of these variables.  

 This hedonic model suffers from different shortcomings due to its modeling choice. For 
example, the importance of spatial dependence is neglected. If a hedonic model cannot perfectly 
capture the effects of location then the residuals of adjacent housing transaction will be correlated. 
The omission of spatial dependence effects may lead to inefficiency and/or bias in coefficient 
estimates.  

Spatial autocorrelation directly refers to the occurrence of spatially correlated observations. 
Two bodies of literature are used to control for spatial autocorrelation: first, Geo-statistical models 
where the residual variance-covariance is modeled directly (Cressie, 1993) and lattice models where 
the inverse of the residual variance-covariance in modeled rather than directly estimated. In this 
paper, we focus on this latter stream of spatial statistics since it is widely used in the housing 
literature. For example, remaining spatial effects may be introduced into the error structure (Can, 
1990, Basu and Thibodeau, 1998). The inverse of the covariance matrix can be modeled using 
simultaneous autoregressive SAR (Pace and Gilley, 1998) or conditionally autoregressive CAR 
(Gelfand et al., 1998) specifications. 

Recently, there has been a renewed interest in modeling the effect of time correlation on 
housing values.  House prices are time dependent and this effect is imperfectly captured by the 
simple temporal indicator variables of a standard hedonic model. To our knowledge, there are three 
important papers that use the hedonic setup as the basis for the spatio-temporal analysis in a real 
estate context. Can and Megbolugbe (1997) identify “recent comparable sales”, i.e. properties 
within a fixed distance which sold within a fixed time period. A temporally dependent distance 
weighted average variable is introduced in the hedonic equation. Gelfand et al. (2004) propose a 
large class of spatio-temporal models where the selling price of each property is modeled trough a 
collection of temporally indexed spatial processes. Finally, Pace, Barry, Clapp and Rodriguez 
(1998) propose an original method to build a STAR (Spatio-Temporal AutoRegressive) model and 
find it powerful in a residential real estate context. Their methodology then control for both spatial 
and temporal correlative effects. 

Applying this STAR methodology is generally statistically more powerful than a standard 
hedonic model. In our case, we find evidence of the presence of spatial correlative effects for the 
Paris area. More precisely, these effects appear to be sizeable for only some geographical 
submarkets of the whole Paris area. 

However, the STAR method only provides a way to model spatial and temporal 
dependence. The STAR model do not directly control for spatial and temporal heterogeneity.  

The existence of spatial heterogeneity is well recognized in the literature. Can (1990) 
importantly distinguishes these two spatial effects: 
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- Adjacency effects which are externalities associated with the absolute location of each 
observation (i.e. spatial dependence in the house price determination) 

- Neighborhood effects which are the array of locational characteristics that will lead to 
differential household housing demand for certain locations (i.e. geographically varying marginal 
attribute prices or spatial heterogeneity). 

This issue of spatial heterogeneity centers on whether the marginal price of housing 
attributes (i.e. hedonic coefficients) in constant throughout the whole geographical area or vary over 
space. There are many reasons to expect that hedonic coefficients will exhibit spatial heterogeneity. 
The spatial shape of household socio-economic profile or housing supply can lead to supply and 
demand imbalances and then to spatial heterogeneity (see Goodman, 1981).  

The Casetti expansion method (Casetti, 1972), the Geographically Weighted Regression 
(GWR) method (Fotheringham et al. 1998) or the Locally Weighted Regression (LWR) method 
(McMillen and McDonald, 1997) are modeling approaches that allow parameter to vary over space. 
For example, the GWR model estimates a separate (hedonic) model for each sale point and weights 
observations by their distance to this point. Consequently each hedonic coefficient is location 
specific. Brunsdon et al. (1999) and Mei et al. (2004) provide some significance tests for the GWR 
method. Many other papers (see for example Bourassa et al. (1999), Bourassa et al. (2003) or 
Ugarte et al. (2004)) deal with spatial heterogeneity in a housing context and try to identify an 
appropriate procedure to define housing submarkets and to check their statistical impact.  

On the other hand, the importance of temporal heterogeneity has been much less widely 
discussed in the real estate literature. Even though each location is fixed, the importance of location 
to a transaction price can change over time. For example, the construction of a school will modify 
the absolute value of a particular location. One notable example is Munneke and Slade (2001) for 
the Chicago commercial real estate market. They estimate a different model according to the year of 
transaction and then obtain time-varying parameters.  

We intend to extend the STAR model in two ways: first, we control for temporal and spatial 
heterogeneity within the STAR setup; second, and most importantly, we propose a method to 
estimate heterogeneity endogenously. To do so, we use an extension of Pace and Lesage (2004) 
which propose a Spatial Autoregressive Local Estimation (SALE) within a spatially autoregressive 
setup. Pace and Lesage (2004) argue that one should model spatial dependence and heterogeneity 
simultaneously in spite of the identification problem between these two effects. More precisely, it is 
well-known that spatial correlation and spatial heterogeneity are statistically hard to disentangle (for 
example, uncorrected heterogeneity might produce correlated residuals with a simple OLS 
estimation), but this identification problem is still present when modeling only one of these two 
effects. Moreover, Pace and Lesage (2004)  point out that the usual Geographically Weighted 
Regression (GWR) models exhibit a trade-off between increasing the sub-sample size to produce 
less volatile estimates increasing spatial dependence and decreasing the sub-sample size which 
drives to unstable estimates. They argue that the SALE method reduces this problem since it 
enlarges GWR models to include a spatial lag to the dependent variable.  

In this paper, we extend this methodology and select spatially and temporally consistent 
sub-samples. Hence, we develop a spatial and temporal autoregressive local (LSTAR) estimation 
method. We examine the potential of this LSTAR approach in modelling transaction prices for the 
housing market in inner Paris. We use a data set from the Paris Region notary office  which consists 
of approximately 250,000 transactions units between the first quarter of 1990 and the end of 2005. 
We use the exact X -- Y coordinates and transaction date to spatially and temporally sort each 
transaction. 
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We find evidence of a strong presence of both spatial and temporal heterogeneity in the 
model. It appears that spatial autoregressive effects seem to be much more pronounced in the 
historical centre of Paris than in its surrounding area. Moreover, these effects which were sizeable 
and significant for some geographical areas in 1997 and 2000 have been reduced between 2000 and 
2005. This pattern seems to be correlated with the evolution of price level over this period. 

The paper is organized as follows. In the next section, we present the methodology for the 
different models. Next, we describe of the data set. Results are detailed in the following section, and 
the final section concludes.  

 

 

II) Methodology 

 

II.1) STAR model 

 

The STAR model adjusts the standard hedonic equation by adding spatial and temporal 
autoregressive terms to correct for the well-known spatio-temporal dependence problem.  
The most widely used STAR model kin a real estate context is Pace, Barry, Clapp and Rodriguez 
(1998)’s spatial-temporal estimation procedure. Their methodology will be presented in details in 
the following.  
Can and Megbolugbe (1997) also propose a method that specifies the extent of influence which a 
prior sale within a predetermined neighborhood might have on a current transaction price. Their 
method is thus quite close to the method proposed by Pace et al. (1998) but, as we will see later, 
Pace et al. use the time ordered structure of the data set to deeply reduce the computation time of 
the estimation process. As we will rely on very time-consuming procedures, Pace et al.’s (1998)’s 
method seems to be more useful in our context.  
 
We proceed to a short presentation of Pace et al. (1998)’s spatio-temporal estimation procedure. 
They assume the following autoregressive process: 

 
εβ +−=− XWIPWI )()(                                                                   (1) 

 
where P is the N by 1 vector of observations of the time-ordered dependent variable, which is the 
log of sale price in our case. X denotes the N by K matrix of observations on the independent 
variables of interest. X is quite similar to the matrix of independent variables from equation (1) but 
temporal and spatial dummies have been excluded from this matrix. Hence, X contains only the 
structural characteristic of each property. β  is the K by 1 vector of parameter. ε  is an N by 1 
Gaussian iid vector of errors.  
 
Let us focus on the N by N spatial-temporal matrix W. In a purely spatial CAR or SAR context (see 
for example Lesage, 1999 for a full discussion), W contains non-negative elements of neighboring 
properties. It is generally denoted as the spatial weight matrix. The diagonal entries of W contain 
zeros to prevent each observation from predicting itself. 
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Pace et al. (1998) argue that in a temporal context, multiplying independent and dependent variables 
by the spatial weight matrix does not remove all autocorrelation effects. It comes down to taking the 
values of sale prices at each location and subtracting a scaled average of the spatially surrounding 
values for geocoding coordinates. But these surrounding values may correspond to old housing 
transactions that do not contribute much relevant information for the transaction of interest.  
 
As a result, we also need to take into account previous “time neighbors” sale transactions, and 
estimate their impact on the current transaction. As noted by Gelfand et al. (1998), the choice of a 
weighting matrix W that incorporates both spatial and temporal autocorrelation effects is not an easy 
task: they finally choose to include ordinary temporal dummies to cover the temporal effect. Pace et 
al. (1998) propose another estimation method. They implement a spatiotemporal filtering matrix W 
that can be broken down into S, a matrix that specifies spatial relationships between the considered 
observation and previous close-in-distance observations (observations have been time ordered) and 
T, that specifies temporal relationships between the considered observation and the previous close-
in-time observations. Each line of these matrices is scaled by constants that sum to one. The 
autoregressive parameters are supposed to be less than one in absolute value. This point may be 
crucial, since as already noted by Fingleton (1999), spatial unit roots lead to spurious spatial 
regression, exactly as in the time series literature. Fingleton’s (1999) theoretical benchmark can 
easily be extended to a spatio-temporal context. 
 
A general specification of matrix W could be: 
 

TSSTTSW TSSTTS φφφφ +++=                                                      (2) 
 

This specification incorporates a linear combination of spatial and temporal filtering. Additionally, 
the interaction matrices ST and TS allow for the modeling of potentially compound spatiotemporal 
effects. 
The spatial weight matrix is specified as done by Tu et al. (2004) using a distance-decay scheme. 
Let i,j indicate the ith  row and the jth  column in the spatial matrix. S is constructed as follows: 
 

( )( )
j

qiij
ji

Dd
s

ω

33
1,

,

/1 +−
=      if j < i 

0, =jis                   otherwise 
 

ijd  is the distance between transaction i and transaction j. is the q+11, +qiD st shortest distance 
between transaction i and the building where its prior transactions locate. ω  is the speed of distance 
decaying. 
 
The temporal weight matrix T is expressed as follows: 
 

p
t ji

1
, =    if   i-p ≤ j < i 

 
0, =jit    otherwise 

 
where p is the maximum time lag. According to a previous exploratory analysis of the Paris housing 
market, we impose q=20 and p=40. 

 4



The forms of S and T are restricted in order to obtain strictly lower triangular matrices (with 
zero entries for diagonal elements). This property will be very useful for maximization of the log-
likelihood function (if errors are assumed to follow a Gaussian process), since it avoids the time-
consuming computation of the determinant term (see Pace, 1997, and Pace and Barry, 1997, for 
computational considerations on this point). Another specificity of this method is that the spatial 
neighborhood impact is estimated only within prior sales, whereas in the traditional spatial 
literature, the spatial neighborhood consists of all transactions within a short distance of the 
transaction under consideration. Hence, in Pace et al. (1998) the spatial matrix S can itself be 
considered as a spatial-temporal matrix. 

 
Finally, Pace et al. (1998) assume a more general specification than equation (2) and 

estimate: 
 

εφφφφβ
ββββ

++++++
+++=

TSPSTPTPSPTSX
STXSXTXXP

TSSTTS5

4321                                                      (3) 

 
Pace et al. (1998) estimate equation (3) using a standard OLS procedure. Tu et al. (2004) extend it 
to a Bayesian estimation procedure. They hence control for residual heteroskedasticity. Due to our 
large sample size and the forthcoming treatment of spatial and temporal heterogeneity, we cannot 
rely on such a time-consuming estimation procedure and use the classical estimation method. 
 

II.2) Spatially and temporally varying parameters 

 

The previous estimation procedure is general enough to assess for spatial and temporal 
autocorrelation effects. However, it does not propose a modeling scheme for spatial or temporal 
heterogeneity. 

 

Spatial and Temporal Heterogeneity 
Many papers have tried to assess the importance of spatial submarkets in a housing context. 

Bourassa et al. (1999) propose several statistical methods for defining submarkets. Ugarte, Goicoa 
and Militino (2004) propose a mixture of linear models for the definition of submarkets, but without 
assuming spatial autocorrelation. In another recent study, Bourassa et al. (2003) conclude that 
housing submarkets should be spatially consistent. Hence, in many cases adequate treatment of 
spatial heterogeneity could considerably reduce the presence of spatial dependence effects, even 
though the two problems are theoretically distinct. Can and Megbolugbe (1997) also propose a 
method for taking into account neighborhood effects, i.e. spatially varying marginal price attributes. 
They propose a spatial expansion hedonic specification in which neighborhood effects lead to 
spatially varying marginal attribute prices. This principle relies on the modeling strategy proposed 
by Casetti (1972). 

The importance of taking temporal heterogeneity into account has also been assessed before. 
For example, Munneke and Slade (2001), in a non-residential real estate context, propose three 
different methods (chained, Laspeyres and Paasche) to evaluate temporal heterogeneity effects by 
proceeding to different estimations for each year of transaction. But Munneke and Slade (2001) 
work with a traditional hedonic model, not a spatio-temporal autoregressive one. 

 5



In all these cases, the definition of submarkets - either spatial or temporal - is imposed in a 
deterministic manner, which seems to be largely unrealistic. Our main objective in this paper is to 
propose a way to endogenously detect heterogeneity. We rely on the SALE method introduced by 
Pace and Lesage (2004): 

 

                                   εβφ )())(()()( iUXWIiUWPiUPiU ii +−+=                                          (4) 

 

where i=1, …,N is the target point. U(i) represents an N by N diagonal matrix containing distance-
based weights for observation i that assigns equal weights to the m nearest neighbors to observation 
i and weight of zero to all the other observations. 

 Hence, it results in a sub-sample estimation of size m for each observation that means spatial 
autocorrelation parameters iφ and structural parameters iβ  are allowed to be spatially dependent. 

 

Spatial and Temporal Heterogeneity 
 

 We extend this methodology to a spatio-temporal context. An interesting procedure for 
controlling for spatial and temporal heterogeneity has been proposed by McMillen and Mc Donald 
(1997) and McMillen (2004). In this case, the kernel weighting function K(.) is a product of two 
standard kernels (.) and (.) where (.) is a nearest neighbour estimator in time for each 
target point and (.) is a nearest neighbour estimator in distance for each target point. We choose 
another type of kernel function since this one might select an arbitrary small number of points if 
nearest neighbours in location and nearest neighbours in time are completely different for some 
time period or some geographical area. As explained by Pace and LeSage (2004), the spatial 
autoregressive parameter is deeply affected by the sub-sample size and is a decreasing function of 
N. Hence, if the kernel weighting function K(.) selects a too small number of spatio-temporal 
neighbours for some target points, it might lead to unstable estimates. 

TK dK TK

dK

Our main idea is then to select the mS observations nearest in location within the sample of 
the mT observations nearest in time to target observation i. We then use a limited support with a 
constant size for each sub-sample as done by Pace and Lesage (2004). In our setup, let uj(i) be the 
jth diagonal element of matrix U(i) in equation (4), then  

 

                                                                            (5) 
⎩
⎨
⎧ <

=
otherwise

mmddif
iu TSiij

j

),(
0
1

)(

 

Where is the Euclidean distance between locations i and j. is the distance 
between i and its m

ijd ),( TSi mmd
S nearest neighbour in distance selected within the sub-sample of its mT nearest 

neighbours in time. 

 According to Pavlov (2000) and Pace and Lesage (2004), we use constant weights for the 
final kernel function. McMillen (2004) extend this to other kind of kernel functions such as tri-cube 
weighting function, but in an uncorrelated setup. For spatial and temporal autoregressive 
estimation, the use of non uniform weights would lead to large computational costs. 
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 The accuracy of kernel smoothers is a function of both the functional form K(.) and the 
bandwidth parameters. Parameters mS and mT, which replace the usual bandwidth parameter, are 
selected using a standard multivariate cross-validation procedure such as to minimize: 

 

                           [ ]∑
=

≠

−
−=

N

h
TShhTS hwmmPPNmmCV

1

21
)(),(ˆ),(                                 (6) 

 

over a grid of values for mS and mT. N  is the chosen number of target points.  is the hhP th 

element of the vector of log sale prices.  is the predicted value of using a sample 
excluding the h

),(ˆ
TSh mmP≠ hP

th element.   is a non-negative weight function that will be further explained. )(hw

It is usual in the literature of Locally Weighted Regression (LWR) or Geographically 
Weighted Regression (GWR) to choose the whole sample for the evaluation of the Cross-Validation 
function ( N = N). Due to the enormous size of our sample, we cannot proceed in the same manner. 
Hence we choose to select a uniform grid N of target points over the Paris area. Since transactions 
are not temporally and spatially independently distributed over this area, the Cross-Validation 
function has to be weighted according to the density of observations at each target point in space 
and time. This density function is estimated following this ad-hoc rule: we estimate the product of 
temporal and spatial density functions constructed according to the number of neighbours within a 
fixed distance in time and space respectively. This density estimate is used as weight function 

. )(hw

Even when N is small compared to N, the minimization of the Cross Validation function 
CV(. , .) might be computationally intensive. In order to get rid of this problem, our setup presents 
two advantages: 

 Due to the lower triangularity property of the spatial S matrix and the temporal T matrix, 
we do not have to compute the log-determinant term in the log-likelihood evaluation as 
above explained. The estimation of our model can be achieved with the usual Least Squares 
method. 

 As proposed by Pace and Lesage (2004), we use Recursive Least Squares in order to 
avoid the calculation of a too large number of matrix inverses for the grid of values of mS 
and mT. 

Notice that the minimization of the Cross-Validation function is subject to the two following 
constraints: 

                                                               
2

300
T

s

s
mm

m

<

>
                                                             (7) 

The first constraint is imposed in order to prevent multicollinearity issues. As it will be later 
explained, the number of explanatory variables will be quite important and it could lead to small-
sample bias. Moreover recall that Least Squares and Likelihood are perfectly equivalent in our 
model and small-sample bias is likely to occur in this case. The second constraint is imposed in 
order to keep the sub-samples spatially informative.  

In this new setup, spatio-temporal autocorrelation parameters as well as structural 
parameters are allowed to be spatially and temporally varying. We produce a mixed model that 
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covers both spatial and temporal heterogeneity (extension of SALE method) and spatiotemporal 
autocorrelation effects (STAR procedure). Notice that whereas the cross-validation function 
minimum is estimated on a subset of target points N , the final STAR local estimation is done for 
the whole sample (i.e. N regressions have to be computed). Following McMillen (2004), we 
estimate the local standard errors for each regression.  

 

III) Data Description 

 

The working data set on property sales comes from the Paris and Ile-de-France Chamber of 
Notaries. In France, all property sales have to be registered by a Notary, who collects the realty 
transfer fee to be paid to the Inland Revenue. These transaction data have been gathered by the Paris 
Chamber of Notaries since the mid-1990s and are published by the CINP (“Chambre 
Interdépartementale des Notaires de Paris”). The database includes information on the transaction 
price, along with detailed characteristics (size, date of construction, etc.). 

From this CINP dataset, we have a large sample of transaction prices for Paris and its inner 
suburbs between January 1991 and December 2005. The inner suburbs consist in three 
“départements”: the Hauts-de-Seine, the Seine-Saint-Denis and the Val de Marne. This data set has 
frequently been used for academic research into the Parisian housing market, see for example the 
INSEE-Notaires hedonic price index. Additionally, the exact geocoded X–Y coordinates provided 
for each transaction enable us to conduct the spatiotemporal procedures previously described. 

The data set consists of more than 1,000,000 housing unit transactions between 1991 and 
2005. For fiscal reasons, we consider only second hand transactions. The CINP also gives 
information on the coverage rates of their data, which is approximately 85% for the whole 
transaction sample, but slightly higher for inner Paris (more than 90% whatever the year 
considered) than for some geographical areas in the Paris suburbs. After deleting incomplete 
records, missing data and significant outliers, 420,626 data are available for analysis: 220,418 for 
inner Paris, 102,220 for the Hauts-de-Seine, 40,628 for the Seine-Saint-Denis and 57,360 for the 
Val-de-Marne. 

Due to fiscal reasons, we choose to restrain our analysis to the observations in inner Paris 
and not to consider the Paris suburbs. In fact, property taxes can strongly vary over the Paris suburb 
which is not the case for inner Paris where they are constant. Such variability in property taxes is 
likely to produce fallacious spatial and temporal autocorrelation effects.   
 
Figure 1 below provides an estimate of the geographical repartition of transactions of flats over the 
inner Paris area for the whole [1991-2005] period. 
 

[ Insert Figure 1 ] 
 
Interestingly, notice the great disparity in the spatial density of observations. For example, the 
scarcity of observations in the 8th district (“arrondissement”) contrasts with the highly concentrated 
repartition of observations in the north of Paris. 
This disparity in the spatial distribution of observations can induce bias in the estimation of spatial 
autocorrelation when using a fixed-distance kernel type. As already explained, we rely on a nearest-
neighbor weight function which may be considered as a locally adaptive kernel function with a 
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smaller bandwidth in regions with ample number of observations. Such kernel prevents too unstable 
estimates. 
In order to provide a more precise description of the Paris sample, we first estimate a simple usual 
hedonic model. Table 1 provides the value of the index of the selling price of flats in inner Paris for 
the period [1991-2005].  

[ Insert Table 1 ] 
 
This table gives a measure of the large decline in the price level from 1991 to 1997 and of the 
important recovery since 1998. This result will be useful for the forthcoming interpretation of the 
temporal heterogeneity of coefficient estimates. 
Table 2 gives the mean price per s.m. for each district in 1993, 1997 and 2005. This table shows the 
enormous gap in the price level between the historical centre of Paris (Districts 1 to 8) or the west 
side of Paris (16th and 17th districts) and the North/East side of Paris (18th, 19th and 20th districts).  

 
[ Insert Table 2 ] 

 

IV) Results 

 

We now discuss the application of the spatiotemporal autoregressive (STAR) model with spatial 
and temporal heterogeneity, or LSTAR model. As detailed in the methodology section, this 
procedure will enable us to present the spatial and temporal varying magnitude for each price 
marginal attributes (for example, the elasticity of transaction price to transaction area or the period 
of construction of the building).  
 
In the regression procedure, the dependent variable is the log of the selling price. The nature of 
explanatory variables is detailed in Table 3. 

 
[ Insert Table 3 ] 

 
Notice that some other variables related to the specific location of each transaction (for example, the 
distance to the nearest underground or railway station) have also been tested, but none of them 
appears to be statistically sizeable and they do not significantly dampen the value of the spatial 
autoregressive coefficient. 
 
 

IV.1) Cross-Validation procedures 

 

The first step consists in minimizing the Cross-Validation function according to equation (7) and 
subject to the constraints (8). This procedure delivers an estimated value for mS and mT. As 
explained by Paez et al. (2002a, 2002b), it presents the inconvenient that inference and hypothesis 
testing cannot be done for these two parameters, but the methodology proposed by the authors is 
actually applicable to a fixed-distance kernel function and remains difficult to adapt to a k-nearest 
neighbour weight function. 
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Table 4 presents the results of the cross-validation minimization procedure. The estimated value of 
mS and mT are given as well as the sum of squared prediction errors in the case of our base line 
Local STAR (LSTAR) model. Additionally, we present the same results in the case of a more 
simple Locally and Temporally Weighted Regression (LTWR), i.e. without the spatial, temporal 
and compound autoregressive variables.  

 
[ Insert Table 4 ] 

 
Two mains results can be extracted from this table: 
 

- The estimated value of mS and mT is highly dependent on the model specification. The 
LTWR model achieves a minimum MAPE (Mean Absolute Prediction Error) using a final 
sub-sample of 310 observations. The LSTAR model achieves a minimum MAPE using a 
final sub-sample of 490 observations. The presence of spatial and temporal terms in the 
LSTAR model prevents from a too small final sub-sample size and consequently unstable 
estimates. 

 
- As was to be expected, the MAPE for LSTAR is significantly below that obtained with the 

LTWR model. Hence, spatial and temporal autoregressive effects seem to play an important 
role in predicting the log sale of transaction prices.  

 
 

IV.2) Magnitude of spatial and temporal dependence 

 

Spatial dependence  

 

The results for the spatial and temporal decomposition of the impact of spatial dependence on 
transaction prices for inner Paris are presented in Figure 1. 
 
 

[  Insert Figure 2 ] 
 

For inner Paris, the estimates of Sφ vary from 0.25 to 0.85. The white areas in the figure correspond 
to non significant estimates (above the 5% significance level using the local standard errors) or to 
areas without any transaction. Moreover a different figure is proposed for some specific years: 
1993, 1997, 2000 and 2005. Notice, as shown in Table 1, that the [1993-1997] period corresponds 
to a large bust in prices, whereas [1997-2005] is a recovery period for the Parisian housing market. 
The local standard errors show that these estimates are generally significant at 5% significance level 
even for small values of Sφ . All these figures reflect that the original STAR model (without 
heterogeneity) might produce biased estimates of the spatial dependence effects. It clearly appears 
that the spatial autoregressive parameter is both spatially and temporally dependent: 
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- Spatial heterogeneity of Sφ : spatial dependence effects are in general much less pronounced 
for the South-West (notably 15th and 16th districts) and North-East (notably 19th and 20th 
districts) of inner Paris than for the rest of Paris and in particular its historical centre. 

 
- Temporal heterogeneity of Sφ : the overall magnitude of spatial effects has been 

substantially increased between 1993 and 2000 and this phenomenon concerns almost all 
districts of inner Paris. Moreover, the gap between the historical centre and the South-West 
of inner Paris has sizeably grown between 1993 and 1997 and has been reduced during the 
[1997-2005] period.  

 
Notice that one possible interpretation of these results could be that the socio-demographic profiles 
of the population are certainly major determinants of housing market differentiation. Even if socio-
economic variables are not directly included in the hedonic regression equation, these variables (as 
well as the local housing market structure) are likely to explain a significant part of this 
heterogeneity. Moreover, as explained by Theriault et al. (2001), the distribution of the local 
population is also dependent on the structural characteristics of the housing market. Hence, it is not 
possible to disentangle these two (exogenous and endogenous) submarket effects. The spatial 
heterogeneity that appears in Figure 2 may result from an interaction of the socio-economic profiles 
of the population and the housing market structure. 
Additionally, the presence of temporal heterogeneity proves that the magnitude of spatial 
dependence has been modified through time and might be correlated to the price level. Buyers and 
sellers’ behaviour is probably not the same following a long price boom or slowdown period. It is 
worthy to note that the correlation between each transaction and its immediate neighbourhood has 
increased until 2000 and has slightly decreased from 2000 to 2005: the weighted average value for 

Sφ  is 0.56 in 1993, 0.68 in 1997, 0.74 in 2000 and 0.65 in 2005. 
 
 

Temporal dependence  

  
We do not reproduce results for the temporal autocorrelation coefficients Tφ  (nor for the spatio-
temporal compound effects STφ  and TSφ ) since they are in general much too volatile and almost 
everywhere not significant. This result suggests that spatial dependence effects are much more 
important that temporal ones. One possible interpretation for it is that the spatial S matrix is built 
only using past observations and could itself be considered as a spatio-temporal matrix. As 
explained by Pace et al. (1998), the spatial and temporal filters S and T are potentially correlated 
which can be responsible of this result.  
 
IV.3) Impact of floor area 

 
The spatial and temporal surface estimate of the price elasticity of floor area for inner Paris is 
reported in Figure 3.  
 

[ Insert Figure 3 ] 
 
Interestingly, the price elasticity of floor area is generally above one (ranging from 1 to a maximal 
value of 1.15). It means that the price per s.m. is an increasing function of the floor area for almost 
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the whole inner Paris area. Moreover, in 1993 or 1997, the price elasticity is larger for the west of 
inner Paris while staying around one for the east part. This phenomenon reflects a higher demand 
for large flats in the West of Paris, which seems to be connected to the socio-economic profile of 
the flat owners in this geographical area. But this West/East gap has steadily declined from 1993 to 
2000.  
Notice that in year 2000 the price elasticity of floor area was extremely high (average derivative 
estimates of 1.12). Hence the demand for high floor area was important at this time where the price 
level remained low. In 2005, the average derivative estimates of price elasticity to floor area have 
returned to a lower value of 1.04. The very high level of housing price in 2005 has probably 
dampened the demand for large flats.  
 

IV.4) Impact of the period of construction 

 

The period of construction is here a qualitative variable indicating whether the building was 
originally built before 1850, between 1850 and 1913 (which includes the well-known “Haussmann 
period”), between 1914 and 1947, between 1948 and 1969, between 1970 and 1980, between 1981 
and 1991, between 1992 and 2000 or since 2001. For statistical reasons (recent buildings are scarce 
in Paris and we work with sub-samples of less than 500 observations), we put all building 
constructed since 1981 together. 

 
The results for the spatial and temporal surface estimates of the period of construction 

impact are presented in Figure 4.  

 

[ Insert Figure 4 ] 
 

This coefficient is a decisive factor in the transaction price, only for special areas of inner 
Paris in the period [1993-1997]. In the east of Paris (notably the 11th and 20th districts and some part 
of the surrounding districts) “Haussmann period” flats are significantly cheaper than more recent 
flats. This is no longer true in 2000 or 2005, since in the east of Paris the gap between “Haussmann 
period” flats and recent flats has been dropped and is no longer significant. 

 

IV.4) Impact of the floor level 

 

Figure 5 proposes a comparison of the price of a second floor flat and a ground floor flat. 
 

[ Insert Figure 5 ] 
 
 
First, notice that the hedonic coefficient estimates is always positive over space and time since the 
demand for ground floor flats is very small (for example for safety reasons). Once again, the price 
gap between these two goods seems to be deeply connected to the pattern of the price level (see 
Table 1). In years 1997 and 2000 with low prices, buyers were ready to pay an important marginal 
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cost to be at the second floor rather than the ground floor. But this gap has strongly vanished in 
2005 after the [200-2005] price increase period. 
 

 

V) Conclusion 

 

We propose a new methodology for treating spatial and temporal autocorrelation and 
heterogeneity effects simultaneously. It enables to evaluate a spatial and temporal surface for 
coefficient estimates and in particular for autoregressive parameters. 
We find that spatial autoregressive effects seem to be larger in the historical centre of Paris than in 
some parts its surrounding area. Moreover the temporal pattern of hedonic coefficients seems to be 
correlated with the housing price level. This point is of considerable importance due to the large 
movement in prices for inner Paris from 1991 to 2005. The marginal value of certain positive 
attributes (a good period of construction or good floor level) is substantially higher in low price 
periods (1997 or 2000) than in high price periods (1993 or 2005).  
This study still needs to be extended regarding two main aspects. First, a rule for the setting of subs-
ample size has been adopted, but it does not allow for inference. Second, the presence of spatial and 
temporal heterogeneity is not tested. A testing procedure seems difficult to adapt since we work on 
overlapping sub-samples that produce correlated coefficient estimates. We could rely on cluster or 
regression tree analysis to overcome this problem. 
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APPENDIX: Tables and Figures 
 
 

Table 1: Hedonic Price Index (Flats - inner Paris – [1991-2005], base 100: 1991) 
 1991 1992 1993 1994 1995 1996 1997 

Index 100 98.3 91.1 90.0 84.0 77.1 72.7 
 

 1998 1999 2000 2001 2002 2003 2004 2005 
Index 73.3 78.1 88.9 98.0 106.0 119.2 134.4 153.8 

 
 

Table 2: mean of price per s.m. (euros) 
year Location (district) 

1993 1997 2005 
1 3048 

 
2591 

 
5920 

 
2 2760 2378 

 
5516 

 
3 2955 2459 

 
5721 

 
4 3256 2657 

 
6171 

 
5 3223 2723 

 
6073 

 
6 3554 2907 

 
6608 

 
7 3346 2911 

 
6196 

 
8 3121 2692 

 
5758 

 
9 2672 2277 

 
5202 

 
10 2486 2045 

 
5035 

 
11 2565 2173 

 
5047 

 
12 2603 2209 

 
4978 

 
13 2666 2193 

 
4971 

 
14 2805 2427 

 
5305 

 
15 2841 2477 

 
5348 

 
16 3241 2624 

 
5592 

 
17 2770 2299 

 
5183 

 
18 2456 2072 

 
4751 
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19 2398 1970 
 

4418 
 

20 2422 2039 
 

4588 
 

Inner Paris  2747 2311 
 

5187 
 

      
 
 
 
 

Table 3: List of Explanatory Variables 
Variable Type Description 

Floor Area Continuous Log of s.m. 
Floor Level Qualitative Ref : Ground Floor 

Period of Construction Qualitative Ref : After 1980 
Presence of a garage Qualitative Yes/No 

Bathrooms Qualitative Ref : no bathroom (shower) 
Elevator Qualitative Yes/No 

 
 
 
 

Table 4: Out-of-Sample Cross-Validation test 
Model estimated mT  estimated mS mean abs. prediction 

error 
LSTAR 2460 490 4.65 % 
LTWR 2350 310 5.36 % 
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Figure 1: Spatial distribution of flat transactions on inner Paris 
 

 
 

 



Figure 2: Spatial autoregressive coefficient estimates 
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Figure 3: Price elasticity to floor area estimates 

  
1993        1997 
 
 

 
2000        2005 
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Figure 4: Period of Construction (results for 2000 and 2005 are non significant at the 5% significance level) 
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Figure 5: Floor Level 
 

 
1993        1997 
 

 
2000        2005 
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