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Abstract

This work presents a contribution on operational risk under a general Bayesian
context incorporating information on market risk profile, experts and operational
losses, taking into account the general macroeconomic environment as well. It
aims at estimating a characteristic parameter of the distributions of the sources,
market risk profile, experts and operational losses, chosen here at a location
parameter. It generalizes under more realistic conditions a study realized by
Lambrigger, Shevchenko and Wüthrich, and analyses macroeconomic effects on
operational risk. It appears that severities of operational losses are more related
to the macroeconomics environment than usually assumed.
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Introduction

The quantification of an operational risk capital charge under the regulatory standards
Basel II and Solvency 2 is a challenging task; many financial institutions adopt a Loss
Distribution Approach to estimate this risk capital charge (see eg, [Klugman et al.(2008)],
[McNeil et al.(2005)]). Such approach requires combination of internal and external
data, as well as expert opinions; indeed, this third component appeared recently as
crucial. An interesting Bayesian scenario to estimate the parameters of the risk fre-
quency and severity distributions has been proposed by Shevchenko and Wüthrich (see
[Shevchenko et al.(2006)]) based on internal and external data, then by Lambrigger et
al. (see [Lambrigger et al.(2007)], or [Lambrigger et al.(2008)] for an overwiew) when
adding the expert opinion as a third component. They assumed an a priori market risk
profile and various conditions such as the conditional independence given the market
risk profile between the expert opinions and the internal observations. Here one aims
to investigate other scenarios under more realistic conditions and taking into account
the general macroeconomic environment. Indeed, if we refer to what recently happened
at UBS or at Société Générale (with the Kerviel affaire), operational risks of this type
might become rather serious during a financial crisis, hence showing some economic
dependence. Therefore, using a more general Bayesian approach, we add in the prior
modeling a hyper level representing the general macroeconomic environment. More-
over, this hierarchical extension helps increasing the robustness of the prior distribution
(see [Robert(2007)] p. 143) and allows relating the a priori to any of the three main
sources mentioned previously. Recall also that one of the reasons to adopt the Bayesian
point of view, which is intrinsically conditional on a fixed number of observations, is
to obtain estimators having good properties even with a fixed and maybe small sample
size, and not only under asymptotic criteria (see [Robert(2007)], p. 48). It is rather
important when considering operational losses, in (re)insurance companies or in banks.
Indeed, the number of operations being limited in insurance companies (and even more
in reinsurance companies), the number of operational losses is restricted, even if these
losses are high on average. In banks, operations are quite numerous, which leads to a
large number of small operational losses, but high operational losses are a few. Hence
the need to have reliable estimators whatever the size of the operational loss sample is.

We will introduce our general Bayesian approach, with a prior variable U representing
the general macroeconomic environment. Having a few information on this environ-
ment, we decided to chose it as an noninformative prior on the parameter. Nevertheless,
the method would work as well with a specific a priori distribution as can be seen in the
next section; it might be relevant when working in banking context, during a financial
crisis.
We will illustrate our general approach considering first when the a priori is related to
the market risk profile. Then we will consider the point of view of the company and
relate the a priori directly to the operational severities.
Note that we will consider the same type of distributions as in [Lambrigger et al.(2007)]
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to enable fair comparisons. Nevertheless, our study will present one example only
among the various examples developed in [Lambrigger et al.(2007)], working with nor-
mal and lognormal distributions and choosing the parameter characterizing the distri-
bution of the three sources as a location parameter, the main objective being to show
how to generalize those previous works cited above and not to constitute a catalogue
of examples. We will rather complete the study, looking at properties of the location
estimator.

1 An a priori related to the market risk profile

Let us present our model.
The main actors/sources of risk information of the model are respectively:
- the operational losses (internal data) X = (Xi; i = 1, · · · , k) of the concerning insti-
tution;
- the market risk profile Z;
- the expert opinion Y = (Yj; j = 1, · · · , n);
- an unknown parameter U that we introduce to take into account the general macroe-
conomic environment.
This parameter might characterize the location or the shape parameter of the distribu-
tions of the three sources X, Y and Z, with a prior distribution denoted by πU . Here
we will illustrate our method by choosing for instance U as the location parameter.
Its noninformative prior distribution ΠU is assumed to be uniform, hence a so called
improper distribution but ‘that should be preferred to vague proper priors such as a
normal distribution with very large variance; it would give indeed a false sense of safety
owing to properness, while lacking robustness in terms of influence on the resulting in-
ference’ (see [Berger(2000)]).
Some information on the risk profile Z (that represents the location parameter) is
provided as a benchmark for banks by the Basel committee, and as an index of the
insurance market in the Solvency II standard formula by the EIOPA. We assume that
the conditional distribution L(Z|U) given U is known, with conditional expectation U :
E[Z | U ] = U . Note that it implies E[Z] = E[U ].
The operational losses X of the given company are described by internal data, and
depend, as the operational risk profile h(X), on the parameter U but of course also on
the market risk profile Z. This dependence can be translated through the location pa-
rameter of the conditional distribution L(X|U,Z) of X given Z and U in a simple way,
when taking for instance a linear approximation of Z and U , namely αZ + (1− α)U ,
α ∈ [0, 1[. The operational risk profile h(X) might be chosen as an unbiased estimator
of the location parameter of the conditional distribution of X given Z and U , and
satisfies E[h(X)] = E(Z) = E(U). The conditional distribution of X given Z and U is
also supposed to be known.
Finally, we consider the expert opinion Y based on the knowledge of the market index
Z but also, to be realistic, on the internal data X of the company; it is also influ-
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enced by the macroeconomic conditions, hence depends on the unknown parameter U
as well. We suppose that Y has a known conditional distribution L(Y |X,Z, U) given
X,Z and U , with conditional expectation U . Using the same linear approximation
to take this dependence into account, we ask for the conditional expectation of Y to

satisfy E[Y | X,Z, U ] = β1h(X) + β2Z + β3U, with β3 6= 0, βi ∈ [0, 1] :
3∑
i=1

βi = 1.

Since in general internal data are scarce, the aim is to use U , X, Z and Y to improve
an estimation of the location parameter.
Note that we introduced on purpose undefined parameters α and βi (with α 6= 1 and
β3 6= 0, otherwise there is no point of introducing the r.v. U), so that their choice is
made by the user according to the information he has. Nevertheless, the behavior of
the estimator does not modify strongly when changing those parameters.

Suppose that the conditional operational losses (Xi|Z,U)1≤i≤k are i.i.d., the experts
opinion (Yi|X,Z, U)1≤i≤n are i.i.d., with parent variables denoted byX|Z,U and Y |X,Z, U
respectively.
We will then consider as an example the following conditional distributions:

Z|U d∼ N (U, σ2
Z) Y |X,Z, U d∼ N (β1logX + β2Z + β3U, σ

2
Y )

and X|Z,U d∼ LN(αZ + (1− α)U, σ2
X) with density function

fX|Z,U(x|z, u) =
1

xσX
√

2π
exp

{
− 1

2σ2
X

[
log x− (αz + (1− α)u)

]2}
for x > 0

where the variances σ2
X , σ2

Y and σ2
Z are supposed to be known (or estimated on data

when possible),
∑3

i=1 βi = 1 and logX =
1

n

k∑
i=1

logXi.

Note that E[X|Z,U ] = exp{αZ + (1− α)U + σ2
X/2} and E[logX] = E(U).

1.1 The posterior distribution and Bayes estimator of the lo-
cation parameter

Theorem 1.1 The posterior distribution Π̂U |X,Y,Z is a Gaussian distribution N (µ̂, σ̂2)
where the parameters satisfy

σ̂2 =
( 1

σ2
Z

+
k(1− α)2

σ2
X

+
nβ2

3

σ2
Y

)−1
(1)

and
µ̂ = ωX logX + ωY Y + ωZZ (2)

with credibility weights ω• given by

ωX = σ̂2
(k(1− α)

σ2
X

− β1β3n

σ2
Y

)
; ωY =

σ̂2β3n

σ2
Y

; ωZ = σ̂2
( 1

σ2
Z

− kα(1− α)

σ2
X

− β2β3n

σ2
Y

)
.
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The weights depend on various parameters which may help to get closer to µ even for
small k. Their sum is one.
Although data are often not so numerous, for completeness, note that as k → ∞, we
have

ωX ∼
1

1− α
; ωY ∼ 0 ; ωZ ∼ − α

1− α
The variance σ̂2 is an increasing function of α and a decreasing function of β3 and of
the sample sizes k and n; it is then minimum, for fixed sample sizes, for α = 0 and
β3 = 1, which corresponds to conditional independence of the three actors X, Y , Z
given U .

Notice that µ̂ and σ̂2 do not depend on the parameter of the prior distribution ΠU

chosen as uniform (noninformative).
If we would have chosen U as a normal r.v. N (m,σ2

U) , then we would have obtained

that Π̂U |X,Y,Z is a Gaussian distribution N (µ̂∗, σ̂
2
∗) with

µ̂∗ =
σ̂2

σ2
U

m+ µ̂ and σ̂2
∗ =

( 1

σ2
U

+
1

σ2
Z

+
k(1− α)2

σ2
X

+
nβ2

3

σ2
Y

)−1
This choice, or the choice of another specific a priori distribution, might be of relevance
eg, when working in banking context during a financial crisis.
When considering a casi-noninformative prior distribution, U could be taken as a nor-
mal r.v. N (m,σ2

U) with a very large variance, which would lead to

µ̂∗ = σ̂2

σ2
U
m+ µ̂ ∼

σ2
U→∞

µ̂ and σ̂2
∗ =

( 1

σ2
U

+
1

σ2
Z

+
k(1− α)2

σ2
X

+
nβ2

3

σ2
Y

)−1
∼

σ2
U→∞

σ̂2

ie, with a close behavior to the one described in Theorem 1.1.

Proof of Theorem 1.1.
The proof relies on an application of the Bayes theorem that we recall for completeness.
If fA|B denotes the conditional probability density function of the r.v. A given the r.v.

B, the Bayes theorem provides the posterior density function Π̂U |X,Y,Z of U given
X, Y, Z as

Π̂U |X,Y,Z(u) = cπU(u)fZ|U(z|u)fX|Z,U(x|z, u)fY |X,Z,U(y|x, z, u) (3)

with c some normalizing constant independent of u.
Let denote x = (x1, ..., xk) and y = (y1, ..., yn). Under our conditions, the posterior
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distribution (3) becomes

Π̂U |X,Y,Z(u|x, y, z) = C(x, y, z) πU(u) fZ|U(z|u)
k∏
i=1

fXi|Z,U(xi|z, u)
n∏
j=1

fYj |X,Z,U(yj|x, z, u)

= C(m,x, y, z) exp
{
− 1

2

((z − u)2

σ2
Z

+
1

σ2
X

k∑
i=1

(log xi − αz − (1− α)u)2

+
1

σ2
Y

n∑
j=1

(yj − β1log x− β2z − β3u)2
)}

=
1√

2πσ̂2
exp

{
− 1

2σ̂2
(u− µ̂)2

}
where σ̂2 and µ̂ are given in (1) and (2) respectively, and where C is a normalizing
function independent of u, that may change from line to line. 2

We can deduce from Theorem 1.1 the properties of the Bayes estimator µ̂.

Lemma 1.1 The Bayes estimator µ̂ is an unbiased estimator of E(U) with variance
given by var(µ̂) = 2σ̂2, with σ̂2 defined in (1); it is then a consistent estimator of E(U).

It appears that the variance of the estimator is linked to the parameters α and β3 via
the variance σ̂2 of the posterior distribution.

Proof of Lemma 1.1.
The sum of the credibility weights being 1, µ̂ is unbiased. Using that var(X1) =
E
(
var(X1|X2)

)
+ var

(
E(X1|X2)

)
for any r.v. X1 and X2, straightforward computa-

tions lead to the expression of the variance of µ̂. Finally, the consistency follows via the
Bienaymé-Chebyshev inequality, since var(µ̂) goes to 0 as k →∞ (for any α ∈ [0, 1)),
σ̂2 being a decreasing function of k. 2

The following specific cases are also consequences of Theorem 1.1.

Corollary 1.1

1. If X and Y are conditionally independent given U and Z, then β1 = 0, β2+β3 = 1,
and the credibility weights of (2) become

ωX = σ̂2
(k(1− α)

σ2
X

)
; ωY =

σ̂2β3n

σ2
Y

; ωZ = σ̂2
( 1

σ2
Z

− kα(1− α)

σ2
X

− β3(1− β3)n
σ2
Y

)
with σ̂2 given in (1).
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2. If we assume α = β2 = 0 and β1 + β3 = 1 (set β3 = β), ie, when considering

Z|U , X|U and Y |X,U , we obtain that Π̂U |X,Y,Z is N (µ̂, σ̂2) with

µ̂ = σ̂2

((
k

σ2
X

− nβ(1− β)

σ2
Y

)
logX +

nβ

σ2
Y

Y +
1

σ2
Z

Z

)
and σ̂2 =

(
1

σ2
Z

+
k

σ2
X

+
nβ2

σ2
Y

)−1
where β ∈]0, 1].

If we add the assumption of conditional independence between X and Y given U ,
ie, for β = 1, then

µ̂ = σ̂2

(
k

σ2
X

logX +
n

σ2
Y

Y +
1

σ2
Z

Z

)
and σ̂2 =

(
1

σ2
Z

+
k

σ2
X

+
n

σ2
Y

)−1
(4)

Replacing the r.v. Z by a constant µext leads to the same Bayesian estimator
µ̂ of the location parameter as in [Lambrigger et al.(2007)] (see Theorem 4.3, or
Theorem 4.1 in [Lambrigger et al.(2008)]) and the same σ̂2.

1.2 Practical application and discussion

We consider the same data as the ones in [Lambrigger et al.(2008)], Figure 2, to be
able to draw a fair comparison with our result.
The experts opinion is on average given by ȳ = 6, whereas the risk profile market by
z = 2. Hence an estimate can be proposed from (2) in Theorem 1.1 as

µ̂ = ωX log x+ ωY ȳ + ωZz

where the weights ω•, given in Theorem 1.1, are functions of the parameters k (opera-
tional loss sample size), n (experts number), α ∈ [0, 1), βi ∈ [0, 1] (i = 1, 2, 3, β3 6= 0,∑3

i=1 βi = 1), and of the known variances σ2
X , σ2

Y , σ2
Z .

We choose, as in [Lambrigger et al.(2008)], k varying up to K = 70, σX = 4, σY = 3/2
and σZ = 1. We consider one panel of dependent experts (with the corresponding
standard deviation), id est we take n = 1.
To check about the convergence of the Bayesian estimator to the location parameter,
we simulate the operational loss data (xi)i=1,...,k from a LN(4, σ2

X) distribution.
We represent on a same graph four estimates of E(U) computed in terms of the num-
ber k of operational loss data (with 1 ≤ k ≤ K = 70), respectively the Maximum
Likelihood estimator (MLE) (given by µ̂ML

k = 1
k

∑k
i=1 logXi), the Lambrigger et al.

(LSW) estimator which corresponds to our estimator with α = 0 = β1 = β2 and β3 = 1
(assuming in particular the conditional independence of X and Y ), the Shevchenko et
al. (SW) estimator when having no experts (n = 0), and our estimator µ̂ defined by
(2) in Theorem 1.1.
Various graphs have been obtained when choosing for our estimator the coefficients α
and βi’s varying in [0, 1], with a grid of step 0.1, providing more or less comparable
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results; Figure 1 illustrates one of them where the conditional dependence appears
clearly between the sources and is well distributed between them, with slightly more
weight on U than Z (α = 0.3, β1 = 0.3, β2 = 0.2, β3 = 0.5).

Figure 1: Comparison of the various estimates of the location parameter µ

(A priori related to the market risk profile)
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We can notice, as in [Lambrigger et al.(2008)], the high volatility of the ML estimator
for very small k whereas the three other estimators appear more stable. Among the
Bayesian estimators, we can confirm (whether we assume the conditional independence
of X and Y or not) what noticed Lambrigger et al., namely that including the experts
opinion improves the quality of the estimator. Under the assumption of conditional
independence, the Bayesian estimator with parameters α = 0 = β1 = β2; β3 = 1
(denoted by LSW) behaves on this graph better for a very small number of data,
whereas the general Bayesian estimator is closer to the true value for relatively small
k and remains as such, presenting a behavior close to the one of the ML estimator
whenever k is large (which is an advantage, even if we are not focusing on the behavior
of the estimators as k becomes large). We can quantify this comparison using the
mean square distance d = d(µ̂, µ) between the estimator and the true value µ = 4.
This distance d is smaller when using our estimator than the LWS estimator, whenever
k ≥ 25; eg, for k = 25 (ie, when summing from k = 25 to K(=70)), we obtained
d = 0.0561 for the LWS estimator and d = 0.0387 for our estimator. Recall also that
our model does not rely on the conditional independence of X and Y given Z.

1.3 Distribution of the risk market profile

It is important to understand how the company specific information in the Bayesian
context modifies our view on the risk market profile Z. Indeed, it is interesting to know
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how to modify the criteria on the risk market profile given by the control organisms
(following the Basel or Solvency rules) whenever another information is provided by
some experts (scientific academics or consulting companies) and/or by the operational
loss data of the company, and/or under a given macroeconomics environment.
To measure this impact, we will compute the conditional distribution of the risk market
profile Z given X, Y and U and compare it with the one of Z given U .

Let us compute the law L(Z|X, Y, U) of Z given X, Y and U . We can write

fZ|X,Y,U(z|x, y, u) =
fZ,X,Y |U(z, x, y|u)∫
fZ,X,Y |U(z, x, y|u) dz

Using that

fX1(z)fX2(z) =
1√

2π(γ2 + σ2)
exp

{
− (a− b)2

2(γ2 + σ2)

}
fX3(z) (5)

where X1
d∼ N (a, σ2) , X2

d∼ N (b, γ2) and X3
d∼ N

(
aγ2 + bσ2

γ2 + σ2
,
γ2σ2

γ2 + σ2

)
straightforward computations give

fZ,X,Y |U(z, x, y|u) =
n∏
j=1

fYj |Z,U,X(yj|z, u, x)
k∏
i=1

fXi|Z,U(xi|z, u)fZ|U(z|u)

= C(u, x, y) exp

{
− 1

2σ2
(z − a)2

}
exp

{
1

2σ2
z

(z − u)2
}

= C(u, x, y) exp

{
− 1

2γ2Z
(z −mZ)2

}
where C(u, x, y) denotes some constant depending on u, x and y which may change
from line to line, and where

mZ =
aσ2

Z − uσ2

σ2
Z − σ2

; γ2Z =
σ2σ2

Z

σ2
Z − σ2

with

a := σ2

[( 1

σ2
Z

− k α(1− α)

σ2
X

− nβ2β3
σ2
Y

)
u+

β2n

σ2
Y

ȳ −
(nβ1β2

σ2
Y

− αk

σ2
X

)
log x

]
and σ2 :=

( 1

σ2
Z

+
kα2

σ2
X

+
nβ2

2

σ2
Y

)−1
(which satisfies σ2 < σ2

Z).

We can then conclude to the following.

Proposition 1.1 The distribution of the market risk profile Z given the knowledge
of the severity X, the expert opinion Y and the macroeconomic environment U , is a
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Gaussian distribution with mean MZ equal to a linear combination of U , Y and logX
and with variance given in terms of the variances of X and Y :

Z|X, Y, U ∼ N
(
MZ , γ

2
Z

)
with

MZ = γ2Z

[(αk
σ2
X

− nβ1β2
σ2
Y

)
logX +

β2n

σ2
Y

Y −
(k α(1− α)

σ2
X

+
nβ2β3
σ2
Y

)
U

]
(6)

and

γ2Z =
(kα2

σ2
X

+
nβ2

2

σ2
Y

)−1
(7)

Note that the conditional distribution of Z|X, Y, U does not depend on the parameter
σ2
Z .

Although both conditional distributions of Z|U and Z|X, Y, U are normal, the parame-
ters are quite different showing how the external risk market profile modifies for a given
company. The variance γ2Z of Z|X, Y, U is a decreasing function in k, hence becomes
soon or later smaller than the given variance σ2

Z of Z|U . The two conditional expecta-
tions E[Z|U ] = U and E[Z|X, Y, U ] = MZ can not equal a.s., whatever is the choice of
the coefficients α and βi, i = 1, 2, 3, but both are normal, with the same expectation
E[MZ ] = E[U ] that can be estimated by µ̂ given in (2).

Let us revisit our numerical example developed in §1.2. Consider the same values of
parameters, namely ȳ = 6, σX = 4, σY = 3/2, σZ = 1, n = 1, k varying up to K = 70,
(xi)i=1,...,k simulated from a LN(4, σ2

X) distribution, (α, β1, β2, β3) = (0.3, 0.3, 0.2, 0.5),
and choose eg, u = 4.5.
We deduce a possible realization of MZ , given by

mZ = γ2Z

[(αk
σ2
X

− nβ1β2
σ2
Y

)
log x +

β2n

σ2
Y

y −
(k α(1− α)

σ2
X

+
nβ2β3
σ2
Y

)
u

]
with γ2Z = γ2Z(k) defined in (7), decreasing function in k.
We represent it in Figure 2 below.
Since Z|X, Y, U ∼ N

(
MZ , γ

2
Z

)
, let us represent also mZ ± γZ .
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Figure 2: A realization mZ of the conditional expectation E[Z|X,Y, U ] of the risk profile Z for
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2 An a priori related to the severity

An alternative approach to handle our problem is to consider the point of view of
the company and to relate the a priori directly to the severity of the operational loss,
because of the few available data.
Suppose for instance that the severity X is log-normally distributed LN(βX , σ

2
X) and

let us focus for instance on the position parameter βX , fixing the shape parameter σ2
X .

Then, following our approach, we introduce a position parameter U having a non-
informative prior distribution ΠU . As in the previous section, we choose ΠU to be
uniform.
Suppose that the conditional operational losses (Xi|U)1≤i≤k are i.i.d., the experts opin-
ion (Yi|X,Z, U)1≤i≤n are i.i.d., with parent variables denoted by X|U and Y |X,Z, U
respectively.
Consider the following conditional distributions:

X|U d∼ LN(U, σ2
X); Z|U,X d∼ N (λlog(X) + (1− λ)U, σ2

Z) with λ ∈ [0, 1);

Y |X,Z, U d∼ N (β1logX + β2Z + β3U, σ
2
Y ), with

∑3
i=1 βi = 1, βi ∈ [0, 1], β3 6= 0,

where the variances σ2
X , σ2

Y and σ2
Z are supposed to be known or estimated on data

when possible.
Note that E[log(X)] = E(U), E(Z) = E(U), Z denoting the position parameter of the
market risk profile, specific to the company, and that E(Y ) = E(U).
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2.1 The posterior distribution and Bayes estimator

The Bayes theorem and straightforward computations on Gaussian distributions pro-
vide the posterior density function Π̂U |X,Y,Z of U given X, Y, Z as

Π̂U |X,Y,Z(u) = CπU(u)fX|U(x|u)fZ|X,U(z|x, u)fY |X,Z,U(y|x, z, u)

= C πU(u) fZ|X,U(z|x, u)
k∏
i=1

fX|U(xi|u)
n∏
j=1

fY |X,Z,U(yj|x, z, u)

=
1√

2πγ2
exp

{
− 1

2γ2
(u− δγ2)2

}
with C some normalizing constant depending on x, y, u, and where

γ2 =
((1− λ)2

σ2
Z

+
nβ2

3

σ2
Y

+
k

σ2
X

)−1
(8)

and

δ =
nβ3
σ2
Y

ȳ +
(1− λ

σ2
Z

− nβ2β3
σ2
Y

)
z +

( k

σ2
X

− λ(1− λ)

σ2
Z

− nβ1β3
σ2
Y

)
log x. (9)

We obtain the following result.

Theorem 2.1 The posterior distribution Π̂U |X,Y,Z is a Gaussian distribution N (µ̃, γ2)
where the variance γ2 is given in (8) and the mean µ̃ satisfies

µ̃ = ωX logX + ωY Y + ωZ Z (10)

with the credibility weights ω. given by

ωX = γ2
( k

σ2
X

− λ(1− λ)

σ2
Z

− nβ1β3
σ2
Y

)
; ωY = γ2

nβ3
σ2
Y

; ωZ = γ2
(1− λ

σ2
Z

− nβ2β3
σ2
Y

)
It can be checked, from Theorem 2.1, that the Bayes estimator µ̃ is an unbiased and
consistent estimator of E(U).
When looking at specific values of the parameters α and βi’s, we notice that assuming
λ = β1 = β2 = 0, β3 = 1, ie, considering Z|U , X|U and Y |U , provides

µ̃ = γ̂2
(
k

σ2
X

logX +
n

σ2
Y

Y +
1

σ2
Z

Z

)
and γ2 =

(
1

σ2
Z

+
k

σ2
X

+
n

σ2
Y

)−1
which corresponds also to the LWS estimator proposed in [Lambrigger et al.(2007)]
when replacing the r.v. Z by a constant µext.

Considering the same frame as in our example developed in §1.2, let us see how this
new Bayesian estimator µ̃ of the location parameter E(U) behaves.
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Let ȳ = 6, z = 2, n = 1, σX = 4, σY = 3/2 and σZ = 1, k varying up to K = 70,
(xi)i=1,...,k simulated from a LN(4, σ2

X) distribution.

Figure 3: Comparison of the various estimates of the location parameter µ

(A priori related to the severities)
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We represent in Figure 3 above an estimate of µ̃ defined in (10) with distributed pa-
rameters λ = 0.5, β1 = 0.3, β2 = 0.2 and β3 = 0.5, an estimate of µ̃ with specific
parameters λ = β1 = β2 = 0 and β3 = 1 corresponding for fixed Z to the LWS estima-
tor (with the conditional independence assumption), and also the MLE.
We see that the estimate of µ̃ with ‘non specific’ parameters fits the best the under-
lying real value µ starting at very small k. As in the previous section, various graphs
have been obtained when taking the parameters on a grid; they provide more or less
the same behavior, with a convergence to µ from a small k. We chose to present one
example with balanced parameters. Using the mean square distance d = d(µ̃, µ) be-
tween the estimator and the true value µ = 4, we obtain d = 0, 0560; 0, 0173; 0, 0082
whenever k ≥ 2; 9; 20 respectively, whereas we obtain d = 0, 0678; 0, 0377; 0, 0288
respectively for the LWS estimator, confirming the improvement when introducing the
Bayesian estimator built with a general method.

We also notice that considering µ̃ defined in (10) provides better results than the
estimator µ̂ defined in (2). It would mean that it is more relevant to relate the a
priori, namely the macroeconomics environment, to the severities rather than to the
risk profile. Intuitively this result corresponds to what has been seen in the market
with the phenomenal operational losses of Société Générale during the financial crises
and UBS during the sovereign debt crises.
Let us compare in Figure 4 the estimates of µ̃ and µ̂ computed on the same sample
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(Xi)i=1,··· ,k, in the same frame, and for the α and βi’s previously selected.

Figure 4: Comparison of estimates of µ̂ and µ̃
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As already noticed, it appears clearly in Figure 4 that µ̃ converges faster to µ, even for
small values of k, than µ̂ does.

2.2 The conditional distribution of the risk market profile

Let us now compute the law L(Z|X, Y, U) of Z given X, Y and U , to measure the
impact on the choice of the variable to which the a priori is directly related.
We can write

fZ|X,Y,U(z|x, y, u) =
fY |X,U,Z(y|x, u, z)fZ|X,U(z|x, u)∫
fY |X,U,Z(y|x, u, z)fZ|X,U(z|x, u)dz

which involves only Gaussian distributions. We obtain, using (5),

fZ|X,Y,U(z|x, y, u) =
1√

2πΓ2
Z

exp
{
− 1

2Γ2
Z

(z −m∗Z)2
}

where

m∗Z =
nβ2σ

2
Z ȳ + (λσ2

Y − nβ1β2σ2
Z) log x+ ((1− λ)σ2

Y − nβ2β3σ2
Z) u

σ2
Y + nβ2

2σ
2
Z

and

Γ2
Z =

σ2
Y σ

2
Z

σ2
Y + nβ2

2σ
2
Z
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We can conclude to the following proposition, showing how the company specific in-
formation in the Bayesian context modifies the view on the risk market profile Z.

Proposition 2.1 The distribution of the market risk profile Z given the knowledge of
the a priori parameter U and of both the severity distribution X and the expert opinion
Y , is a Gaussian distribution with mean M∗

Z equal to a linear combination of U , Y and
logX and with variance Γ2

Z given in terms of the variance of X and Y :

Z|X, Y, U ∼ N
(
M∗

Z ,Γ
2
Z

)
with

M∗
Z = Γ2

Z

[( λ
σ2
Z

− nβ1β2
σ2
Y

)
logX +

nβ2
σ2
Y

Y +
(1− λ

σ2
Z

− nβ2β3
σ2
Y

)
U

]
(11)

satisfying E(M∗
Z) = E(U), and

Γ2
Z =

(nβ2
2

σ2
Y

+
1

σ2
Z

)−1
(12)

Using the same sample (xi)i=1,...,k (simulated from a LN(4, σ2
X) distribution) as in the

previous section, let us represent in Figure 5 an estimate m∗Z of M∗
Z with the values of

λ and βi previously selected, and with the same values for the other parameters as in
the previous section when considering mZ (ȳ = 6, σX = 4, σY = 3/2, σZ = 1, n = 1,
u = 4.5). The conditional variance is independent of the size of the operational losses
and worths Γ2

Z = 0.98.

Figure 5: A realization m∗
Z of the conditional expectation E[Z|X,Y, U ] of the risk profile for
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Finally, we may compare the distribution of Z given X, Y, U when considering the a
priori on the unknown parameter of a given family of distributions for the severities
and for the risk profile, respectively. As can be seen in Figure 6 below, the behavior of
m∗Z appears much more stable than the one of mZ . It can be explained by the fact that
mZ relies directly on the operational loss index k, whereas m∗Z depends on k through
the empirical mean log x only.

Figure 6: Comparison of mZ and m∗Z for
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Conclusion

This paper shows how to include in the modeling of operational risk, macroeconomic
effects and expert judgements through a Bayesian approach. Such an approach is cho-
sen to obtain a good behavior of estimators even in the case of small sample of losses.
To illustrate our approach, we assumed a uniform a priori distribution on a location
parameter and considered normal or lognormal conditional distributions of the three
factors, operational losses, market risk profile and experts opinion. It may be applied
to a different parameter or with other types of distributions, although our choice ap-
pears reasonable in the insurance context where extreme operational losses have not
been seen. It would be interesting to introduce a heavy tail distribution, for instance a
Fréchet distribution, when treating operational losses in banks that have experienced
extreme ones. This study has been developed when relating the a priori, namely the
macroeconomics environment, first to the market risk profile, then to the operational
losses. In both situations, our generalized estimator of the location parameter is given
as a weighted average of the three mentioned factors. Properties of this estimator
have been deduced and simulation performed to see how it behaves. It appears that
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introducing a hyper level in the prior modeling provides a quite competitive estimator
when compared with the maximum likelihood estimator and the Lambrigger et al.’s
one. The latter can be deduced as a particular case (under a strong independence
condition) of our general estimator. Finally we notice also that relating the a priori to
operational losses rather than to the market risk profile leads to a much more stable
behavior close to the true value even when few data are available. So it seems that
macroeconomics environment has a direct impact on the severities of operational losses.
It would deserve further empirical investigation on the influence of macroeconomics on
operational risk. It might be undertaken in some future work.
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der Basel II and Solvency 2: operational risk goes bayesian. Bulletin Français d’Actuariat 8(16),
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