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Abstract

We consider a prototypical representative-agent forward-looking model, and study the

low frequency variability of the data when the agent’s beliefs about the model are updated

through linear learning algorithms. We find that learning in this context can generate

strong persistence. The degree of persistence depends on the weights agents place on past

observations when they update their beliefs, and on the magnitude of the feedback from

expectations to the endogenous variable. When the learning algorithm is recursive least

squares, long memory arises when the coefficient on expectations is sufficiently large. In

algorithms with discounting, long memory provides a very good approximation to the

low-frequency variability of the data. Hence long memory arises endogenously, due to

the self-referential nature of the model, without any persistence in the exogenous shocks.

This is distinctly different from the case of rational expectations, where the memory of

the endogenous variable is determined exogenously. Finally, this property of learning is

used to shed light on some well-known empirical puzzles.
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1 Introduction

In many economic models, the behavior of economic agents depends on their expectations

of the current or future states of the economy. For example, in the new Keynesian policy

model, prices are set according to firms’ expectations of future marginal costs, consumption

is determined according to consumers’ expectations of future income, and policy makers’

actions depend on their expectations of the current and future macroeconomic conditions,

see Clarida, Gaĺı and Gertler (1999). In asset pricing models, prices are determined by

expected dividends and future price appreciation, see Campbell and Shiller (1987).

In a rational expectations equilibrium, these models imply that the dynamics of the en-

dogenous variables are determined exogenously and therefore, these models typically fail to

explain the observed persistence in the data. It has long been recognized that bounded ratio-

nality, or learning, may induce richer dynamics and can account for some of the persistence in

the data, see Sargent (1993) and Evans and Honkapohja (2009). In a related paper, Chevil-

lon, Massmann and Mavroeidis (2010) showed that the persistence induced by learning can

be so strong as to invalidate conventional econometric methods of estimation and inference.

In this paper, we explore the issue of persistence further, with particular emphasis on the

impact of the memory of the learning algorithm on the dynamics of the endogenous variable

at low frequencies. Specifically, we characterize learning algorithms in terms of the effective

length of the sample of past data that agents use to update their beliefs. ‘Short window’

learning corresponds to the case when past observations are heavily discounted, a classic

example being exponentially weighted moving averaging, also known as ‘constant gain least

squares’ or CGLS. This is commonly referred to as ‘perpetual learning’ and is very popular

in empirical work, see Evans and Honkapohja (2009). ‘Long window’ learning corresponds

to mild or no discounting of past observations, such as recursive least squares.

When we add learning to a prototypical forward-looking model, we find that the resulting

dynamics of the endogenous variable exhibit long range dependence. We measure the degree

of long range dependence, or the memory of the process, in terms of the order of magnitude of

the variance of partial sums of the process. In stationary cases, we also study the behavior of

the spectrum near zero and the autocorrelation function at long lags. We find that the mem-

ory of the process depends on both the length of the learning algorithm, and the feedback that

2



expectations have on the process. The latter is governed by the coefficient on expectations,

which in many applications is interpretable as a discount factor. It is important to stress

that this coefficient plays no role for the memory of the process under rational expectations.

Finally, these results are established under the assumption that exogenous shocks have short

memory, and hence, it is shown that long memory can arise completely endogenously through

learning.

The above results provide a structural interpretation of a phenomenon which has been

found to be important for many economic time series. The other main explanations of

long-range dependence that we are aware of are: (i) aggregation of short memory series —

either cross-sectionally (with beta-distributed weights in Granger, 1980, or with heterogeneity

in Abadir and Talmain, 2002 and Zaffaroni, 2004) or temporally across mixed-frequencies

(Chambers, 1998); (ii) occasional breaks that can produce fractional integration (Parke,

1999) or be mistaken for it (Granger and Ding, 1996, Diebold and Inoue, 2001, or Perron

and Qu, 2007); and (iii) some form of nonlinearity (see e.g. Davidson and Sibbertsen, 2005,

and Miller and Park, 2010). Ours is (to our knowledge) the first explanation that traces the

source of long-range dependence to the behavior of agents, and the self-referential nature of

economic outcomes.

The paper is organized as follows. Section 2 presents the modelling framework and intro-

duces the concept of length of the learning window that is central to our analysis. We then

present in section 3 our analytical results regarding the relation between the length of the

learning algorithm and the long memory properties of the data. Monte Carlo simulation evi-

dence confirming our theoretical predictions follows in section 4. Finally, section 5 considers

the implications of adaptive learning in the present values models of Campbell and Shiller

(1987) and Engel and West (2005). It is shown that the long memory induced by learning

can account for puzzling features often encountered in empirical work, in the context of pre-

dictive regressions for asset returns and the forward premium anomaly. Proofs are given in

the appendix at the end. Supplementary material collecting further proofs and simulation

results is available online.

Throughout the paper, f (x) ∼ g (x) as x → a means limx→a f (x) /g (x) = 1. Also, we

use the notation sd (X) to refer to the standard deviation
√
var (X).
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2 Framework

2.1 Model and assumptions

In this paper, we consider a simple forward-looking model:

yt = βyet+1 + xt, t = 1, 2, ..., T (1)

where yet+1 denotes the expectation of yt+1 conditional on information up to time t, and xt

is an exogenous process that drives yt. Under rational expectations, yet+1 = Et (yt+1) , where

Et denotes expectations based on the true law of motion of yt.

It is well-known that when |β| < 1 and limT→∞Et (yT ) < ∞, the rational expectations

equilibrium (REE) satisfies

yt =
∞∑
j=0

βjEt (xt+j) , (2)

provided this sum converges, which depends on the properties of xt. We consider the leading

case where there are no exogenous dynamics, i.e., where Et (xt+j) = µ, for some constant

µ and for all j > 0. The motivation for excluding exogenous dynamics is to focus on the

persistence induced endogenously through learning. In our analytical results we will consider

a more general exogenous process xt, see assumption B below.

Let εt = xt − Et−1 (xt) . Then, from equation (1), the REE can be expressed as:

yt = α+ εt, (3)

where α = µ/ (1− β) . Under rational expectations, yet+1 = α. However, if agents do not

know the mean of yt, α, they must use past data to learn about it, so yet+1 will depend on

the data they use.

We consider a representative agent who forms her expectations yet+1 using the available

sample y1, ..., yt using a linear algorithm of the form:

yet+1 =

t−1∑
j=0

κt,jyt−j + ζt. (4)

where the term ζt represents the impact of the initial beliefs. Our main motivation for focusing

our attention on linear learning algorithms is to emphasize that long range dependence can
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arise without the need for nonlinearities – contrast this with Davidson and Sibbertsen (2005)

and Miller and Park (2010) (see also the surveys by Granger and Ding, 1996, and Davidson

and Teräsvirta, 2002). We use a representative agent framework to avoid inducing long

memory through heterogeneity and aggregation, as in e.g. Granger (1980), Abadir and

Talmain (2002) and Zaffaroni (2004). We define the polynomial κt (L) =
∑t−1

j=0 κt,jL
j where L

is the lag operator. To quantify how much the agent discounts past observations when forming

her expectations, we use the mean lag of κt, which is defined as m (κt) = [κt (1)]−1∑t−1
j=1 jκt,j .

We make the following assumptions about the learning algorithm:

Assumption A.

A.1. (κt,j) is nonstochastic;

A.2. κt (1) ≤ 1 for all t and as t→∞;

A.3. There exists mκ > 0 and δκ ∈ [0, 1] such that m (κt) ∼ mκt
δκ , as t→∞.

Assumption A.1 precludes cases in which agents use additional regressors in the forecast-

ing model, such as when they estimate an autoregressive model. It is made for simplicity of

the analysis and restricts the scope of the paper, but we show below that it still allows for

a wide range of models. Assumption A.2 is a common feature of most learning algorithms.

It implies in particular that κt,t−1 → 0 as t → ∞. Under assumption A.3 limt→∞
logm(κt)

log t

exists. This precludes cases where there exists a slowly varying function Sκ (i.e. where

limt→∞ Sκ (λt) /Sκ (t) = 1 for λ > 0) such that m (κt) ∼ mκt
δκSκ (t) . This is inconsequential

to our analysis (although it will exclude some parameter values in section 3 but simplifies the

exposition since δκ = 0 here implies that m (κt) is bounded.

We quantify the magnitude of decay of the weights (κt,j) via the parameter δκ as in the

following definition:

Definition. The parameter δκ ∈ [0, 1] defined in assumption A.3 is referred to as the length

of the learning window. The learning window is said to be short when δκ = 0 and long

otherwise.

The distinction between short window (SW) and long window (LW) learning plays a

significant role in our analytical results.
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2.2 Examples

In the following examples of learning algorithms, we show that both short and long window

learning may arise in standard settings of discounted least-squares, and give a further moti-

vation via a model of beliefs. The analytical results we derive in the next section hence apply

to the prototypical algorithms used in the literature.

2.2.1 Discounted Least-Squares

Both SW and LW learning may arise in the context of weighted, or discounted, least-squares

(DLS), see Sargent (1999), where agents solve

yet+1 = argmin
τ

t−1∑
j=0

wt,j (yt−j − τ)2 (5)

thus yielding κt,j =
(∑t−1

i=0 wt,i

)−1
wt,j and ζt = 0 in the learning algorithm (4). Algorithms

which arise as discounted least squares share the property that Sargent (1993, p.19) writes

as the “sum of the weights equals unity”. This corresponds here to κt (1) = 1, and satisfies

the summability condition of assumption A.2.

The class of SW algorithms comprises all DLS algorithms with weights that decay fast

enough, i.e. where wt,j = o
(
j−2
)

as j →∞, e.g. exponentially decaying weights (such as with

exponential smoothing), sufficiently quickly decaying hyperbolic weights or any fixed-window

estimator (such as the rolling windows considered in Giacomini and White, 2006).

LW algorithms are such that j2wt,j →∞ as t, j →∞ with j ≤ t.1 Recursive least-squares

corresponds to no discounting of past observations, wt,j = 1, and so belongs to this class,

with δκ = 1. The algorithms where only a fraction of the sample size t is used, such as when

wt,j = 1 for j ≤ tν , ν ∈ (0, 1) are also LW learning algorithms with δκ = ν.

2.2.2 A simple model of beliefs

In the terminology of the learning literature, the model on which agents base their forecasts

is referred to as the perceived law of motion (PLM). In order to understand how short or

1The specific case where j2wt,j remains bounded and nonzero yields a mean lag m (κt) = O (log t) which

does not satisfy assumption A.3. We therefore exclude this from our analysis.
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long window learning might arise from agents’ beliefs and information set, consider a PLM

based on a slightly generalized version of (3):

yt = αt + εt, (6a)

αt = αt−1 + qtvt, t ≥ 1, (6b)

where qt is a binary random variable with Pr (qt = 1) = p, and εt and vt are independent and

i.i.d., with mean zero and variance normalized to 1. This PLM is known as a ‘mean-plus-

noise’ model and allows the mean of the process yt to change over time. When p = 0, agents

assume the mean to be constant, i.e., αt = α0 for all t. This PLM clearly nests the rational

expectations equilibrium (3).

Under the PLM (6), the optimal estimate at of αt as a linear function of current and past

data on yt is given by the Kalman Filter (see Durbin and Koopman, 2008), which here takes

the form:2

at = at−1 + gt (yt − at−1) , t = 1, 2, ..., T, (7a)

gt =
gt−1 + p

1 + gt−1 + p
, t ≥ 2, g1 =

σ2
0

1 + σ2
0

(7b)

with σ2
0 measuring the variance of agents’ prior beliefs about α. The parameter σ2

0 can also

be interpreted as inversely related to agents’ confidence in their prior expectation of α, given

by a0. gt is the so-called gain sequence. The learning algorithm can be rewritten as

yet+1 = at = a0

t−1∏
i=0

(1− gt−i) +
t−1∑
j=0

[
gt−j

j−1∏
i=0

(1− gt−i)

]
yt−j (8)

which takes the form (4) with ζt = a0
∏t−1
i=0 (1− gt−i) and κt,j = gt−j

∏j−1
i=0 (1− gt−i) .

Expression (7b) shows that discounting of past observations increases with the perceived

probability of breaks. When p = 0, gt → 0 for all σ2
0, and this is referred to as decreasing gain

learning. Recursive Least Squares (RLS), i.e. gt = 1/t and at = t−1
∑t

j=1 yt – alternatively

ζt = 0 and κt,j = 1/t in (4) – is a special case when the prior is diffuse (σ2
0 =∞). With RLS,

a0 has no effect on the updating algorithm – intuitively, initial beliefs are so imprecise that

they are not taken into account in subsequent inference. σ2
0 < ∞ can also be interpreted

as reflecting information in some prior sample. For example, setting σ2
0 = 1/t0, where t0 is

2In the interest of simplicity, we do not consider nonlinear filtering, which would be more efficient.
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an integer, makes gt = (t+ t0)−1. Assuming that the mean of yt is constant therefore leads

agents to use a LW learning algorithm with δκ = 1.

When p > 0, i.e. when agents perceive that there is a nonzero probability that the mean

might change, the learning algorithm has short window. To quote Giacomini and White

(2006) “when there is inadequately modeled heterogeneity, observations from the more distant

past may lose their predictive relevance. Alternatively, when dynamics are inadequately mod-

eled, a limited-memory estimator can better track a series of interest”. If agents suspect that

the mean of yt may be nonconstant and shift in an unanticipated manner, it may be prefer-

able for them to use a short-window algorithm, thus achieving some robustness to dynamic

misspecification. The gain parameter gt converges to a constant ḡ =
(√

p (p+ 4)− p
)
/2 > 0

for all σ2
0. Constant gain learning arises when σ2

0 is chosen such that g1 = ḡ. When g1 6= ḡ, the

gain converges exponentially fast to its limit.3 This algorithm is also referred to as perpetual

learning, and it is quite popular in the empirical literature, see, e.g., Chakraborty and Evans

(2009). This learning algorithm is close to (equal to, when g1 = ḡ) the adaptive expectations

framework of Cagan (1956) and Nerlove (1958) and the exponential smoother class of Muth

(1960), see also Cogley (2002).

Another type of long window learning was suggested and empirically evaluated by Mal-

mendier and Nagel (2011) where agents form their expectations discounting past observations

with time-varying gain gt = θ
t with θ > 1. This algorithm implies that for both t, t− j →∞,

the weights decay hyperbolically with j : κt,j ∼ θ
(t−θ)θ

(t−j−θ)θ
(t−j) and the algorithm is of long

window type with δκ = 1.

The dynamics of yt under learning are determined by the actual law of motion (ALM).

In the present example, the ALM is given by:

yt =
1− gt

1− βgt
βat−1 +

xt
1− βgt

, for t = 1, 2, ..., T. (9)

3The gain sequence follows the recursion gt = Gp (gt−1) for t > 1 where Gp is homographic. The fixed

points Gp (g) = g are
(
±
√
p (p+ 4)− p

)
/2 when p > 0 and zero if p = 0. For p > 0, denote ḡ, ğ the positive

and negative solutions. Then letting φt = gt−ḡ
gt−ğ , it follows that φt = %t−1

p φ1, %p = ğ+1+p
ḡ+p

and gt converges

exponentially fast to its positive limit:

gt − ḡ =
√
p (p+ 4)

%t−1
p φ1

1− %t−1
p φ1

.
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The analytical results we provide below show how agents’ perceptions and hence their

choice of algorithm defining yet+1 affect the dynamics of yt, and in particular its low frequency

variability.

2.3 Exogenous dynamics

So far, we have assumed that the process xt is not predictable, so there are no exogenous

dynamics introduced through xt. This was sufficient to motivate learning algorithms of the

form (4) as ways to learn about the parameters of the forecasting model that would arise

under rational expectations: with unpredictability of xt, the rational forecast of yt+1 would be

its unconditional mean. However, it is relatively straightforward to allow for some persistence

in xt while we still maintain the learning algorithm (4). So, we make the following assumption

about xt, which is less restrictive than the one we used to motivate the learning algorithm.

Assumption B. The process xt is covariance stationary with finite fourth moments. Its

spectral density is differentiable everywhere; it is nonzero and flat at the origin. Its autoco-

variance function decays exponentially.

Assumption B characterizes a typical covariance stationary process with short memory.

It is clearly satisfied by processes that admit a finite-order invertible autoregressive moving

average (ARMA) representation. This restriction ensures that long-range dependence is not

introduced exogenously into the model, yet it allows for some dependence in xt.

We need to point out that if xt is persistent, and therefore predictable, then lags of xt

(or lags of yt if xt is unobserved) become useful in forecasting yt. Therefore, with exogenous

dynamics, the rational expectations equilibrium is not given by (3), and the mean-plus-noise

model introduced in the previous subsection does not nest it. So, the learning algorithms

(4) cannot be thought of as providing information about the rational expectations equilib-

rium. Such cases can still admit an interesting interpretation in terms of the notion of a

restricted perceptions equilibrium (RPE, see Sargent, 1993). Extension of our analysis to

more general learning algorithms that nest REEs with exogenous dynamics is both difficult

from an analytical point of view, and without a strong empirical motivation. Indeed in many

applications, e.g. in section 5, the assumption that xt is unpredictable is plausible, and xt

has often been considered so by past authors. Another motivation for simplicity is that the

9



aforementioned learning algorithms are necessarily nonlinear, and therefore may confound

the effect of learning with that of nonlinearity when we look at the low frequency properties

of the data.

3 Analytical results

This section provides our main results. We analyze the impact of the learning window length

on the memory of the resulting process. For clarity, we start with learning algorithms whose

coefficients are time-invariant, i.e., κt,j = κj for all t in (4). These algorithms have the

property that the learning window has length δκ < 1. We then analyze the case δκ = 1 in

which assumption A implies that the coefficients of the learning algorithm must be time-

varying and we focus on RLS. Finally, we consider the case of perpetual learning in the

empirically relevant case where the gain is very small.

3.1 Long memory

We start by providing our working definition of long memory. There are several measures

of dependence that can be used to characterize the memory of a stochastic process, such as

mixing coefficients and autocorrelations (when they exist). Various alternative definitions

of short memory are available (e.g., various mixing conditions, see White, 2000). These

definitions are not equivalent, but they typically imply that short memory requires that the

variance of partial sums, scaled by the sample size, T, should be bounded.4 If this does not

hold, we will say that the process exhibits long memory. This is the definition adopted by

Diebold and Inoue (2001) in their study of the connection between structural change and

long memory. Analogously to our previous discussion of the length of the learning window,

we can also define the ‘degree of memory’ of a process zt by the smallest d (when it exists)

such that

sd
(
T−1/2ST

)
= O

(
T d
)
, where ST =

T∑
t=1

zt. (10)

4Any definition of short memory that implies an invariance principle satisfies the restriction on the variance

of partial sums, e.g., Andrews and Pollard (1994), Rosenblatt (1956), or White (2000).
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If d = 0, the process exhibits short memory, while d > 0 corresponds to long memory (d < 0

is sometimes referred to as antipersistence).5

The above definition applies generally to any stochastic processes that have finite second

moments (which we assume in this paper). For a covariance stationary process, where the

autocorrelation function is a common measure of persistence, short memory requires absolute

summability of its autocorrelation function, or a finite spectral density at zero. Thus, long

memory arises when the autocorrelation coefficients are non-summable, or the spectrum has

a pole at frequency zero. This gives rise to the following definitions of d, that are equivalent

to (10) for covariance stationary processes, see Beran (1994) or Baillie (1996):

ρz (k) ∼ cρk2d−1, as k →∞

fz (ω) ∼ cf |ω|−2d , as ω → 0,
(11)

for some positive constants cρ, cf , where ρz (k) = Corr [zt, zt+k] is the autocorrelation function

(ACF) of a covariance stationary stochastic process zt and fz (ω) is its spectral density. For

d > 0, the autocorrelation function at long lags and the spectrum at low frequencies have the

familiar hyperbolic shape that has traditionally been used to define long memory.

Fractional integration, denoted I(d), is a well-known example of a class of processes that

exhibit long memory. When d < 1, the process is mean reverting (in the sense of Campbell

and Mankiw, 1987, that the impulse response function to fundamental innovations converges

to zero, see Cheung and Lai, 1993). Moreover, I(d) processes admit a covariance stationary

representation when d ∈ (−1/2, 1/2), and are non-stationary if d ≥ 1/2. Long range depen-

dence, or long memory, arises when the degree of fractional integration is positive, d > 0. In

the case of nonstationary processes, the ACF definition of d in (11) does not apply,6 so we

use the ACF/spectrum of ∆z, as in Heyde and Yang (1997):

ρ∆z (k) ∼ cρk2(d−1)−1, 1/2 < d < 1 as k →∞;

f∆z (ω) ∼ cf |ω|−2(d−1) , 1/2 < d < 1 as ω → 0.
(12)

5In the context of nonlinear cointegration, Gonzalo and Pitarakis (2006) have introduced the terminology

“summable of order d” for processes that satisfy the definition given in equation (10) above, see also Berenguer-

Rio and Gonzalo (2011).
6The property fz (ω) ∼ cf |ω|−2d can be applied also to nonstationary cases with 1/2 < d < 1 if fz (ω) is

defined in the sense of Solo (1992) as the limit of the expectation of the sample periodogram.
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Müller and Watson (2008) study the low frequency properties of economic time series, and

show that there exist many statistical models which may be used to model strong persistence

short of a stochastic trend. These constitute, in the words of the authors “continuous bridges

between the I(0) and I(1) models”. Müller and Watson suggest that a good measure of the

distance of models to the I(0) and I(1) boundaries is the total variation distance between

the implied measures.7 This could be used as an alternative way to define and measure the

degree of memory of a stochastic process. Unfortunately, this does not seem to be analytically

tractable in the models that we study in this paper.

Estimators of d exist both in the time and frequency domains. In the time domain,

estimation has historically been performed via the “rescaled range-statistic” R/S of Hurst

(1951) (see also Baillie, 1996, and Lo, 1991) or, in the context of non-stationary process via

the decay long-run variance, see e.g. Teverovsky and Taqqu (1997) in the context of shifting

means and declining trends. Yet, it is more common to estimate d via the shape of the spectral

density close to the origin. Two classes of estimators have been proposed in the literature,

either maximizing the local “Whittle” likelihood (see Robinson, 1995) or by regressing an

estimate of the log spectral density on the log of (functions of) the frequency, see Geweke

and Porter-Hudak (1983) (GPH henceforth) and Robinson (1995b). Denoting by f̂ (ωj) an

estimator of the spectral density8 evaluated at the jth Fourier frequency ωj = 2πj/T , the

latter consists of estimating the regression:9

log f̂ (ωj) = ϕ0 + ϕ1 logωj + εω,j , j = 1, ..., n (13)

where n is a truncation parameter, which must be chosen such that n/T → 0. The estimator

of the fractional integration parameter d is given by −ϕ̂1/2, where ϕ̂1 is the OLS estimate of

ϕ1. Alternative estimators can be obtained based on different choices of truncation parameter

n, different regressors or (smoothed) estimators of f̂ (ωj).

In the following, we use all of the above three characterization of long memory, where

possible, for the processes under consideration.

7The total variation distance between two probability measures is defined as the largest absolute difference

the two probability measures assign to the same event, maximized over all events.
8The literature has considered the sample periodogram or smoothed estimates thereof.
9The recent literature (e.g. Hurvich et al. (1998), Kim and Phillips (1999) and Phillips (2007) advocates

the use of log
∣∣1− eiωj

∣∣ as a regressor instead of logωj but this choice does not affect the results of the paper.
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3.2 Degree of memory under Rational Expectations

Under rational expectations, if xt satisfies assumption B, then so does yt when β ≤ 1, see e.g.

Gourieroux et al. (1982). We can generalize this to show the conditions for the dependence

of xt such that yt does not exhibit long memory.

Proposition 1 Let xt admit an infinite moving average representation: xt =
∑∞

j=0 θjεt−j ,

where εt is i.i.d with zero expectation and finite variance. Then the solution to yt = βEtyt+1+

xt with β ≤ 1 satisfies

sd

(
T−1/2

T∑
t=1

yt

)
= O (1) ,

if |β| < 1 and
∣∣∣∑∞j=0 θj

∣∣∣ <∞, or if β = 1 and
∑∞

j=0 j |θj | <∞.

In the proof of the above result, we find that long memory in yt can arise in the following

case: β = 1 and {θj} satisfy
∣∣∣∑∞j=0 θj

∣∣∣ < ∞,
∑∞

j=0 j |θj | = ∞ and
∑∞

j=0 θj 6= 0. In this

situation, xt exhibits short memory by our definitions, but its behavior in finite samples

is very similar to that of a long memory process. Examples of such processes are rare in

the literature and they are often assumed away (see e.g. Phillips and Magdalinos, 2005, or

Perron and Qu, 2007) as their spectral density is nonzero yet not differentiable at the origin

(see Stock, 1994) so that they are in finite sample difficult to distinguish from long memory

process. Thus, with the exception of such pathological situations, long memory cannot arise

endogenously under rational expectations.

3.3 Learning algorithms with constant coefficients

Consider model (1), and assume that the linear learning algorithm (4) has constant coefficients

κj,t = κj for all t ≥ 0. Assumption A.2 implies that κj = o
(
j−1
)
, and the length of the

learning window δκ depends on the rate of decay of the weights. If κj = O
(
j−2
)
, the learning

window is short under assumption A.3, while if κj ∼ cκjδκ−2, for some cκ > 0 and 0 < δκ < 1,

the learning window is long, with length δκ.

For simplicity, we assume that there is an infinite history of {yt} and define y−t = yt1{t≤0}

and y+
t = yt − y−t . To ensure existence of the initial beliefs, we define ζt such that ζt =

κ (L) y−t =
∑∞

j=t κjyt−j if δκ ∈ (1/2, 1) and ∆ζt = κ (L) ∆y−t if δκ ∈ (0, 1/2) . Owing to

13



non-stationarity, we will be led later to restrict further the assumption on ζt when letting

β → 1. A simplifying assumption often made in the literature is y−t ≡ 0, see e.g. Diebold

and Rudebusch (1991) and Tanaka (1999). Yet, it has been shown that this assumption

(which is related to the difference between Type I and Type II Fractional Brownian motions)

is not innocuous for the definition of the spectral density, so we avoid it: see Marinucci and

Robinson (1999), Davidson and Hashimzade (2008, 2009).

Under the previous assumptions, the ALM can be written, for t ≤ T , as

(1− βκ (L)) yt = xt, if δκ ∈ (1/2, 1)

(1− βκ (L)) ∆yt = ∆xt if δκ ∈ (0, 1/2)
(14)

It is also clear in the previous expressions that (1− βκ (1))E (yt) = E (xt) so (14) can be

expressed in deviation from the expectations. In other words, we may assume without loss

of generality and for ease of exposition that E (xt) = 0.

3.3.1 Long Memory under ‘local-to-unity’ asymptotics

Under the assumption that xt is a short memory process, the persistence of yt in terms of low

frequency variability depends on the learning algorithm κ (·) and on the coefficient β. When

βκ (1) = 1, the autoregressive lag polynomial (1− βκ (L)) has a unit root. Because in typical

applications β is interpreted as a discount factor that is close to 1, and the learning algorithm

is least squares yielding κ (1) = 1, the relevant framework of analysis is a local-asymptotic

nesting in which β is modelled as local to unity, in the sense that 1 − βT = O (T−ν), where

T is the sample size and ν > 0. Formally, this means that the stochastic process of y is

a triangular array {yt,T }t≤T . However, we shall omit the dependence of β and yt on T for

notational simplicity. For ease of exposition, and without loss of generality, we assume in the

following that κ (1) = 1.

The motivation for working under the local-to-unity asymptotic framework is twofold.

First, it provides a better description of the behavior of the process yt for many values of

β when T is finite. Second, it characterizes the class of situations in which the process is

virtually indistinguishable from a process with a unit root. For completeness, we give in a

supplementary appendix some analytical results on the behavior of the spectrum near the

zero frequency when β < 1 and fixed.

14



Local-to-unity asymptotics or triangular-array asymptotics are common in the time series

literature. To make the connection with this literature, consider the autoregressive process

of order 1, AR(1). This is a special case of (14) with κ (L) ≡ L and xt white noise, so that

β is the autoregressive coefficient. When β ∈ (−1, 1), yt is covariance stationary with short

memory (i.e. exponentially decaying autocovariances), while β = 1 corresponds to the usual

random walk setting. It is well known that when β is close to – though strictly below – unity,

asymptotic approximations computed under the covariance stationarity assumption are less

accurate in finite samples than asymptotics based on the unit-root setting. To solve this

issue, a number of authors proposed to express the proximity of β to unity in terms of the

available sample size, letting cβ ≥ 0 such that βT = 1− cβ/T , see Bobkoski (1983), Cavanagh

(1985), Chan and Wei (1987) and Phillips (1987). These articles spurred a large literature in

which some authors suggested that the previous assumption could be extended to

1− βT = cβT
−ν , for ν > 0. (15)

Giraitis and Phillips (2006) and Phillips and Magdalinos (2007) showed that when ν < 1, the

autoregressive root is different enough from unity to ensure that distributions are similar to

the covariance stationary setting, ν = 0, (e.g. asymptotic normality as opposed to Dickey-

Fuller type distributions; see also Phillips, Magdalinos and Giraitis, 2010). ν ∈ (0, 1) is

referred to as the near-stationarity region. By contrast, Andrews and Guggenberger (2007)

showed that when ν > 1, (the “very nearly unity” region) the rates of convergence and

distributions are comparable to the exact unit root case ν = +∞. To summarize, in the

AR(1) model, when β is within a T−1 neighborhood of unity, the process yt is close to an

I (1) process and when β lies strictly outside any such neighborhood, asymptotic distributions

(such as those of the estimators of autoregressive coefficients and associated t-statistics)

resemble those of covariance stationary processes.

The following result gives the memory properties of the process yt in terms of the order

of magnitude (as T increases) of the long run variance of yt, in accordance with the definition

(10) of the degree of memory.

Theorem 2 Consider the model yt = βyet+1 + xt, with yet+1 = κ (L) y+
t + ζt and

∑T
t=1 ζt =

op

(∑T
t=1 xt

)
. Suppose xt satisfies assumption B, with E (xt) = 0, the learning algorithm

15



κ (·) satisfies assumption A, with δκ ∈ [0, 1), δκ 6= 1/2, κ (1) = 1, and β = 1 − cβT−ν with

ν ∈ [0, 1] and cβ > 0. Then, as T →∞, ST =
∑T

t=1 yt satisfies:

sd
(
T−1/2ST

)
= O

(
Tmin(ν,1−δκ)

)
.

The above result shows the memory of the process yt depends on (i) the proximity of β to

unity and (ii) the length of the learning window. If ν = 0, the process exhibits short memory,

irrespective of the learning window.10 For ν > 0, the memory of the process depends on

whether ν ≤ 1− δκ or ν > 1− δκ, i.e., on how close β is to unity relative to the length of the

learning window.

When β is sufficiently close to unity, ν > 1−δκ, we can derive expressions for the spectral

density of yt at low frequencies and the rate of decay of its autocorrelation function that

accord with the alternative definitions of long memory given in equation (11).

Theorem 3 Under the assumptions of theorem 2, and if ν > 1− δκ, then:

1. the spectral density fy of yt evaluated at Fourier frequencies ωj = 2πj/T with j = 0, ...n,

and n = o (T ) , satisfies as T →∞,

fy (ωj) ∼ fx (0)ω
−2(1−δκ)
j

2. the autocorrelation functions ρy of yt , or ρ∆y of ∆yt, evaluated at k = o (T ) , satisfy as

T, k →∞,

ρy (k) = O
(
k1−2δκ

)
if 1

2 < δκ < 1

ρ∆y (k) = O
(
k−2δκ−1

)
if 0 < δκ <

1
2 .

Both theorems show that the persistence of the process yt is a function of the relative

values of the length of the learning window and the proximity of β to unity. When β is

sufficiently close to unity, the memory of the process is determined entirely by the length of

the learning window, δκ, and is inversely related to δκ.11

10In the case ν = 0, it can be shown that the derivative of the spectrum of yt at zero is unbounded, as

in fractionally integrated processes, and that the value of the spectrum is positive and increasing in β, so in

finite samples it may be difficult to distinguish yt from a fractionally integrated process. These results, which

are avaiable in the supplementary material to this paper, provide additional motivation for focusing on the

local-to-unity case.
11This arises because the window length δκ is positively related to how much weight agents put on distant
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3.3.2 Consistency of the estimator of the degree of memory

Having established the long memory implications of learning dynamics, we now turn to the

properties of the GPH estimator of the long memory parameter d. We rely on the high level

assumption that there exists a spectral density estimator that is consistent at low frequencies.

Sufficient conditions for this assumption for long memory processes can be found at various

places in the literature, see e.g. Robinson (1994b), and specifically for δκ ∈ (1/2, 1) , Robin-

son(1994a) and Delgado and Robinson (1996). The following result establishes conditions

under which this estimator is consistent for the value implied by the length of the window of

the learning algorithm δκ.

Theorem 4 Under the model and assumptions of theorem 2 with ν > 1 − δκ, let f̂y,T and

f̂∆y,T denote estimators of the spectral densities fy and f∆y. Let n = o (T ) and assume that

for all Fourier frequencies ωj , j = 1, ..., n :

if δκ ∈ (1/2, 1) , plimT→∞f̂y,T (ωj) /fy (ωj)→ 1, or

if δκ ∈ (0, 1/2) , plimT→∞f̂∆y,T (ωj) /f∆y (ωj)→ 1.

Consider regressing log f̂y,T (ωj) , if δκ ∈ (1/2, 1) , or log f̂∆y,T , if δκ ∈ (0, 1/2) , on a con-

stant and −2 logωj over the ordinates j = 1, ..., n. Then the estimator d̂ of the coefficient of

−2 logωj in the regression satisfies as n→∞,

d̂
p→

 1− δκ if δκ ∈ (1/2, 1) ,

δκ if δκ ∈ (0, 1/2) .

An interesting implication of this theorem is that it supports the notion of a self-confirming

or consistent expectations equilibrium, see Brock and Hommes (1997). If agents believed that

the process yt exhibited long memory and used a hyperbolically weighted moving average filter

to generate their forecasts, such as κ (L) = 1 − (1− L)1−δκ , the resulting dynamics of the

data would indeed exhibit long memory, and agents’ estimates of the fractional order would

be consistent with their original beliefs.

observations. Yet, in fractionally integrated process, the degree of integration is a positive function of the

speed of decay of the weights of the lag polynomial. Hence, the larger δκ the further away the resulting process

yt is a from a martingale (an I(1) process).
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3.4 Recursive least squares

The results of the previous section concerned learning algorithms with constant coefficients

and window length δκ < 1. When δκ = 1, summability of the coefficients of the learning

algorithm means we must consider a learning algorithm with time-varying weights. It does

not seem possible to provide general results for this case, but it is instructive to examine the

important case of Recursive Least Squares (RLS).

In the mean-plus-noise model of section 2.2.2, RLS arises when agents’ perceived prob-

ability of changes in the mean is zero, p = 0. When agents learn using RLS, the learning

algorithm is nonconstant (specifically, κt,j ∼ 1/t) and the resulting process is nonstationary.

Under correct specification of the PLM by agents, learning converges to the REE and yt

itself tends to a weakly dependent process, see e.g., Evans and Honkapohja (2001). Yet the

convergence can be so slow that yt exhibits long memory as the following result shows.

Theorem 5 Consider the model yt = βyet+1 + xt, where yet+1 is given by equation (8) with

gt ∼ 1/t and a0 = Op (1) , and suppose xt satisfies assumption B. Then, as T → ∞, ST =∑T
t=1 yt satisfies:

sd
(
T−1/2ST

)
=


O
(
T β−1/2

)
, if 1/2 < β ≤ 1,

O
(√

log T
)
, if β = 1/2,

O (1) , if β < 1/2.

The theorem shows that the process exhibits long memory when β > 1/2. This explains a

result from the learning literature on the properties of agents’ forecasts under RLS learning:

even though yet+1 converges to a constant when β < 1 , asymptotic normality of yet+1 is only

established when β < 1/2 (Evans and Honkapohja, 2001, theorem 7.10).

When β = 1, learning does not converge and persistence is strongest in that case. Unlike

the previous results, long memory arises here without the use of local asymptotics. However,

when β is close to 1, the behavior of the process in a finite sample may be better approximated

by a local asymptotic framework. Because of the continuity as β → 1 in theorem 5, a local-

asymptotic setting would not modify the degree of memory of yt.
12

12A formal local-to-unity asymptotic approximation is available on the supplementary material to this paper.

It is shown than for β = 1− cβT−ν , with cβ > 0 and ν ∈ (0, 1] the memory length is d = 1/2.
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3.5 Perpetual learning with small gain parameter

Another leading example of a learning algorithm that features prominently in the empirical

literature is CGLS, or perpetual learning, with a very small gain parameter. Often this type

of learning induces behavior that is in some sense close to a rational expectations equilibrium,

and it is sometimes referred to as ‘nearly rational expectations’, see Milani (2007). For fixed

gain, CGLS is clearly a SW algorithm, but this is not an appropriate characterization when

the gain parameter is small relative to the sample size. To make this precise, we consider a

local-to-zero asymptotic nesting where the gain parameter goes to zero with the sample size.

We focus for simplicity on the mean-plus-noise model of section 2.2.2 with p > 0. In that

model, yet+1 = at, where at is an exponentially weighted moving average of past yj , j ≤ t.

Specifically, under constant gain learning, at can be written as:

at =

(
1− (1− β) ḡ

1− βḡ

)t
a0 +

ḡ

1− βḡ

t∑
i=1

(
1− (1− β) ḡ

1− βḡ

)t−i
xi. (16)

So, if β is very close to unity or ḡ very close to 0 such that (1− (1− β) ḡ) ≈ 1, at exhibits near

unit-root behavior. Yet, when ḡ is small this attenuates the near-stochastic trend in at – as it

appears before the summation in expression (16). We aim to characterize the implications for

the dynamics of the processes of the proximity of (β, ḡ) to (1, 0). We follow and extend the

local-asymptotic approach of Chevillon et al. (2010) and let 1 − β = cβT
−ν and ḡ = cgT

−λ

for (ν, λ) ∈ [0, 1]2. Larger values of ν and λ mean here that 1 − β and ḡ are assumed to lie

in tighter neighborhoods of zero.

For λ ≤ 1, the length of the learning window δκ is equal to λ, since the mean lag satisfies

m (κT ) = O
(
T λ
)
, (17)

see the proof in the appendix. Hence, ḡ → 0 corresponds to long-window learning. The

following theorem gives the implications for the memory of yt.

Theorem 6 Consider the model yt = βyet+1 + xt, with yet+1 = at as given in equation (16),

where xt satisfies assumption B and a0 = Op (1); the parameters (β, ḡ) =
(
1− cβT−ν , cgT−λ

)
,

(λ, ν) ∈ [0, 1]2 and cβ, cg are positive. Then, as T →∞, ST =
∑T

t=1 yt satisfies:

sd
(
T−1/2ST

)
=

 O
(
T 1−λ) , if ν > 1− λ;

O (T ν) , if ν ≤ 1− λ,
(18)
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This result is entirely analogous to theorem 2, with λ = δκ. Chevillon et al. (2010) studied

only the case where ν = λ = 1/2 and xt is i.i.d. They did not consider the implications for

the memory of yt. Theorem 6 shows that perpetual learning with small gain create dynamics

that are akin to long memory in finite samples.

4 Simulations

This section presents simulation evidence in support of the analytical results given above. We

focus on the impact of the length of the learning window through the simple model of beliefs

presented in section 2.2.2. We generate samples of {yt} from equation (9) for a relatively long

sample of size T = 1000 and for various values of the parameters β and ḡ. We set σ2
0 = ∞

(diffuse prior), so that a0 is no longer relevant. We study the behavior of the variance of

partial sums, the spectral density, and two popular estimators of the fractional differencing

parameter d, the GPH and maximum local Whittle likelihood estimator.13 We also report the

power of tests of the null hypotheses d = 0 and d = 1. The exogenous variable xt is assumed

to be i.i.d. with mean zero and its variance is normalized to 1 without loss of generality.

The number of Monte Carlo replications is 10,000. Additional figures reporting the rate of

growth of the variance of partial sums and the densities of estimators of d are available in a

supplementary appendix.

Figure 1 reports the Monte Carlo average log sample periodogram against the log fre-

quency (log ω). This constitutes a standard visual evaluation of the presence of long range

dependence if the log periodogram is linearly decreasing in log ω. When the learning algo-

rithm is RLS, the figure indicates that yt exhibits long memory for β > 1/2 and the degree of

long memory increases with β. Table 1 records the means of the estimators, and the empirical

rejection frequency (power) of tests of the hypotheses d = 0 and d = 1 (the latter is based on

a test of d = 0 for ∆yt) against the one-sided alternatives d > 0 and d < 1 respectively. In

addition to the fact that E(d̂) increases with β in accordance with theorem 5, we also observe

that E(d̂) remains below unity.

Figure 1 and table 2 report the corresponding statistics when ḡ > 0 and the learning

algorithm (with a random initial condition) approaches CGLS. The behavior of E(d̂) as well

13The Whittle estimator is obtained by constrained maximization over the range d ∈ (−1, 2) .
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Figure 1: Monte Carlo averages of the log periodogram against the log of the first
√
T Fourier

frequencies with T = 1, 000 observations. The model is the ‘mean plus noise’ perceived law

of motion presented in section 2.2.2. The number of Monte Carlo replications is 10,000.

Mean of d̂ Pr(Reject d = 0) Pr(Reject d = 1)

β GPH Whittle GPH Whittle GPH Whittle

0.00 0.001 -0.011 0.075 0.069 0.936 0.995

0.10 0.006 -0.007 0.081 0.077 0.922 0.993

0.50 0.055 0.039 0.179 0.182 0.795 0.950

0.80 0.291 0.245 0.656 0.677 0.561 0.753

0.90 0.438 0.378 0.805 0.817 0.466 0.635

0.99 0.573 0.510 0.890 0.899 0.374 0.519

Table 1: The table records the Monte Carlo mean of the estimator of the degree of fractional

integration d and the empirical rejection frequency of the null hypotheses H0 : d = 0 and

H0 : d = 1 for a nominal size of 5%. The tests use the Geweke & Porter-Hudak (1983) log

periodogram regression estimator and the maximum local Whittle likelihood estimator of

Robinson (1995a). The learning algorithm is RLS.
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Mean of d̂ Pr(Reject d = 0) Pr(Reject d = 1)

ḡ β GPH Whittle GPH Whittle GPH Whittle

0.01 0.10 0.018 0.005 0.096 0.095 0.922 0.993

0.50 0.119 0.104 0.319 0.364 0.795 0.950

0.80 0.458 0.410 0.834 0.872 0.565 0.762

0.90 0.657 0.599 0.930 0.948 0.474 0.655

0.99 0.807 0.761 0.970 0.980 0.393 0.561

0.03 0.10 0.032 0.019 0.117 0.122 0.922 0.993

0.50 0.194 0.181 0.525 0.626 0.794 0.946

0.80 0.539 0.498 0.957 0.981 0.551 0.717

0.90 0.770 0.720 0.990 0.996 0.449 0.597

0.99 0.934 0.909 0.999 1.000 0.427 0.625

0.10 0.10 0.031 0.019 0.116 0.120 0.928 0.993

0.50 0.216 0.212 0.598 0.717 0.821 0.955

0.80 0.539 0.532 0.989 0.998 0.499 0.648

0.90 0.765 0.741 1.000 1.000 0.296 0.406

0.99 0.980 0.970 1.000 1.000 0.198 0.280

0.27 0.10 0.009 -0.003 0.085 0.083 0.939 0.995

0.50 0.086 0.077 0.224 0.267 0.929 0.992

0.80 0.322 0.330 0.843 0.939 0.731 0.879

0.90 0.551 0.573 0.992 1.000 0.434 0.569

0.99 0.971 0.967 1.000 1.000 0.029 0.045

0.50 0.10 0.003 -0.009 0.077 0.073 0.940 0.995

0.50 0.021 0.009 0.100 0.102 0.955 0.997

0.80 0.111 0.103 0.285 0.360 0.928 0.990

0.90 0.268 0.272 0.733 0.861 0.792 0.924

0.99 0.888 0.895 1.000 1.000 0.050 0.072

Table 2: The table records the Monte Carlo mean of the estimator of the degree of fractional

integration d and the empirical rejection frequency of the null hypotheses H0 : d = 0 and

H0 : d = 1 for a nominal size of 5%. The tests use the Geweke & Porter-Hudak (1983) log

periodogram regression estimator and the maximum local Whittle likelihood estimator of

Robinson (1995a). The learning algorithm is CGLS.
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as Pr (Reject d = 0) and Pr (Reject d = 1) is non-monotonic in ḡ. As ḡ increases, we observe

first that persistence increases (nearly uniformly in β) up to ḡ = 0.10 and then declines: this

is in accordance with theorem 6. This is most evident from Table 2.

Unreported figures (available in the supplementary appendix) show that the log of

sd
(
T−1/2

∑T
t=1 yt

)
increases linearly with log T and that the growth rate of the ratio

sd
(
T−1/2

∑T
t=1 yt

)
/ log T tends quickly to the values the theorems imply for the degree of

memory under both RLS learning and CGLS with local parameters. We also present there

the densities of the estimators of d which complement the rejection probabilities recorded in

tables 1 and 2.

5 Application to Present Value Models

We now consider the implications of learning in present value models. Specifically, we focus

on the Campbell and Shiller (1987, 1988) models of stock prices and the term structure, and

the model of Engel and West (2005) for exchange rates. Under rational expectations, both

models are known to exhibit features that do not seem to match the data and have led to

famous “puzzles”. Many explanations for these puzzles have been proposed and some of them

rely on some variables of interest presenting a large degree of persistence of exogenous origin.

Here, we show that adaptive learning by agents may be generating the persistence necessary

to explain the puzzling empirical features. Branch and Evans (2010), and Chakraborty

and Evans (2008), also studied the potential of adaptive learning to explain those empirical

puzzles. Our analysis differs from Chakraborty and Evans (2008), because we do not need

to assume that fundamentals are strongly persistent, so our results are complementary to

theirs. We also differ from Branch and Evans (2010) because they focus on explaining regime-

switching in returns and their volatility, while we focus on their low frequency variation.

Alternatively, Frankel and Froot (1987) use survey data to suggest an explanation to the

forward premium anomaly via adaptive learning under heterogeneity.

The asset pricing models we consider admit the general formulation (see Engel and West,

2005):

Yt = (1− β)
∞∑
i=0

βiEt
(
γ′1zt+i

)
+
∞∑
i=0

βiEt
(
γ′2zt+i

)
, (19)
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where the log price Yt is a function of the discounted sum of current and future vectors of

‘fundamentals’ zt with impact coefficients γ1 and γ2.

Define yt = ∆Yt and the innovation rt = Yt−Et−1Yt. Denoting the forecast yet+1 = Etyt+1,

under rational expectation, equation (19) implies the model of section 2 for yt (see the

appendix for a derivation):

yt = βyet+1 + xt (20)

where the forcing variable is defined as xt = θ∆zt + βrt, with θ = ((1− β) γ′1 + γ′2) . xt can

be assumed to be weakly dependent and β is typically close to unity.

In the following two subsections, we provide simulations of the processes involved in the

Campbell-Shiller and Engel-West models under adaptive learning. Specifically, we assume xt

to be univariate i.i.d and generate draws thereof from a standard normal distribution. Then,

from a random initialization ye1, we generate a sample of T observations of
(
yt, y

e
t+1

)
using the

algorithms of section 2.2.2 and expression (20).14 In the following, we show analytically and

using the simulated processes how some standard empirical puzzles can be explained under

adaptive learning. In the simulations, we use parameter values for the learning algorithm

similar to those of section 4. This ensures that the learning window is long relative to the

sample size.

5.1 Campbell-Shiller model and predictive regressions

The log-linearized Campbell-Shiller (1988) model can be written as equation (19), where Yt

is log price, zt log dividends, rt is excess return and the parameters (γ1, γ2) are equal to

(1, 0). The log linearization constant β was estimated over 1926-1994 by Campbell, Lo and

MacKinlay (1996, chapter 7, p. 261) for asset prices at .96 in annual data and .997 in monthly

data.

Campbell and Shiller (1987) define the spread St = Y − zt which they show to be equal

to β/ (1− β) yet+1. From this identity, we generate St and ∆zt = (yt −∆St). Finally, we

retrieve rt = β−1 (xt − (1− β) ∆zt) .

Since Fama and Schwert (1977) and Rozeff (1984), it has become standard practice to

regress the excess return rt on lags of log dividend-price ratio zt−Yt. Such so-called predictive

14We set σ2
0 large enough to be considered almost infinite.
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Mean of Rej. Prob. Mean of d̂

T ḡ γ0 γ̂ (s.d.) H0 : γ = 0 H0 : γ = γ0 for St for rt for yt

Campbell-Shiller

250 0.00 0.09 (.26) 18.7 0.36
(0.13,0.55)

0.01
(−0.23,0.22)

0.24
(−0.10,0.45)

0.03 .0017 0.72 (.56) 30.8 30.6 0.50
(0.29,0.69)

−0.00
(−0.23,0.20)

0.09
(−0.14,0.30)

0.10 .0018 0.27 (.19) 35.0 34.3 0.49
(0.27,0.69)

−0.01
(−0.24,0.20)

0.25
(−0.01,0.46)

400 0.00 0.09 (.25) 20.9 0.37
(0.15,0.53)

0.01
(−0.18,0.18)

0.24
(−0.06,0.43)

0.03 .0017 0.47 (.36) 33.3 33.0 0.50
(0.32,0.66)

−0.00
(−0.19,0.17)

0.13
(−0.07,0.31)

0.10 .0018 0.18 (.12) 36.0 35.1 0.49
(0.31,0.66)

−0.00
(−0.19,0.16)

0.29
(0.10,0.47)

Engel-West H0 : γ = 1 H0 : γ = γ0

250 0.00 -0.07 (.11) 99.6 0.37
(0.14,0.52)

−0.01
(−0.23,0.21)

0.25
(−0.09,0.46)

0.03 0.98 0.29 (.58) 32.6 30.5 0.50
(0.29,0.69)

−0.00
(−0.23,0.20)

0.10
(−0.14,0.31)

0.10 0.98 0.73 (.20) 30.5 34.0 0.50
(0.28,0.69)

−0.00
(−0.24,0.20)

0.27
(0.03,0.48)

400 0.00 -0.05 (.11) 99.8 0.38
(0.15,0.53)

0.01
(−0.19,0.17)

0.26
(−0.06,0.44)

0.03 0.98 0.54 (.36) 35.0 31.0 0.50
(0.32,0.66)

0.00
(−0.19,0.17)

0.13
(−0.06,0.32)

0.10 0.98 0.82 (.13) 42.2 30.6 0.50
(0.31,0.66)

−0.00
(−0.19,0.17)

0.31
(0.11,0.48)

Table 3: The table records parameters and simulated statistics for the two examples of

estimated predictive regression (Campbell-Shiller, with β = 0.96) and forward premium

anomaly (Engel-West, with β = 0.98) for sample sizes of 250 and 400 observations. γ̂ is

the estimator of the parameter of interest in the regression (which takes the value γ0 under

CGLS) and (s.d.) denotes its Monte Carlo standard deviation. Rej. Prob. refers to the

Monte Carlo two-sided rejection probability (using asymptotic critical values) of the null

that γ is respectively zero (Campbell-Shiller) or unity (Engel-West) together with the null

that it takes value γ0. d̂ is the estimator of the fractional integration order d using a GPH log

periodogram regression; the intervals in parentheses underneath report the 2.5% en 97.5%

quantiles of the distribution of the estimators.
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regressions have often shown that rt is predictable but the evidence is questionable (see

Stambaugh, 1999). Campbell and Yogo (2006) show that when St is highly persistent, in the

sense that it exhibits a near unit root, the OLS estimator of its coefficient in a predictive

regression, say γ, is biased above zero and t-statistics over-reject. In particular, consider the

regression model:

rt = c− γSt−1 + et. (21)

In a simulation, Campbell and Yogo show that the t-test empirical size can be as high as

27.2% for a sample of 250 observations. Since St is proportional to yet+1, then it will be highly

persistent under adaptive learning, especially if agents use long window learning.

In order to derive the properties of a predictive regression, let us express rt as a function

of St−1. Using the model identities, rt = β−1 (xt − (1− β) ∆zt) can be written as rt =

yt− β−1 (1− β)St−1. Under learning, the ALM is given by expression (9) where at = yet+1 =

β−1 (1− β)St−1, i.e.

yt =
(1− gt) (1− β)

1− βgt
St−1 +

xt
1− βgt

.

So, it follows that

rt = − (1− β)2

β (1− βgt)
St−1 +

xt
1− βgt

where xt is i.i.d by assumption. Hence, the true value of the coefficient on the lag of the

log-dividend price ratio zt−1 − Yt−1 = −St−1 in the predictive regression (21) is given by

γt =
(1− β)2

β (1− βgt)
> 0. (22)

This implies that there is predictability in excess returns, arising from the fact that expec-

tations are not rational. However, when β is close to one, and gt close to zero, γt will be

close to zero, so predictability is limited. For example, for the calibrated parameter values

in Campbell and Shiller given above, γt < 0.002 under RLS or CGLS with small gain, see

Table 3. Despite this, we will see that predictability t tests reject the no-predictability null

hypothesis with very high probability. We find that this is primarily due to size distortion

rather than power, in line with the results in Campbell and Yogo (2006).
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ḡ = 0.095 

−5.0 −2.5 0.0 2.5 5.0

0.25

0.50

Panel (b):  Density of t−stat for H0: γ= 0

−2 −1 0 1 2 3 4 5

0.25

0.50

Panel (c): Density of t−stat for H0: γ= γ0

−0.25 0.00 0.25 0.50 0.75 1.0

2.5

5.0

7.5

Panel (d): Density of ̂d for St

−0.6 −0.4 −0.2 0.0 0.2 0.4

1

2

3

4 Panel (e): Density of ̂d for rt 

−0.50 −0.25 0.00 0.25 0.50 0.75

1

2

3

4 Panel (f): Density of ̂d for yt 

Figure 2: Statistics for the predictive regression derived from the Campbell and Shiller loglin-

earized asset price model over samples of 250 observations with β = .96. Panel (a) records the

density of regression coefficient estimator; the densities of the corresponding the t-statistic

for the nulls of a zero coefficient or the true null (only defined under CGLS) are in panels (b)

and (c). Panels (d), (e) and (f) report the densities of the Geweke and Porter-Hudak (1983)

estimators of the fractional integration parameter for the spread St, the excess return rt, and

the difference yt in the log price.
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Figure 2 presents the sampling distributions of various statistics relating to this model

over samples of 250 observations with β = 0.96 and for different learning algorithms. Panel a

reports the OLS estimator γ̂ of γ in the predictive regression (21); panels b and c report the

t statistics for the hypotheses H0 : γ = 0 and H0 : γ = γ0, where γ0 is the ‘true value’ under

CGLS, i.e. γ0 = (1−β)2

β(1−βḡ) ;15 panels d to f report the densities of the GPH estimators of the

long memory parameters for St, rt and yt, respectively. Table 3 reports summary statistics

of those distributions for samples of size 250 and 400.

The t statistic is seen to be centered on strictly positive values with large rejection proba-

bilities of the null H0 : γ = 0 at the 5% level: 19% in the case of RLS learning and more than

30% for CGLS, see table 3. The log-dividend price ratio St is persistent, with an estimate

for its long memory parameter in the range 0.35-0.5. This is somewhat lower than found

by Marinucci and Robinson (2001) (in the range 0.6-0.7 for the non-log ratio), though not

significantly so, and it is consistent with estimates based on the annual data in Shiller (1989)

updated for 1871-2001 and available from Robert Shiller’s website.16 In particular, the GPH

estimate of the degree of long memory for the log dividend-price ratio is 0.28 with 95% con-

fidence interval [-0.01, 0.66]. The corresponding values for the simulated excess returns show

much less persistence and no evidence of long memory, which is in line with inter alia Lo

(1991) and many authors since. Also, the rejection probabilities of the null of no predictive

power by Campbell and Yogo (2006) are in line with the simulations results presented in

table 3. The change in log prices, yt, exhibits more persistence than excess returns, and

this persistence is increasing in the gain parameter, as our theory predicts. The table and

figure also report the t statistics and rejection probabilities when the null hypothesis is true,

H0 : γ = γ0, which yields the size of the test. We see that there is significant size distortion,

comparable to the results given by Campbell and Yogo (2006), which is symptomatic of the

unbalanced nature of the predictive regression. Hence, these results are entirely consistent

with the findings of Campbell and Yogo (2006), and they are complementary since they pro-

vide an explanation for the persistence in St that Campbell and Yogo took as given in their

analysis.

15RLS learning converges to rational expectations where Etyt+1 = 0 so there is no asymptotic predictability.
16available at http://www.econ.yale.edu/˜shiller/data/chapt26.html

28



5.2 Exchange rates and the forward premium anomaly

The Forward Premium Anomaly constitutes another puzzling empirical feature that is related

to present value models and it has been shown to be understandable in the presence of long

range dependence. The puzzle finds its source in the Uncovered Interest Rate Parity (UIP):

Et [st+1 − st] = ft,1 − st = it,1 − i∗t,1

where st is the log spot exchange rate, ft,1 is the log one-period forward rate, and it, i
∗
t are the

one-period log returns on domestic and foreign risk-free bonds. The UIP under the efficient

markets hypothesis has been tested since Fama (1984) as the null H0 : (c, γ) = (0, 1) in the

regression:

∆st = c+ γ (ft−1,1 − st−1) + εt. (23)

The anomaly lies in the rejection of H0 with an estimate γ̂ << 1, often negative.

Among the possible explanations for the puzzle, data persistence of exogenous origin

has been raised inter alia by Engel and West (2005). Baillie and Bollerslev (2000) and

Maynard and Phillips (2001) suggest an explanation through fractional integration. There is

ample evidence in the literature that changes in log exchange rates and the forward premium

exhibit persistence that is less strong than implied by the presence of a pure unit root. These

variables have been modeled for instance as near-I(1) or fractionally integrated, see inter

alia Cheung (1993), Baillie (1996), Baillie and Bollerslev (1994a, 1994b, 2000), and Engel

and West (2005). Maynard and Phillips (2001, tables I and II) in particular showed that

the estimated fractional integration orders of the forward premia vary mostly in the range

(.2, .6) which is comparable to the values in Baillie and Bollerslev (1994a), between .4 and .7.

Regarding the differences in spot log exchange rates, Cheung (1993) estimated integration

orders lying within (0,.5) using the GPH estimator and much lower values using Maximum

Likelihood techniques, as did Maynard and Phillips. Many explanations have been proposed

for this that rely on the persistence of the processes that are modeled either as fractionally

integrated (Maynard and Phillips, 2001) or as exhibiting persistent volatility (Baillie and

Bollerslev, 2000).

Engel and West (2005) discuss some exchange rate models that can be written in the form

(19), with Yt = st and where zt is the log fundamental. In particular, they discuss a money
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income model and a Taylor rule model where the foreign country has an explicit exchange

rate target. In the money income model, the discount rate β is function of the interest semi-

elasticity of money demand. Using past empirical studies, Engel and West evaluate that

it should lie within the range 0.97-0.98. In the Taylor rule model, β relates negatively to

the degree of the intervention of foreign monetary authorities to target the exchange rate.

Empirical evidence allows the authors to evaluate its range between 0.975 and 0.988.

Under the UIP, the forward premium is given by ft,1 − st = yet+1, where yt = ∆st. Using

the mean-plus-noise learning model of section 2.2.2 and equation (20), we obtain

∆st =
β (1− gt)
1− βgt

(ft−1,1 − st−1) +
xt

1− βgt
.

Hence, the true value of γ in the regression (23) is

γt =
β (1− gt)
1− βgt

< 1. (24)

We see that the hypothesis γ = 1 clearly does not hold (because expectations are not rational),

but with β close to one and gt close to zero, γt can be very close to unity. The persistence

of ∆st and of the forward premium St = ft,1 − st under learning implies that the bias of the

OLS estimator γ̂ of γ is large and negative in finite samples.

Figure 3 presents the sampling distributions of various statistics relating to this model

over samples of 250 observations with β = 0.98 and for different learning algorithms. Panel a

reports the OLS estimator γ̂ of γ in the regression (23); panels b and c report the t statistics

for the hypotheses H0 : γ = 1 and H0 : γ = γ0, where γ0 is the ‘true value’ under CGLS, i.e.,

γ0 = β(1−ḡ)
1−βḡ ;17 panels d to f report the densities of the GPH estimators of the long memory

parameters for St, rt = st − set and yt, respectively. Table 3 reports summary statistics of

those distributions for samples of size 250 and 400.

We observe that the estimated coefficients are indeed lower than unity and that the null

that γ = 1 in equation (23) is rejected with a high probability (over 99% under RLS, 25%

with CGLS, see table 3). The forward premium is, according to the simulations, estimated

fractionally integrated of order within the range 0.35-0.50 and the change in log spot rates

exhibits less persistence (mostly non-significant). Table 3 shows that under RLS learning,

γ̂ is strongly downwardly biased. As with the previous example, the rejection probabilities

17Under RLS learning, the UIP holds asymptotically since learning converges to rational expectations.
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Figure 3: Statistics for the UIP regression derived from the Campbell and Shiller loglinearized

asset price model over samples of 250 observations with β = .98. Panel (a) records the density

of regression coefficient estimator; the densities of the corresponding t-statistics for the nulls

of a unit coefficient and for the true null (defined only under CGLS) are in panels (b) and (c)

respectively. Panels (d) , (e) and (f) report the densities of the Geweke and Porter-Hudak

(1983) estimators of the fractional integration parameter for the spread St, the innovations

rt, and the difference yt in the log exchange rate.
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for the null that γ = 1 or γ0 are close (in particular when the gain is low). Hence the high

rejection probabilities are not due to high power, but more due to size distortion. Finally,

the degree of persistence of change in log spot rates, yt, although higher than that of the

innovation, rt, is not significant when the gain is low and is in line with the values reported

in Cheung (1993) and Maynard and Phillips (2001).

6 Conclusion

We studied the implications of learning in models where endogenous variables depend on

agents’ expectations. In a prototypical representative-agent forward-looking model, with lin-

ear learning algorithms, we found that learning can generate strong persistence. The degree

of persistence induced by learning depends on the weight agents place on past observations

when they update their beliefs, and on the magnitude of the feedback from expectations to

the endogenous variable. In the special case of a long-window learning algorithm known as

recursive least squares, long memory arises when the coefficient on expectations is greater

than a half. In algorithms with shorter window, long memory provides an approximation

to the low-frequency variation of the endogenous variable that can be made arbitrarily ac-

curate in finite samples. Importantly, long memory arises endogenously here, due to the

self-referrential nature of the model, without the need for any persistence in the exogenous

shocks. This is distinctly different from the behavior of the model under rational expec-

tations, where the memory of the endogenous variable is determined exogenously and the

feedback on expectations has no impact. Moreover, our results are obtained without any

of the features that have been previously shown in the literature to be associated with long

memory, such as structural change, heterogeneity and nonlinearities. Finally, we showed that

this property of learning can be used to shed light on some well-known empirical puzzles in

present value models.
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Appendix

A Proof of proposition 1

We look for a solution yt =
∑∞

j=0 ψjηt−j that satisfies yt = βEtyt+1 + xt with β ≤ 1. This

implies

∞∑
j=0

(ψj − βψj+1) ηt−j =

∞∑
j=0

θjηt−j .

Identifying the coefficients, it follows that ψj − βψj+1 = θj for all j ≥ 0, so

ψj = θj + βψj+1 =

∞∑
k=j

βk−jθk.

Hence as j → ∞, ψj → 0 and the rate of decay of the (ψj) coefficients will be slowest when

β = 1. When β < 1,

ψj = O

(
θj

∞∑
k=0

βk

)
= O (θj) ,

so
∣∣∣∑∞j=0 ψj

∣∣∣ < ∞ if
∣∣∣∑∞j=0 θj

∣∣∣ < ∞. We then use theorem 3.11 of Phillips and Solo (1992)

who show that yt then satisfies a Central Limit Theorem.

If β = 1, then ψj =
∑∞

k=j θk so

∞∑
j=0

ψj =

∞∑
j=0

(j + 1) θj

and the result follows assuming that
∑∞

j=0 j |θj | <∞.

B Preliminary lemmas

We introduce the following two lemmas which we will use in several instances in the proofs.

Lemma 7 Let κ (L) =
∑∞

j=0 κjL
j with κj ∼ cκj

δκ−2 as j →∞, for cκ > 0 and δκ ∈ (0, 1) .

Then, there exist strictly positive scalars (c∗κ, c
∗∗
κ ) such that

Re
(
κ
(
eiω
)
− 1
)

=
ω→0+

−c∗κω1−δκ + o
(
ω1−δκ

)
,∣∣κ (eiω)− 1

∣∣2 =
ω→0+

c∗∗κ ω
2(1−δκ) + o

(
ω2(1−δκ)

)
.
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Proof. For δκ ∈ (0, 1) , δκ − 2 ∈ (−2,−1). Yong (1974), theorems III-24 and -27, show that

for δκ ∈ (0, 1) , if there exists a function S slowly varying at infinity such that aj = jδκ−2S (j) ,

then

∞∑
j=1

aj cos (jω)−
∞∑
j=1

aj ∼
ω→0+

π

2Γ (2− δk) cos (2−δk)π
2

ω1−δκS

(
1

ω

)
∞∑
j=1

aj sin (jω) ∼
ω→0+

π

2Γ (2− δk) sin (2−δk)π
2

ω1−δκS

(
1

ω

)
.

Define S (x) = κdxe/ dxeδκ−2 , where dxe is the integer part of xt. Then as x → ∞ and for

λ > 0,

S (λx) /S (x) =
κdλxe

κdxe

dxeδκ−2

dλxeδκ−2
→ 1,

so S is slowly varying with S
(

1
ω

)
→ cκ as ω → 0. This implies, using κj = jδκ−2S (j) and∑∞

j=1 κj = 1, that

κ
(
e−iω

)
− 1 ∼

ω→0+

πcκ
2Γ (2− δκ)

[
− 1

cos πδκ2
+ i

1

sin πδκ
2

]
ω1−δκ ,

i.e. the result holds for Re
(
κ
(
eiω
)
− 1
)

setting c∗κ = πcκ
2Γ(2−δκ)

1
cos πδκ

2

> 0. Also, using

∣∣∣∣∣ −1

cos πδκ2
+ i

1

sin πδκ
2

∣∣∣∣∣
2

=

(
cos

πδκ
2

sin
πδκ
2

)−2

=

(
sinπδκ

2

)−2

,

and Γ (1 + z) = zΓ (z) together with Γ (1− z) Γ (z) = π
sinπz , we obtain

∣∣1− κ (eiω)∣∣2 ∼ c2
κΓ (δκ)2

(1− δκ)2ω
2(1−δκ), (25)

and c∗∗κ = c2κΓ(δκ)2

(1−δκ)2 > 0.

Lemma 8 Consider the model yt = βyet+1 + xt, with yet+1 = κ (L) yt. Suppose xt satisfies

assumption B, and that the constant learning algorithm κ (·) satisfies assumption A with

δκ ∈ (0, 1) . Then the spectral density of yt is finite at the origin fy (0) < ∞ and admits an

upward vertical asymptote: there exists cf > 0 such that

f
′
y (0) ∼

ω→0
−cfω−δκ . (26)
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Proof. Consider

fy (ω)− fy (0) =
(fx (ω)− fx (0)) (1− β)2

(1− β)2 |1− β + β (1− κ (e−iω))|2

− fx (0)
2β (1− β) Re

[
1− κ

(
e−iω

)]
+ β2

∣∣1− κ (e−iω)∣∣2
(1− β)2 |1− β + β (1− κ (e−iω))|2

,

since

∣∣1− β + β
(
1− κ

(
e−iω

))∣∣2 = (1− β)2−2β (1− β) Re
[
κ
(
e−iω

)
− 1
]
−β2

∣∣κ (e−iω)− 1
∣∣2 .

Now if δκ > 0, under constant learning, κj ∼ cκjδκ−2 for some cκ > 0. Lemma 7 implies that

there exist c∗κ, c
∗∗
κ such that

fy (ω)− fy (0) ∼
ω→0+

(1−β)2

2 f
′′
x (ω)ω2 − 2β (1− β) fx (0) c∗κω

1−δκ + β2fx (0) c∗∗κ ω
2(1−δκ)

(1− β)4

(27)

∼
ω→0+

−2βfx (0) c∗κ

(1− β)3 ω1−δκ .

We first note that by definition of the population spectrum

fy (ω) =
1

2π

∞∑
k=−∞

γke
−iωk =

1

2π

{
γ0 + 2

∞∑
k=1

γk cosωk

}
,

where γk = Cov (yt, yt−k) is symmetric since yt is stationary. We assume for now that γk is of

bounded variation, then, for ω 6= 0, the series
∑n

k=1 γk cosωk converges uniformly as n→∞

(see Zygmund, 1935, section 1.23). It follows that the derivative of fy satisfies:

f ′y (ω) = − 1

π

∞∑
k=1

kγk sin kω. (28)

We now use theorem III-11 of Yong (1974) who works under the assumption that {ak}k∈N is

a sequence of positive numbers that is quasi-monotonically convergent to zero (i.e. ak → 0

and there exist M ≥ 0, such that ak+1 ≤ ak
(
1 + M

k

)
for all k ≥ k0 (M)) and that {ak} is

also of bounded variation, i.e.
∑∞

k=1 |∆ak| < ∞. The theorem states that for a ∈ (0, 1) ,

ak ∼ k−aS∗ (k) as k →∞,with S∗ slowly varying, if and only if

∞∑
k=1

ak sin kω ∼ π

2Γ (a) sin πa
2

ωa−1S∗
(

1

ω

)
as ω → 0+.
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We apply this theorem to (28), using expression (27) that f ′y (ω) ∼
ω→0+

−2βfx(0)c∗κ
(1−β)3 ω−δκ

− 1

π

∞∑
k=1

kγk sin kω ∼
ω→0+

−2βfx (0) c∗κ

(1− β)3 ω−δκ .

We let a = 1− δκ in the theorem of Yong above, defining

ak =
kγk
π

(1− β)3

2βfx (0) c∗κ
.

This implies that ak ∼ π
2Γ(a) sin πa

2
k−(1−δκ), with Γ (1− δκ) sin π(1−δκ)

2 = π
2Γ(δκ) sin πδκ

2

, i.e.

γk ∼
2πβfx (0) c∗κΓ (δκ) sin πδκ

2

(1− β)3 k−(2−δκ). (29)

To apply theorem III-11 of Yong (1974), we need to check that ak thus defined is a quasi-

monotonic sequence with bounded variation. The first holds since ak+1/ak ∼ (1 + 1/k)−(1−δκ) <

1, so choose M such that ak+1/ak < 1 for k > M. Also kγk is clearly of bounded variation

since it is asymptotically positive and

∆ (kγk) = O
(
k−(2−δκ)

)
is summable. Finally, we need to check the uniform convergence condition in Zygmund

(1935): |∆γk| = O
(
k−(3−δκ)

)
so γk is of bounded variation.

C Proof of theorem 2

Substitute (4) into (1) to get

yt = β
t−1∑
j=0

κjyt−j + βζt + xt,

and define κ∗ (L) = 1− κ (L) =
∑∞

j=0 κ
∗
jL

j so

(1− β) yt + β

t−1∑
j=0

κ∗jyt−j = xt + βζt.

Summing yields

T∑
t=1

(1− β)− β
t−1∑
j=0

κ∗j

 yT−t+1 =
T∑
t=1

(xt + βζt) . (30)
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The left-hand side of the previous equation shows that the magnitude of
∑T

t=1 yt depends on

the limit of (1− β) /
∑T−1

j=0 κ
∗
j . Since κ∗ (1) = 0, κj ∼ cκjλ−2 with λ < 1 implies κ∗j ∼ −cκjλ−2

and
∑T−1

j=0 κ
∗
j ∼ cκ

1−λT
λ−1. Under assumption A, the previous expressions hold with λ = δκ

when δκ ∈ (0, 1) and for λ < 0 if δκ = 0.

We consider the three cases in turn. Defining y−t = yt1{t≤0}, we made the following

assumptions about ζt :

if ν ≤ 1− δκ :

T∑
t=1

ζt = op

(
T∑
t=1

xt

)
; (31)

if ν > 1− δκ :

 ζt = κ (L) y−t , if δκ ∈
(

1
2 , 1
)

;

∆ζt = (1− L)κ (L) y−t , if δκ ∈
(
0, 1

2

)
.

(32)

First if (1− β) /
∑T−1

j=0 κ
∗
j →∞, i.e. ν < 1− δκ, or δκ = 0, then

T∑
t=1

(1− β)− β
t−1∑
j=0

κ∗j

 yT−t+1 = (1− β)
T∑
t=1

yt + op

(
(1− β)

T∑
t=1

yt

)
,

hence, with assumption (31),

T∑
t=1

yt = Op

(
(1− β)−1

T∑
t=1

xt

)
= Op

(
T

1
2

+ν
)

var

(
T−1/2

T∑
t=1

yt

)1/2

= O (T ν) .

Consider now the case where (1− β) /
∑T−1

j=0 κ
∗
j → 0 i.e. ν > 1 − δκ. First assume that

δκ ∈
(

1
2 , 1
)
. Define zt = [κ∗ (L)]−1 xt with spectral density

fz (ω) =
fx (ω)

|1− κ (e−iω)|2
.

Using lemma 7, as ω → 0

fz (ω) ∼ fx (0)

c∗∗κ
ω−2(1−δκ). (33)

Beran (1994, theorem 2.2 p. 45) shows that (33) implies that

var

(
T∑
t=1

zt

)
= O

(
T 1+2(1−δκ)

)
.
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Notice that the proof is in the appendix of Beran (1989) and relies on showing that fz (ω)

can be written as
∣∣1− e−iω∣∣−2(1−δκ)

S (1/ω) where S is slowly varying at infinity.

Under assumption (32) and noting that κ (L) y−t = (κ (L)− 1) y−t , expression (30) rewrites

T∑
t=1

(1− β)− β
t−1∑
j=0

κ∗j

 yT−t+1 − β
∞∑
t=0

t+T∑
j=t+1

κjy−t =
T∑
t=1

xt.

Since (1− β) = o
(∑T−1

j=0 κ
∗
j

)
, it follows that, denoting y+

t = yt − y−t ,

T∑
t=1

(1− β)− β
t−1∑
j=0

κ∗j

 yT−t+1 − β
∞∑
t=0

t+T∑
j=t+1

κjy−t

= −β

 T∑
t=1

 t−1∑
j=0

κ∗j

 yT−t+1 +

∞∑
t=0

t+T∑
j=t+1

κjy−t

+ op

 T∑
t=1

t−1∑
j=0

κ∗jyT−t+1


=

T∑
t=1

(1− κ (L)) yt + op

(
T∑
t=1

(1− κ (L)) y+
t

)
.

Hence, using
∑T

t=1 xt =
∑T

t=1 (1− κ (L)) zt,

T∑
t=1

(1− κ (L)) yt + op

(
T∑
t=1

(1− κ (L)) y+
t

)
=

T∑
t=1

xt

T∑
t=1

(1− κ (L)) (yt − zt) + op

(
T∑
t=1

(1− κ (L)) y+
t

)
= 0

T∑
t=1

(yt − zt) + op

(
T∑
t=1

yt

)
= 0

i.e. √√√√var

(
T−1/2

T∑
t=1

yt

)
= O

(
T 1−δκ

)
. (34)

Finally, if δκ ∈ (0, 1/2) , defining ∆zt = [κ∗ (L)]−1 ∆xt, and following the previous steps under

assumption (32) starting from (1− βκ (L)) ∆yt = ∆xt + β∆ζt leads to

T∑
t=1

∆ (yt − zt) + op

(
T∑
t=1

∆yt

)
= 0.

The result by Beran (1989) regarding the magnitude of var
(∑T

t=1 ∆zt

)
cannot be used here

for (1− δκ) ∈
(

1
2 , 1
)
. Yet, the spectral density of ∆zt satisfies

f∆z (ω) ∼ fx (0)

c∗∗κ
ω2δκ ,
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which implies (see Lieberman and Phillips, 2008) that γ∆z (k) ∼ k−2δκ−1. Also f∆z (0) = 0

so γ∆z (0) + 2
∑∞

k=1 γ∆z (k) = 0. The long run variance of ∆zt is hence such that

var

(
T−1

T∑
t=1

∆zt

)
= γ∆z (0) + 2T−1

T−1∑
k=1

(T − k) γ∆z (k)

=

(
γ∆z (0) + 2

T−1∑
k=1

γ∆z (k)

)
− 2T−1

T−1∑
k=1

kγ∆z (k)

= −
∞∑
k=T

γ∆z (k)− 2T−1
T−1∑
k=1

kγ∆z (k)

= O
(
T−2δκ

)
+O

(
T−1+1−2δκ

)
= O

(
T−2δκ

)
. (35)

The last remaining case we must consider is when ν = 1 − δκ, starting with assuming

δκ 6= 0. Then (1− β) and
∑t−1

j=0 κ
∗
j are of comparable magnitude and we cannot neglect either.

We therefore use a direct proof: Brillinger (1975, theorem 5.2.1) shows that if the covariances

of yt are summable and E (yt) = 0,

var
(
T−1

∑T
t=1 yt

)
fy (0)

= (2πT )−1
∫ π

−π

sin2 (Tω/2)

sin2 (ω/2)

fy (ω)

fy (0)
dω, (36)

where fy (ω) is the spectral density of yt. The function
[

sin(Tω/2)
sin(ω/2)

]2
achieves its maximum

over [−π, π] at zero where its value is T 2. As T → ∞ it remains bounded for all ω 6= 0.

It is therefore decreasing in ω in a neighborhood of 0+. Lemma 8 shows that fy (ω) is

also decreasing in such a neighborhood and
fy(ω)
fy(0) is bounded at all T. Both functions being

positive, their product is also decreasing in ω in a neighborhood of 0+; it is in addition

continuous, even and differentiable at all ω 6= 0. As T →∞, the integrand of (36) presents a

pole at the origin and its behavior in the neighborhood of zero governs the magnitude of the

integral. Since the integrand achieves its local maximum at zero, we can restrict our analysis

to a neighborhood thereof, [0, θT ] with θT = o
(
T−1

)
since sin2(TθT /2)

sin2(θT /2)

fy(ω)
fy(0) remains bounded

as T →∞ for any sequence θT such that TθT 6→ 0.

Let ε > 0 and β = 1− cβT−ν , we develop the integrand of (36) about the origin, provided

T νθ1−δκ
T =

(
T ν/(1−δκ)θT

)1−δκ
= o (1), i.e. if ν ≤ 1 − δκ. This yields for the integral over
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[0, θT ]:

(2πT )−1
∫ θT

0

(
T 2

(
1− 1

3

(
T 2 − 1

)
ω2 + o

(
T 2ω2

)))(
1− cV T νω1−δκ + o

(
T νω1−δκ

))
dω

=
T

2π

[
θT −

1

9

(
T 2 − 1

)
θ3
T −

c

2− δκ
T νθ2−δκ

T +
cV

3 (4− δκ)

(
T 2 − 1

)
T νθ4−δκ

T

]
=

T

2π

[
T−(1+ε) − T 2 − 1

9
T−3(1+ε) − cV

2− δκ
T ν−(2−δκ)(1+ε) +

cV
(
T 2 − 1

)
3 (4− δκ)

T νT−(4−δκ)(1+ε)

]

∼ 1

2π

[
T−ε − 1

9
T−3ε − cV

2− δκ
T ν−(1−δκ)−(2−δκ)ε +

cV
3 (4− δκ)

T ν−(1−δκ)−(4−δκ)ε

]
, (37)

where cV is implicitly defined from lemma 8. Expression (37) shows that if ν ≤ 1 − δκ the

integral over [0, θT ] – and hence that over [−π, π] – remains bounded in the neighborhood of

the origin and hence
var(T−1

∑T
t=1 yt)

fy(0) = O (1) , with fy (0) = (1− β)−2 fx (0) , i.e.

var

(
T−1

T∑
t=1

yt

)
= O

(
T 2ν

)
. (38)

Now when (δκ, ν) = (0, 1) , assumption A.3 implies that 0 < κ′ (1) =
∑∞

j=1 jκj < ∞. By

lemma 2.1 of Phillips and Solo (1992), there exists a polynomial κ̃ such that

κ (L) = 1− (1− L) κ̃ (L) ,

with κ̃ (1) < ∞. κ̃ (L) = (1− L)−1 (1− κ (L)) so the roots of κ̃ coincide with the values z

such that κ (z) = 1, except at z = 1 for which κ̃ (1) = κ′ (1) > 0 (by L’Hospital’s rule).

κ (z) = 1 implies that the roots of κ̃ (L) lie outside the unit circle (κ (z) < κ (1) = 1 for

|z| ≤ 1, z 6= 1) and the process x̃t defined by κ̃ (L) x̃t = xt is I(0) with differentiable spectral

density at the origin. Hence yt satisfies the near-unit root definition of Phillips (1987):

(1− βL) yt = x̃t,

and the result follows.

D Proof of theorem 3

We present in turn the proofs for the spectral density and the autocorrelation
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D.1 Spectral density

We consider the behavior of the spectral density of yt about the origin under the assumption

that κj ∼ cκjδκ−2 so define (c∗κ, c
∗∗
κ ) as in lemma 7. Let β = 1−cβT−ν , ν ∈ [0, 1] . As ω → 0+,

the spectral density of fy is, for δκ ∈ (1/2, 1) :

fy (ω) =
fx (ω)

|1− βκ (e−iω)|2
=

fx (ω)

|1− β + β (1− κ (e−iω))|2
, (39)

which implies

fy (ω) (40)

=
fx (ω)

(1− β)2 − 2βc∗κ (1− β)ω1−δκ + β2c∗∗κ ω
2(1−δκ) + o ((1− β)ω1−δκ) + o

(
ω2(1−δκ)

) .
Hence when δκ ∈ (0, 1/2) :

f∆y (ω) =
fx (ω)

(
ω2 + o

(
ω2
))

(1− β)2 − 2βc∗κ (1− β)ω1−δκ + β2c∗∗κ ω
2(1−δκ) + o ((1− β)ω1−δκ) + o

(
ω2(1−δκ)

) .
Consider the Fourier frequencies ωj = 2πj/T for j = 1, ..., n with n = o (T ) . If ν > 1 − δκ,

then for j = 1, ..., n, (1− β) = o
(
ω1−δκ
j

)
and

fy (ωj) ∼
ωj→0+

1

c∗∗κ
ω
−2(1−δκ)
j ,

which also implies that f∆y (ωj) ∼
ωj→0+

1
c∗∗κ
ω−2δκ
j .

D.2 Autocorrelations

To derive our results we first need the following lemma whose proof is in a supplementary

appendix.

Lemma 9 Let f a spectral density with f, f ′ and f ′′ bounded, f > 0 in a neighborhood of

the origin and f ′ (0) = 0. Let |λ| ∈ (0, 1) and ωk = 2πk/T, k = o (T ). Then,

T λ−1
T∑
j=1

j−λf (ωj) cos (jωk) = O
(
kλ−1

)
. (41)

Now consider the autocovariances. The autocovariance function of yt satisfies

γk =
1

2π

∫ 2π

0
fy (ω) eikωdω (42)

=
1

2π

∫ 2π

0
fy (ω) cos (kω) dω, (43)
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to which the following finite sum converges (when it does converge)

1

2πT

T∑
j=1

fy

(
2πj

T

)
cos

2πjk

T
→

T→∞
γy (k) . (44)

In the proof, we use the theorems of Yong (1974) regarding sums of the type
∑∞

j=1 aj cos jωk

with aj ∼ j−α for some α > 0 as ωk → 0+. In the summation, we let the number of

summation terms T and the evaluation value ωk = 2πkT−1 tend to their limits, including

k →∞. Zygmund (1935), section 1.23, shows that the sum (44) converges uniformly if fy (ωj)

is of bounded variation and the latter follows from the results of section D.1. Our proof is

therefore related to the method of Erdélyi (1956) considered by Lieberman and Phillips

(2008), the difference is that we consider the limit of a finite sum (44) evaluated at Fourier

frequencies where Lieberman and Phillips work with the integral representation (42).

We apply lemma 9 to expression (44) together with (40).When ν > 1− δκ, then 1− β =

o (ωj) for all Fourier frequencies ωj , j = 1, ..., T. Expression (40) hence implies that

δκ ∈ (1/2, 1) : fy (ωj) ∼
fx (ωj)

(2π)2(1−δκ) c∗∗κ (j/T )2(1−δκ)
;

δκ ∈ (0, 1/2) : f∆y (ωj) ∼
fx (ωj)

(2π)−2δκ c∗∗κ (j/T )−2δκ
. (45)

We refer to lemma 9 where we let λ = 2 (1− δκ) if δκ ∈ (1/2, 1) and λ = −2δκ if δκ ∈ (0, 1/2) .

Then for k = o (T ) :

δκ ∈ (1/2, 1) : γy (k) =

 O
(
k1−2δκ

)
, k 6= 0;

O (1) , k = 0.

δκ ∈ (0, 1/2) : γ∆y (k) =

 O
(
k−1−2δκ

)
, k 6= 0;

O (1) , k = 0.

E Proof of theorem 4

Consider the natural logarithm of spectral density fy (ω) of yt evaluated at the Fourier fre-

quencies ωj , for j = 1, ..., n = o (T ) . Expression (40) implies that as ωj → 0+ and for

ν > 1− δκ,

δκ ∈ (1/2, 1) : log fy (ωj) = log fx (ωj)− log
(
β2c∗∗κ ω

2(1−δκ)
j + o

(
ω

2(1−δκ)
j

))
,

δκ ∈ (0, 1/2) : log f∆y (ωj) = log fx (ωj)− log
(
β2c∗∗κ ω

−2δκ
j + o

(
ω−2δκ
j

))
.
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We only consider the proof for the case where δκ ∈ (1/2, 1) as the proof for δκ ∈ (0, 1/2)

follows the same lines. We denote by h (ωj) the regressor that is used in the estimation, here

h (ωj) = −2 logωj . Hence, expression (40) implies that:

log fy (ωj) = log fx (0)− log
(
β2c∗∗κ

)
+ (1− δκ)h (ωj)− log (1 + o (1))

= log fx (0)− log
(
β2c∗∗κ

)
+ (1− δκ)h (ωj) + o (1) .

Now assume that fy is estimated as f̂y,T and define φT (ωj) = f̂y,T (ωj) /fy (ωj) . The ratio

is defined since fy (ωj) > 0 in a neighborhood of the origin, i.e. for T large enough. The

estimator of the degree of memory, d̂, is the least squares estimator of the coefficient of h (ωj)

in the regression of log f̂y,T (ωj) on a constant and h (ωj),
18 where

log f̂y,T (ωj) = log fx (0)− log
(
β2c∗∗κ

)
+ (1− δκ)h (ωj) + log φT (ωj) + op (1) .

Denoting by ζ the average of ζ (ωj) over j = 1, ..., n for any function ζ, the estimator satisfies

d̂ = (1− δκ) +
1

2

∑n
j=1

(
log φT (ωj)− log φT

) (
h (ωj)− h

)∑n
j=1

(
h (ωj)− h

)2 + op (1) . (46)

where as n→∞,
n∑
j=1

(
h (ωj)− h

)2 ∼ 4n. (47)

We now make the high-level assumption that f̂y,T (ωj)
p→ fy (ωj) . The continuous map-

ping theorem implies that there exists τT →∞, such that

τT

[
log f̂y,T (ωj)− log fy (ωj)

]
p→ 0, (48)

i.e. τT log φT (ωj)
p→ 0. Conditions for the consistency of the spectral density estimator can

be found in various places in the literature and depend on the specific assumptions about

xt; see e.g. the references in the main text. It follows that
∑n

j=1

(
log φT (ωj)− log φT

)2
=

op

(
n
τ2
T

)
which, together with expression (47) and the Cauchy-Schwarz inequality, imply that

d̂− (1− δκ) = op
(
τ−1
T

)
+ op (1) . The condition τT →∞ as T →∞ is therefore sufficient to

ensure that d̂− (1− δκ)
p→ 0.

18The original Geweke and Porter-Hudak (1983) estimator used the periodogram for f̂y,T (ωj) .

43



F Proof of theorem 5

Consider the partial sum of yt, ST =
∑T

t=1 yt =
∑T

t=1 (βat + xt). Using expressions (1) and

(7a), at = 1−gt
1−βgtat−1 + gt

1−βgtxt or

at =

 t∏
j=1

1− (1− β) gj
1− βgj

 a0 +
t∑
i=1

 t∏
j=i+1

1− (1− β) gj
1− βgj

 gixi
1− βgi

,

with
∏t
j=t+1

(
1− (1−β)gj

1−βgj

)
≡ 1. When gi → 0, gi

1−βgi = gi + o (gi), so the order of magnitude

of at is the same as that of19

a∗t =

 t∏
j=1

1− (1− β) gj

 a0 +
t∑
i=1

 t∏
j=i+1

1− (1− β) gj

 gixi. (49)

Hence, we can infer the order of magnitude of var (ST ) from that of var (S∗T ), where S∗T =∑T
t=1 (βa∗t + xt) . Using (49), S∗T can be written as

S∗T = βhT+1a0 +
T∑
t=1

φT,txt,

where φT,t = 1+βgt
∑T

i=t

∏i
j=t+1 (1− (1− β) gj) and ht =

∑t−1
i=1

∏i
j=1 (1− (1− β) gj) . Note

that φT,t = 1 + β gtkt (hT+1 − ht) , where kt =
∏t
j=1 (1− (1− β) gj) .

For clarity, we first consider the case when xt is serially uncorrelated, and treat the general

case at the end. The variance of S∗T is given by

var [S∗T ] = β2h2
T+1var (a0) + σ2

x

T∑
t=1

φ2
T,t,

where σ2
x = var [xt] . We study each of the two terms on the right hand side of the above

expression.

The asymptotic rates of ht and kt depend on the value of β. Since gi ∼ i−1, g2
i = o (gi) .

This implies that log (1− (1− β) gi) = − (1− β) gi + o (gi) and log kt = − (1− β) log t +

o (log t) . Thus, gt/kt ∼ t−1/t−1+β = t−β. Turning to ht =
∑t−1

i=1 ki,

ht ∼


β−1tβ + o

(
tβ
)
, if 0 < β ≤ 1;

log t+ o (log t) , if β = 0;

ζ (1− β) + o (1) , if β < 0,

(50)

19In the specific situation where g1 = 1 the impact of a0 on at is zero contrary to that on a∗t . This only

concerns g1 since gi+1 < gi ≤ 1 for all i ≥ 1; it does not affect the magnitude of var (ST ) as we show later.
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where ζ (u) is Riemann’s zeta function evaluated at u > 1. (the case β = 0 is included for

completeness, since it plays no role in the asymptotic rates of var (S∗T )). It follows that as

t→∞, for t ≤ T,

φT,t = O

(
1 +

(
T

t

)β)
, for β ≤ 1. (51)

So the two contributions to the variance of S∗T are:

T∑
t=1

φ2
T,t =


O
(
T 2β

)
, if 1/2 < β ≤ 1;

O (T log T ) , if β = 1/2;

O (T ) , if β < 1/2,

(52)

and, corresponding to the impact of a0 :

h2
T+1 =


O
(
T 2β

)
, if 0 < β ≤ 1;

O
(

(log T )2
)
, if β = 0;

O (1) , if β < 0.

The latter expression shows that if a0 = Op (1) , its contribution to T−1V ar [S∗T ] vanishes

asymptotically when β ≤ 1/2. The result of the theorem then follows from the rates in (52).

Now, we turn to the general case where xt is not serially uncorrelated, and denote by

γx (·) its autocovariance function. Then var (S∗T ) contains the additional term

2
T−1∑
t=1

φT,t

T−t∑
i=1

φT,t+iγx (i) . (53)

Since the autocovariance function of xt decays exponentially, there exists θ ∈ (0, 1) such that

|γx (i)| ≤ σ2
xθ
i for all i. Then,∣∣∣∣∣

T−1∑
t=1

φT,t

T−t∑
i=1

φT,t+iγx (i)

∣∣∣∣∣ ≤ σ2
x

T−1∑
t=1

φT,t

T−t∑
i=1

φT,t+iθ
i.

We will show that the term
∑T−t

i=1 φT,t+iθ
i is of the same order of magnitude as φT,t, given in

expression (51), which suffices to establish the result of the theorem in the general case.

Expression (51) implies that φT,t+iθ
i = O

(
θi + T βθi

(
1
t+i

)β)
and so

T−t∑
i=1

φT,t+iθ
i = O

(
1 + T β

T−t∑
i=1

θi

(t+ i)β

)
. (54)
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For β ≤ 0, it is clear that
∑T−t

i=1 φT,t+iθ
i = O (1) since

∑T−t
i=1 θ

i (t+ i)−β = O (1) . For β > 0,

we show that
∑T−t

i=1
θi

(t+i)β
= θ−t

∑T
i=t+1

θi

iβ
= O

(
t−β
)
, which implies that

∑T−t
i=1 φT,t+iθ

i =

O
((

T
t

)β)
from (54).

We prove that
∑T−t

i=1
θi

(t+i)β
= O

(
t−β
)

using the Lerch Transcendent, see Erdélyi et al.

(1953), pp. 27-31, which is defined as

Φ (z, s, α) =
∞∑
n=0

zn

(n+ α)s
,

and is finite for z < 1, s > 0, α > 0 or z = 1, s > 1, α > 0. From

t∑
n=1

zn

(n+ α)s
= zΦ (z, s, α+ 1)− zt+1Φ (z, s, α+ t+ 1) ,

it follows that
T−t∑
i=1

θi

(t+ i)β
= θΦ (θ, β, t+ 1)− θT−t+1Φ (θ, β, T + 1) ,

and we notice that, for t > 1 :

tβΦ (θ, β, t) =
∞∑
i=0

θi

(i/t+ 1)β
∈

( ∞∑
i=0

θi

(i+ 1)s
,
∞∑
i=0

θi

)
=

(
Φ (θ, β, 1) ,

1

1− θ

)
.

Hence, as t→∞,

Φ (θ, β, t) = O
(
t−β
)
, (55)

which gives the desired result as t→∞ and for t ≤ T :

T−t∑
i=1

θi

(t+ i)β
= O

(
t−β
)

+O
(
θT−t+1T−β

)
= O

(
t−β
)
.

G Proof of expression (17)

Under CGLS learning the algorithm is

κt (L) = ḡ

t−1∑
j=0

(1− ḡ)j Lj ,

and ζt = a0 (1− ḡ)t. Hence

m (κt) = ḡ

t−1∑
j=1

j (1− ḡ)j = −ḡ (1− ḡ)
∂

∂ḡ

t−1∑
j=0

(1− ḡ)j

= (1− ḡ)
1− (1− ḡ)t−1 [1 + (t− 1) ḡ]

ḡ
.
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Now considerm (κT ) , and assume that ḡ = cgT
−λ. Then (1− ḡ)T−1 = exp

{
(T − 1) log

(
1− cgT−λ

)}
and as T →∞

(1− ḡ)T−1 ∼ exp

{
−cg

T − 1

T λ

}
→

 0, if λ < 1;

e−cg , if λ = 1.

Turning to the mean lag, for λ < 1 (1− ḡ)t−1 [1 + (t− 1) ḡ] → 0 so m (κT ) ∼ Tλ

cg
. When

λ = 1, m (κT ) ∼ 1−e−cg [1+cg ]
cg

T, which proves (17).

H Proof of theorem 6

Under the stated assumptions, the estimator at is generated by

at =
ḡ

1− βḡ

t∑
i=1

(
1− (1− β) ḡ

1− βḡ

)t−i
xi.

When β is local to unity and ḡ local to zero, the magnitude of at is the same as that of

a∗t = ḡ
t∑
i=1

(1− (1− β) ḡ)t−i xi,

which is simpler to analyze using existing results. We will obtain the order of magnitude of

S∗T =
∑T

t=1 (βa∗t + xt) , which is the same as that of
∑
yt.

Define ξt = ḡ−1a∗t such that

ξt =

t∑
i=1

(1− (1− β) ḡ)t−i xi,

with (β, ḡ) =
(
1− cβT−ν , cgT−λ

)
for (ν, λ) ∈ [0, 1]2. Several cases arise depending on the

values of λ, ν. These correspond to at exhibiting an exact unit root for ḡ = 0 or β = 1, a

near-unit root for λ+ν = 1 (see Chan and Wei, 1987, and Phillips 1987), a moderate-unit

root for λ+ν ∈ (0, 1) (see Giraitis and Phillips, 2006, Phillips and Magdalinos, 2007 and

Phillips, Magdalinos and Giraitis, 2010) and a very-near-unit root for λ+ν > 1 (see Andrews

and Guggenberger, 2007). Their results imply:

ξT =


Op (1) , λ = ν = 0;

Op
(
T (λ+ν)/2

)
, λ+ ν ∈ (0, 1) ;

Op
(
T 1/2

)
, λ+ ν ≥ 1.
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To derive the magnitude of S∗T = βḡ
∑T

t=1 ξt−1 +
∑T

t=1 xt we notice that:

T∑
t=1

ξt =
T∑
t=1

t∑
i=1

(1− (1− β) ḡ)t−i xi =
T∑
t=1

1− (1− (1− β) ḡ)T−t+1

1− (1− (1− β) ḡ)
xt,

i.e.

T∑
t=1

ξt =
1

(1− β) ḡ

[
T∑
t=1

xt − (1− (1− β) ḡ) ξT

]
.

Hence

ḡ

T∑
t=1

ξt =
1

(1− β)

(
T∑
t=1

xt − ξT

)
+ ḡξT . (56)

We start with the case ν + λ < 1, where ξT = o
(∑T

t=1 xt

)
. Expression (56) implies that

ḡ
∑T

t=1 ξt = Op
(
T 1/2+ν

)
and hence

sd
(
T−1/2S∗T

)
= O (T ν) .

If ν + λ = 1, then Phillips (1987) shows that

T−1/2

(
T∑
t=1

xt − ξT

)
= T−1/2

T∑
i=1

(
1− (1− (1− β) ḡ)T−i

)
xi

⇒
∫ 1

0

(
1− e−cβcg(1−r)

)
dW (r) = Op (1) ,

where T−1/2
∑drT e

t=1 xt ⇒ W (r) , where W (·) is a Brownian motion and ⇒ denotes weak

convergence of the associated probability measure. It follows that
∑T

t=1 xt − ξT = O
(
T 1/2

)
and expression (56) implies that ḡ

∑T
t=1 ξt = Op

(
T 1/2+ν

)
. Hence

sd
(
T−1/2S∗T

)
= O (T ν) = O

(
T 1−λ

)
.

Now, if ν + λ > 1,

T∑
t=1

xt − ξT =

T−1∑
i=0

[
1− (1− (1− β) ḡ)i

]
xT−i

= ((1− β) ḡ)
T−1∑
i=0

[
i+O

(
i2 ((1− β) ḡ)

)]
xT−i.
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It is well known that
∑T−1

i=0 ixT−i = Op
(
T 3/2

)
and

∑T−1
i=0 i2xT−i = Op

(
T 5/2

)
(see e.g. Hamil-

ton 1994, chap. 17). Hence (1− β) ḡ
∑T−1

i=0 i2xT−i = o
(∑T−1

i=0 ixT−i

)
, and, in expression

(56):

1

(1− β)

(
T∑
t=1

xt − ξT

)
+ ḡξT = Op

(
T 3/2−λ

)
+Op

(
T 1/2−λ

)
.

When λ < 1, 3/2 − λ > 1/2 so
∑T

t=1 xt = op

(
ḡ
∑T

t=1 ξt−1

)
, and the order of magnitude of

S∗T follows from that of ḡ
∑T

t=1 ξt−1 :

sd
(
T−1/2S∗T

)
= O

(
T 1−λ

)
.

If λ = 1,
∑T

t=1 xt = Op

(
ḡ
∑T

t=1 ξt−1

)
and the previous expression also applies.

I Derivation of expression (20)

We show that expression (19) can be written as (20). We start from expression (19):

Yt = (1− β)
∞∑
j=0

βjEt

(
γ
′
1zt+j

)
+ β

∞∑
j=0

βjEt

(
γ
′
2zt+j

)
,

and notice the identity (1− β)
∑∞

j=0 β
jzt+j = zt +

∑∞
j=1 β

j∆zt+j , so

Yt −
(
γ
′
1 +

β

1− β
γ′2

)
zt =

β

1− β
Et∆Yt+1, (57)

where we used

∆Yt+1 =
1− β
β

∞∑
j=1

βjEt+1

(
γ
′
1 +

β

1− β
γ
′
2

)
∆zt+j .

Differencing (57) yields

∆Yt −
(
γ
′
1 +

β

1− β
γ′2

)
∆zt =

β

1− β
(Et∆Yt+1 − Et−1∆Yt) .

Re-arranging yields:

(1− β) ∆Yt − (1− β)

(
γ
′
1 +

β

1− β
γ′2

)
∆zt = β (Et∆Yt+1 − Et−1∆Yt) ,

or

∆Yt − βYt + βEt−1Yt −
(

(1− β) γ
′
1 + βγ′2

)
∆zt = βEt∆Yt+1,
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or

∆Yt = βEt∆Yt+1 +
(

(1− β) γ
′
1 + βγ′2

)
∆zt + βrt,

where we used the definition of the innovation rt = Yt −Et−1Yt. This can be written as (19)

by defining xt =
(

(1− β) γ
′
1 + βγ′2

)
∆zt + βrt, yt = ∆Yt and yet+1 = Et∆Yt+1.
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