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Abstract

This paper considers approximating the finite sample null-distribution of

a test statistic as its asymptotic distribution under a local alternative. We

focus on the Likelihood Ratio test for the rank of cointegration and use non-

linearities that represent some finite sample distributional features. Reliable

approximations are obtained using a class of locally explosive models. An

empirical evaluation of the concordance of European business cycles through

cointegration shows that some standard corrections lead to underestimating

the number of cointegrating relations and induce volatile results.
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1 Introduction and overview

This paper analyzes a new application to the well established local-asymptotic frame-

work that was introduced to econometrics by Bobkoski (1983), Cavanagh (1985),

Phillips (1987), and Chan and Wei (1987). We study whether finite sample null

distributions of test statistics can be approximated using asymptotic distributions

under a local alternative. The reason we do so is twofold: local asymptotics pro-

vide (i) an easily implementable method to generate distributions that is successful

in approximating finite samples distributions (see Perron, 1991); and (ii) a simple

way to induce some nonlinearities which we show to be relevant in finite samples

and may not otherwise be taken into account (as they vanish using conventional

asymptotics). In particular, this framework allows to model how the asymptotic

similarity a test with respect to some parameters may not hold in finite samples. To

our knowledge, the idea of using the distribution under the alternative as a finite

sample approximation is new and we show that it works (at the cost of introducing

nuisance parameters, that could be tabulated in practice). In considering distribu-

tions under the alternative to represent null distributions, we differ from the class

of continuous record approximations studied in Perron (1991).

To clarify the procedure we follow, consider the Dickey-Fuller test of the null

H0 : ϕ = 0 vs H1 : ϕ < 0 in

∆yt = τ + ϕyt−1 + εt, for t = 1, ..., T (1)

where T−1/2
∑drT e

t=1 εt ⇒ σW (r) , with W a Wiener process.1 The deterministic com-

1Conventionally,⇒ denotes weak convergence of the associated probability measure onDp [0, 1] ,

p ≥ 1, the space of Rp-valued functions on the interval [0, 1] which are right continuous and have

finite left limits. dxe denotes the integer part of any real scalar x. Cp [0, 1] is the subspace of
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ponent τ implies a trend that is a linear under the null, yt =
H0

y0 + τt+
∑t

i=1 εi, but

nonlinear under the alternative: yt =
H1

(1 + ϕ)t y0 + τ 1−(1+ϕ)t

−ϕ +
∑t

i=1 (1 + ϕ)t−i εi.

Asymptotically, the nonlinear trend vanishes under H1 as (1 + ϕ)t → 0. By contrast,

if we consider the local alternative H1 : ϕ = eφ/T − 1, φ 6= 0, where T is the sample

size, then the nonlinear trend does not vanish asymptotically since (1 + ϕ)T → eφ

as T →∞.2 In this paper, we consider approximating the finite-sample distribution

– under H0 – of the t-statistic on ϕ as that under the local alternative H1. The

distributions that we obtain may hence depend nonlinearly on deterministic param-

eters even when the test statistics are similar with respect to deterministic terms

under H0. In order to see the effect the trend coefficient, τ in expression (1) above,

has on test statistics under H1, we also model it as local asymptotic (a Pitman

drift), in effect assuming τ = ψ/
√
T for ψ 6= 0 so yT = Op

(√
T
)
. Contrary to, say,

Elliott, Rothenberg and Stock (1996), we do not assume that τ = o
(
T−1/2

)
so the

deterministic trend remains present asymptotically and interacts with the stochastic

trends as in e.g. Stock and Watson (1996) and Vogelsang (1998). In this context, ψ

matters for the test distributions even as T →∞.

We develop a multivariate extension of the framework above and consider the

Johansen (1988) Likelihood Ratio (LR) test. The distribution of the test statistic

under the null of q linearly independent cointegration vectors for a system of p

variables satisfies asymptotically:

−2 logQ (H (q) |H (p))⇒ tr

{∫ 1

0

dW (r) F′ (r)

[∫ 1

0

F (r) F′ (r) dr

]−1 ∫ 1

0

F (r) dW′ (r)

}
,

Dp [0, 1] of continuous functions.
2The nonlinear trend also remains under the alternative when modeling the trend as additive

to the local asymptotic process: yt = µ+ τt+ zt, with zt = eφ/T zt−1 + εt leads to replacing τ and

ϕ with τ −
(
eφ/T − 1

)
(µ+ τ (t− 1)) and eφ/T − 1 in expression (1).
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(2)

where W is a multivariate Brownian motion of dimension p−q and F is a a function

of W whose actual definition depends on the parametric specification of the model

(see Johansen, 1991). Several authors have derived finite sample corrections of the

LR statistic: see for instance Johansen (2000, 2002a and 2002b), Swensen (2006) and

Cavaliere, Rahbek and Taylor (2012). The approximation we derive in this paper

relies on local asymptotic alternatives to the null of cointegration, drawing in part on

Pesavento (2004), both on the stationary and explosive sides. We show in particular

that locally explosive processes can provide reliable finite sample approximations.

The main difference between our framework and existing approximations to the

finite sample distribution the LR statistic is that previous authors have considered

distributions that are similar with respect to the parameters of higher-order de-

terministic components (when a polynomial trend is present). This draws on the

asymptotic similarity of versions of the LR statistic (see Johansen, 1994, and Nielsen

and Rahbek, 2000) under the null.3 Here, working under the alternative generates

nonlinear trends. This implies that, in the multivariate framework, the suggestion

by Johansen (1994) to restrict the linear trend to lie within the cointegration space

may not restore similarity with respect to the deterministic components. In addition

we will show that some rotations are no longer possible in the presence of a local-

asymptotic drift, contrary to e.g. Pesavento (2004) and Saikkonen and Lütkepohl

(1999).

Our results allows to revisit, inter alia, the methodologies of Enders (1988), Mac-

3Lütkepohl and Saikkonen (2000) have also proposed an LM test that is similar with respect to

deterministic components, see also Saikkonen and Lütkepohl (2000a) and Saikkonen and Lütkepohl

(2000b).
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Donald and Taylor (1991) and many authors since. We apply our theoretical results

to the question of whether business cycles in the euro area exhibited concordance

prior to the 2007 financial crisis. We restrict our attention to this early period as the

recessive effect of the posterior financial crisis may blur the analysis and we hope

that information about the early period of the introduction of the euro has some

potential interest to the policy decisions that fiscal and monetary authorities will

have to take in the near future. The problem of small sample size is then very acute

and requires finite sample distributional approximations.

This paper is organized as follows. We first present in section 2 our proposed

model of near cointegration for deriving finite sample approximations to the distri-

butions. Section 3 derives the resulting distribution of the Likelihood Ratio test

statistic. We proceed to a Monte Carlo analysis in section 4 where we validate the

finite sample approximation. An empirical illustration follows in section 5 in which

it appears that European economies converged in the run-up to the euro introduc-

tion and immediately started diverging thereafter. Proofs of the main results are

presented in the appendix.

The paper uses the following notation: vectors are denoted by α = (α1 : ... : αp) ,

with α′ = (α1, ..., αp) . For any (p× q) matrix α of full rank, we define α⊥ of dimen-

sion p× (p− q) such that (α, α⊥) is of full rank; we define the generalized projection

operator α = α (α′α)−1 . Also, we denote by diag (α, β, ...) the (block-)diagonal ma-

trix with diagonal elements (α, β, ...) .
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2 The model

Consider the usual autoregressive representation for analyzing cointegration in the

p-dimensional vector of variables xt (see Johansen, 1991):

∆xt = Πxt−1 + Υtnd +

nd−1∑
i=0

ψit
i + εt (t = 1, ..., T ) . (3)

where εt ∼ IN [0,Ω]. If xt is I(1) and Π is of reduced rank q, then there exist α and

β of dimension (p× q) such that Π = αβ′ and that β′xt − E [β′xt] is stationary. xt

cointegrates, with cointegration vector β. The test for the hypothesis Π = αβ′, and

possibly Υ = αρ′, under Gaussian errors, is carried out as a LR test by the technique

of reduced rank regression via a ratio, Q (H (q) |H (p)) defined below in expression

(10), and whose asymptotic distribution for the null of q ≤ p cointegration relations

under model (3) is derived in Johansen (1991, 1994) as expression (2) where F is

function of a multivariate Brownian motion and whose actual form depends on nd

and on whether α′⊥Υ = 0. We set the deterministic terms as dt = (1, t) if nd = 1 and

dt = 1 if nd = 0, and collect them as Ψdt = Υtnd +
∑nd−1

i=0 ψit
i. We have assumed

without loss of generality and for ease of notation that lags of ∆xt do not enter

equation (3); we assume also that x0 = 0, although this is not an inconsequential

assumption (see Müller and Elliott, 2003). The model implies that the vector process

xt admits the moving average representation:

xt = C
t∑
i=1

(εi + Ψdi) + CT (L) (εt + Ψdt) + A, (4)

where L is the lag operator, C = β⊥ (α′⊥β⊥)−1 α′⊥, A is a stationary process and the

power series for CT (z) is convergent for |z| < 1 + δ for some δ > 0.

Consider now the local asymptotic model we use to derive distributional approx-

6



imations. We define a triangular array xt,T , and modify (4) as follows:

xt,T = C
t∑
i=1

eφ(t−i)/T (εi + ΨBTdi) + CT (L) (εt + ΨBTdt) + A, (5)

and  φ ∈ R

BT = T−1/2diag (T 0, .., T nd)
−1
.

(6)

For notational ease, we omit the dependence of xt in T in the following. The moving

average representation (5) implies an autoregressive representation (3) where deter-

ministic components are damped by BT and Π = αβ′ is replaced with Π = αβ′ +(
eφ/T − 1

)
Ip.

4

The vector series generated by (5)-(6) is near integrated if αβ′ is of reduced rank

q < p, it is also near-cointegrated when q > 0. In finite samples xt is stationary.

Trend stationarity asymptotically vanishes and the limit process is cointegrated,

with cointegrating vector β. The choice of representation for locally cointegrated

process is not unique: here, the process is trend stationary in finite samples; stochas-

tic trends and cointegration only appear asymptotically. Other alternatives are pos-

sible, such as allowing stochastic trends at all sample sizes and sample-dependent

cointegration rank as in Johansen (1995), chapter 14, or also in Elliott (1998) and

Jansson and Haldrup (2002). Additionally, we restrict our attention for simplicity

to a unique localizing parameter for the stochastic trend φ.5 The distribution of xt

varies continuously for φ→ 0. Let T−1/2
∑dTre

i=0 εi ⇒ ΣW (r), as T →∞, where W

is a standard Brownian motion on Cp [0, 1] and Σ is a positive definite matrix such

that Ω = ΣΣ′. Under the local asymptotic framework above, if Ψ 6= 0 the process

exhibits a deterministic trend that is local since both its expectation and standard

4For simplicity we assume away lags of ∆xt in the right-hand side of expression (3).
5This could readily be extended to allow for a vector Φ = (φ1, ..., φp)

′
.
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deviation are of the same order O
(
T 1/2

)
: the process exhibits both stochastic and

deterministic sources of non-stationarity and the two interact at all sample sizes and

in the limit.

Local asymptotics have often be used in the context of unit roots for power

analyses of tests (see e.g. Elliott, Müller and Watson, 2012) and for the construction

of confidence intervals (from Stock, 1991, to Mikusheva, 2007). Local-to-zero drifts

have been used inter alia in Monte Carlo simulations of unit root tests, first in

Vogelsang (1998) and also in Rossi (2005) and Busetti and Harvey (2005); they

have been analyzed as a model per se but in a univariate setting in Haldrup and

Hylleberg (1995), Stock and Watson (1996), and also Nabeya and Sorensen (1994),

but then, in the different context of continuous record asymptotics – as in this article

to emphasize the interactions between stochastic and deterministic trends. They

have also been used in Kim et al. (2004) who focus on trend stationary or difference

stationary models, yet not on the presence of the two types of trends; but testing for

the latter is the focus of Harvey et al. (2007). In a different representation, Kiviet

and Phillips (2005) have proceeded to expansions of the unit root test statistics in

powers of the drift and found that their approximations fared relatively badly for

low drifts.

It should be noted that our purpose is not to provide a framework for cointegra-

tion testing that would be robust to local trends but simply to assess the properties

of the LR test. Often a modeler is uncertain about the existence of a deterministic

trend and wishes to perform a test for the rank of cointegration that is not affected

by the presence of the absence of a trend (see e.g Lütkepohl and Saikkonen (2000)).

Then she may use the union of two tests, one that is robust to some forms of trends,

one that is to others, as in the multivariate extension, in Demetrescu et al. (2009),
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to the combination of several statistics that was proposed by Harvey et al. (2009).

To analyze the properties of locally trending processes, we define the Vasiček

diffusion

K†ψ,φ (r) = ψfφ (r) +

∫ r

0

eφ(r−s)dW (s) , for r ∈ [0, 1] , (7)

where the continuous deterministic functional f(·) : R→ C [0, 1], with φ ∈ R\{0} is:

fφ (·) : r → eφr − 1

φ
, (8)

and f0 (r) = r. By extension to (7), for a given σ > 0, we denote by Kψ,φ (r) the

Gaussian diffusion Kψ,φ (r) = σK†ψ/σ,φ (r) with expectation ψfφ (r) and variance

σ2f2φ (r). It is standard in the financial literature to specify Vasiček diffusions

as Kψφ,−φ. Hence, we refer instead to K†ψ,φ (r) and Kψ,φ (r) as trending Ornstein-

Uhlenbeck (TOU) processes.

A natural multivariate extension of the above uses the n-variate Ornstein-Uhlenbeck

diffusion J†φ (r) =
∫ r

0
eφ(r−s)dW (s) where

T−1/2

[Tr]∑
i=1

(
eφ([Tr]−i)/T εi

)
⇒ ΣJ†φ (r)

def
= Jφ (r) . (9)

Multivariate TOU diffusions are defined as K†Ψ,φ (r) = Ψfφ (r) + J†φ (r) , with

fφ (r) =
(
fφ (r) ,

∫ r
0
fφ (u) du

)′
for nd = 1; discarding the second element for nd = 0.6

We also define KΨ,φ (r) = ΣK†Σ−1Ψ,φ (r).

3 Inference

In this section, we derive the distribution of the Likelihood Ratio test for the coin-

tegration rank computed from model (3) using the corresponding asymptotic distri-

6To keep the notation readable, we omit the dependence of fφ on nd since it should always be

clear to which we refer.
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bution when the data generating process (the DGP) is given by (5)-(6). By an abuse

of language, we refer to the test as being similar with respect to some parameter

under a given hypothesis (the null or the local alternative) when the distribution

of its statistic does not depend on the value of the parameter under that hypoth-

esis. Similarity is usually only referred to under the null, but since our aim is to

approximate this distribution and because we only derive distributions under the

alternative we hope that our message will be clear.

We first derive the asymptotic distribution of the scaled locally trending and

locally cointegrated process in terms of the TOU diffusions.

Lemma 1 A locally cointegrated and locally trending process {xt} which is generated

by (5)-(6) satisfies:

T−1/2x[Tr] ⇒ CKΨ,φ (r) .

The asymptotic distributions of the LR statistic under the null and local alter-

native depend on the model which is used, and especially on which deterministic

components it contains (constants and trends).

We define the log likelihood ratio statistic that corresponds to model (3) as

−2 logQ (H (q) |H (p)) = −T
p∑

i=q+1

log
(

1− λ̂i
)

(10)

where the eigenvalues λi are estimated as solutions to the problem
∣∣λS11 − S10S

−1
00 S01

∣∣ =

|S (λ)| = 0, with Sij = T−1
∑T

i=1RitR
′
jt, Rit = Zit−Mi2M

−1
22 Z2t, Mij = T−1

∑
T
i=1ZitZ

′
jt,

Z0t = ∆xt, Z1t = xt−1 and Z2t is made of the deterministic components that enter

the model. We denote by Mh the model (4) with the following deterministic terms:

h = 0 in the absence of deterministic terms, h = µ when only a constant is included,

h = τ with a constant and a linear trend. Models M∗ and M∗µ refer to Mµ and Mτ
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with the highest order deterministic term that is restricted to lie in the cointegration

space, i.e. Υ = αρ′ in (3), so Z1t is augmented with a constant (h = µ) or a linear

trend (h = τ). The LR statistic computed according to model Mm
h , h ∈ {0, µ, τ}

and m ∈ {∅, ∗} , is denoted by LRmh .

To derive the asymptotic distributions of the LR statistics computed as above,

but where the DGP is (5), we define G0 a (p− q)-variate TOU process given by

G0 = J†φ + (01×p−q−1,gφ)′ (11)

where gφ (r) = (τ ′CΣΣ′C′τ)
−1/2

τ ′CΨfφ (r) ; 1nd+1 is a vector of ones of dimension

nd + 1 and τ = CΨ1nd+1. We extend the definition to Gµ = G0 −
∫ 1

0
G (r) dr and

Gτ = G0−a − br, where a and b are obtained by correcting G0 for a mean and a

linear trend. Furthermore, we let G∗0 = (G0, 1) and G∗µ (r) = (Gµ (r) , r) . With the

notations above, the following proposition holds.

Proposition 2 Assume that the data generating process is locally cointegrated and

locally trending as generated by (5)-(6). The asymptotic distribution of the Likelihood

Ratio statistic for the null of q < p cointegration relations among p variables using

the standard approach of reduced rank regression in model Mh, h ∈ {0, µ, τ} is given

by:

LRmh ⇒ tr

{∫ 1

0

dGh (r) G′h (r)

[∫ 1

0

Gh (r) G′h (r) dr

]−1 ∫ 1

0

Gh (r) dG′h (r)

}
,

The asymptotic distribution of the LR test refers to the definition (11) which

arises as G0 = (α′⊥CΩC′α⊥)
−1/2

H, where T−1/2α′⊥x[Tr],T ⇒ H; hence G0 cor-

responds the standardized asymptotic distribution of a linear combination of the

scaled common trends α′⊥xt. Proposition 2 shows that inference drawn from the

LR test may be affected by the coefficients of the deterministic components when
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these are allowed to interact asymptotically with the stochastic trend. Indeed, when

φ = 0, Gτ , corrected for a constant and a linear trend, simplifies to W, i.e. without

deterministic terms. But for φ 6= 0, the nonlinear function fφ (r) cannot be offset

by a linear trend correction. Hence, under this setting, the asymptotic distribution

depends upon gφ (r) , i.e. it is not similar (under the local alternative) with respect

to the projection of Ψ onto sp (α⊥) . More precisely, the distribution in proposition 2

depends on the ratio
(
τ ′CΣΣ′C

′
τ
)−1/2

τ ′CΨ, with τ = CΨ1nd+1, which writes ψ/σ

in univariate unit-root testing. The ratio Σ−1Ψ is commonly encountered when ac-

counting for finite sample deviations from asymptotic distributions (see Kiviet and

Phillips, 2005) so the result is comparable here. The definition of G0 implies that all

deterministic components which belong to the space spanned by α have no influence

on the distribution of the LR statistic, as in Nielsen and Rahbek (2000) and in the

following proposition.

Proposition 3 Under the assumptions of proposition 2. Consider the hypothesis

of a deterministic term restricted to the cointegrating space, as in M∗µ. The LR test

statistic satisfies under the local alternative:

LR∗µ ⇒ tr

{∫ 1

0

dG0 (r) G
′
(r)

[∫ 1

0

G (r) G
′
(r) dr

]−1 ∫ 1

0

G (r) dG′0 (r)

}
. (12)

where G is (G0, r) corrected for the mean.

Under M∗µ, the distribution of the test statistic, under the local alternative, is

asymptotically independent of the coefficients of Ψ that belong to sp (α) . Hence,

under the local alternative, the test is not asymptotically similar with respect to

deterministic terms if α′⊥Ψ 6= 0, contrary to the distribution under the null, as in

Johansen (1994). Denoting Ψdt = Ψ0 +Ψ1t, the distribution of LR∗µ asymptotically

depends on Ψ0 if α′⊥Ψ0 6= 0 (for the same reasons of nonlinearities arising from

12



the local-asymptotic setting, as in the discussion to the previous proposition). This

means that, even when appropriately restricting the linear trend to the cointegrating

space, the LR test statistic may depend – under the local alternative – on the value

of the deterministic components. The most closely related study, by Nielsen and

Rahbek (2000) considered only the case α′⊥Ψ0= 0 in finite samples, but there are no

reasons to assume that both the trend and the intercept that appear in expression (3)

should be restricted a priori to the cointegrating space. An unrestricted constant

is a regular feature of cointegrated vector equilibrium correction models and its

presence is advocated in empirical modeling: see inter alia the recommended models

in Johansen (1995), page 81, and Juselius (2006) section 6.3.

Proposition 3 helps to see that, for model (5) with nd = 1 the only situation

where asymptotic similarity of the LR statistic holds under the local alternative is

when there is no quadratic trend in the data, the constant and linear trends are

entered unrestrictedly in model (5) and if φ = 0 : this is under the null. This differs

from the results in Pesavento (2004) where the linearity of the trend is maintained

under the alternative so it can be eliminated by the rotation suggested in Johansen

(1994).

We have shown in this section that even when the deterministic components are

correctly modeled under the null, the value of their coefficients may actually matter

for inference under the local alternative. It remains to be seen whether the latter

accurately reflects the finite sample distributions so that they indeed constitute

nuisance parameters.
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4 Monte Carlo

4.1 Experimental design

We validate the locally trend approximation via a Monte Carlo experiment where we

simulate integrals via samples of 20,000 discrete observations, and use 20,000 replica-

tions of the processes. In the simulations, we set Ω = Ip, and let, for a cointegration

rank q, the vectors β =
(
Iq,0q×(p−q)

)′
and α = −β where Iq is the q dimensional

unit matrix and 0m×n a (m× n)-matrix of zeros. Then Π =diag(−Iq,0(p−q)×(p−q))

so the process consists of q white noise processes and (p− q) pure random walks.

We choose β⊥ =
(
0(p−q)×q, I(p−q)

)′
and

α⊥ = [(p− q)ψ]−1


0q×(p−q−1) 0q×1

I(p−q−1) 1(p−q−1)

01×(p−q−1) 1


with 1(p−q) a vector of ones of dimension p − q. Hence C = β⊥ (α′⊥β⊥)−1 α′⊥ =

diag
(
0q×q, I(p−q)

)
. We record only a few results here, focusing on nd = 0 with

Ψ = (ψ, 0, ...)′ ; hence α′⊥Ψ 6= 0 and G0 (r) = J†φ (r)+
(

0, ..., 0, (p− q)1/2 |ψ| fφ (r)
)′

.

In the asymptotic distribution of the LR test under the local alternative, the impact

of the drift is then multiplied by the square root of the number of common stochastic

trends: (p− q)1/2 .

4.2 Simulation results

In order to analyze the quality of the local-asymptotic approximation to finite sample

distributions we report three types of results depending on whether the underlying

model is correctly specified for the deterministic terms.
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First, we assess in table 1 whether the LR tests for the number of cointegration

relations are robust to misspecified local non-zero drifts in finite samples.7 This

studies whether the presence of low nonzero trends matter for inference on the

cointegration rank. For this we report quantiles of the LR statistic for model Mµ

where the data is generated as in subsection 4.1. For comparison we also report the

Ahn-Reinsel finite sample correction, see Ahn and Reinsel (1999) and Cheung and

Lai (1993). Here the model is misspecified for ψ 6= 0 and we see that the presence

of a small unmodelled trend may flaw inference on the rank of cointegration when

few stochastic trends are present. The role played by the number of stochastic

trends shows that when only a few are present, the deterministic components may

impact the distributions as in Evans and Savin (1984). This motivates the use of

local deterministic trends to allow their coefficients to have an impact on asymptotic

distributions under the local alternatives.

Second, we investigate whether the local asymptotic setting accurately describes

finite sample behavior: tables 2, 3, 4 and 5 present the j-percentiles, xj, of the

simulated finite sample distribution of the Likelihood Ratio test for the presence of

q cointegrating relations, i.e. p − q common stochastic trends, where the models

considered are respectively M0, Mµ, M
∗
µ and Mτ . The finite sample distributions

are compared to those obtained under the local asymptotic framework by means

of a nonparametric test for the equality of the distributions. In the absence of

closed form expression for either distribution, we use the Mann and Whitney (1947)

test for equality of distributions between two independent samples (each of 20,000

observations here). Under the null of distributional equality, the Mann-Whitney

7We report here the case of very small samples with T = 25 observations to stretch the analysis

to the limiting case studied in the empirical application.
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(noted MW henceforth) statistic asymptotically follows a standard Normal. The

corresponding p-values are reported as functions of the near-integration parameter

φ. The figures in bold in the tables denote the values of φ that provide the best

approximation, in terms p-values of the MW statistics, among those considered.

A first result emerges from most parameter combinations: the finite sample

distributions of the Dickey-Fuller unit root tests (in the Wald, t2, form when p = 1,

q = 0) or of one stochastic trend (p− q = 1) tend to be best approximated setting

φ = 0 and, according to the MW test, the local asymptotic distribution accurately

represents the finite sample behavior. Nabeya and Sorensen (1994) found similar

results in the univariate unit root test. Notable exceptions to the former features

are LR∗µ for samples of T = 50 or 100 observations in which case φ = 1 performs

better; also to some extent LRµ in which case φ = .25 is better.

In the context of testing for the presence of several stochastic trends, it appears

overall that using distributions under locally-explosive roots is increasingly bene-

ficial when there are more trends. As regards the effect of the sample size, the

patterns differ according to whether models are, or not, underparameterized for the

deterministic components: in tables 2 and 3 where no deterministic trend is allowed

under the null, using distributions with φ > 0 is relevant in very small samples and

can lead to very good distributional approximations when T = 50. Samples of 200

observations are better represented via smaller localizing parameters (φ ≤ 0.25); φ

needs be larger for smaller sample sizes. By contrast, tables 4 and 5 show that the

approximations are not accurate enough at T = 50 (although allowing for φ > 0

still performs better than φ ≤ 0).

Finally, we assess whether the local asymptotic framework accounts for the dis-

tribution of the test for a model that is well specified under the null. For this, we
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complement table 5 with figure 1 which records the distributions of LRτ from finite

sample simulations and from the local asymptotic approximation. The skewed shape

of the distribution for p−q = 1 is well approximated letting φ = 0. As the number of

stochastic trends p−q increases, the distribution of LRτ resembles a Normal. Figure

2 presents the QQ plots of the proposed approximation (φ = .25) against quantiles

of the simulated finite sample LRτ . This corroborates the validity of our framework;

in particular the QQ plots are closer than the MW statistic would imply. It must

be noted that MW, as other tests with the purpose of comparing empirical distri-

butions (such as Kolmogorov-Smirnov or Cramer-von Mises), tends to over-reject in

very large samples. Unreported simulations show that this is especially the case for

p− q = 1, i.e. when the distribution is then further away from Gaussianity. Hence,

we should be relatively confident about the quality of the proposed local-asymptotic

approximation, even when the reported p-values are low.

In conclusion to the Monte Carlo, we should stress that the finite sample de-

pendence of the test statistic on the value of the deterministic trend component is

exemplified by table 5 where the MW test shows that the value of ψ has an impact

on the distributions.

5 Cointegration among continental European GDP

series

We apply our methodology to assessing the degree of business cycle concordance

between five continental European economies. Harmonization of business cycles

is crucial for monetary policy to be timely in the whole currency area. Yet, the

inception of the European Monetary Union – in 1999 – is still recent, and techniques
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relying on frequency analyses lack sufficient data for assessing the degree of cycle

convergence. The finite sample analysis we develop in this paper therefore finds a

natural application since GDP series are often considered to exhibit deterministic

trends (see e.g. King et al., 1991). We restrict our attention to the observations prior

to 2007, i.e. before the recent financial crisis. The reason for this decision is that

the recession induces concordance that is exceptional and blurs inference. It seems

more interesting for fiscal and monetary authorities to see whether the concordance

held under unexceptional times.

To assess the importance of considering the deterministic parameters when ac-

counting for cointegration in finite samples, we test for the number of cointegrating

relations among Gross Domestic Product (GDP) quarterly series8 of five major con-

tinental European economies: France (FR), Germany (GE), Italy (IT), the Nether-

lands (NL) and Spain (SP), as displayed on figure 3. The variables we consider

clearly present a deterministic trend (which accounts inter alia for the growth of

population and per capita productivity). The presence of significant cointegrating

vectors is seen here as tantamount to some degree of concordance among the busi-

ness cycles of these economies that altogether represent about 85% of the combined

GDP of the euro area (first 11 members). The methodology we use is standard in

the literature on economic convergence, see e.g. Enders (1988), Bernard and Durlauf

(1995), and Manning (2002); it has in particular been used to assess the degree of

convergence among European economies, as in MacDonald and Taylor (1991) and

8Datasets and replication files are available from the author. The series are taken from the

OECD Economic Outlook. GDP is in volume at market prices. Series for Germany prior to 1991

are backcasts using the growth rate of Western Germany. Computations were performed using Ox

and Oxmetrics. Panels are referred to as (a) to (d) from left to right, top to bottom.
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Brada et al. (2005). We do not use the term “convergence” since we do not test for

a change in the cointegration rank but prefer the word concordance here. A higher

rank of cointegration is viewed a higher degree of concordance. Convergence and

divergence can be loosely analyzed through the variations in the p-values associated

with test statistics.

The presence of stochastic trends is assessed via sequential testing for the rank q

of cointegration, starting from zero and increasing until a value is not rejected. We

only compare the p-values computed from our proposed local-asymptotic distribu-

tions to those of Johansen (2002a) despite the existence of several alternative finite

sample approximation techniques; the reason is that none of the existing approxi-

mations, such as that of Swensen (2006) and Cavaliere el al. (2012) account for the

values of the deterministic parameters.

We present on figure 4 the p-values corresponding to the Likelihood Ratio test

statistics under an VAR(1) assumption9 with a linear trend that is restricted (model

M∗µ in panel (a)), or not (Mτ in panel (b)), to lie in the cointegrating space. The p-

values are computed using the finite sample Bartlett correction in Johansen (2002a).

The sample size is allowed to vary, from T = 25 to 146 where the endpoint is held at

2006q4 and the origin varies backwards from 2000q4 to 1970q3. The figures report

on the horizontal axis as the origin of the sample. We compare the p-values in figure

4 to those obtained from the local-asymptotic distributions proposed in the paper

using different values of φ and ψ. In figure 5, the local-asymptotic distributions

are computed by Monte Carlo: setting (φ, ψ) = (0.5, 0) with 20,000 replications.

We then relax the assumption that ψ = 0 and compute the distributions using a

9This is the model that was chosen by sequential likelihood ratio testing of a VAR(k) against a

VAR(k + 1), starting with a VAR(4).
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parametric bootstrap, i.e. Monte Carlo simulation (20,000 replications) of the finite

sample distributions using an estimated ψ parameter. The parametric bootstrap

relies on simulating the distribution of the nonpivotal statistic conditional on the

realization of the estimator of a nuisance parameter. This method has been shown

inter alia by Davidson and MacKinnon (1999) to perform well.10 Here, distributions

are conditioned on the estimates of local drift parameters ψ from univariate regres-

sions: we regress the variables on a linear trend and set ψ̂ as maximizing the ratio of

the linear trend coefficient over the estimated standard deviation of the detrended

residuals. Figures 6 and 7 report the resulting recursive p-values for models M∗µ and

Mτ respectively. Finally, we complement the previous figures with figure 8 which

reports the recursively selected rank of cointegration using a significance level of

10%.

Inference drawn from the result reported in the figures vary. The p-values com-

puted using the Johansen (2002a) technique are much more volatile than using the

other methods. In figure 4 and under both M∗µ and Mτ , the null of no-cointegration

exhibits very high p-values (above 70%) when using data prior to the the first oil

crisis of September 1973. These p-values exhibit a sharp decrease when the sample

starts in late 1973 or later. For a sample origin between 1974 and 1981, the p-values

oscillate below 40% and stay briefly below 10% under model M∗µ in several occasions.

Economic growth drops below trend in several European economies in 1981-1982 fol-

lowing the second oil shock and disinflation policies. Both test statistics indicate

that for samples starting between 1981 and 1995, the presence of one cointegra-

tion relation is not rejected among these GDP variables (despite slight divergence

10Chan, Park and Song (2006) use a nonparametric bootstrap for the distribution of cointegration

tests in a different framework.
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following the 1987Q3 Stock Market crash under M∗µ). Under model M∗µ divergence

seems to start around 1993 when the UK was forced to withdraw from the European

Exchange Rate Mechanism (ERM) and the subsequent increase in the fluctuation

margins. The same pattern is observable under model Mτ for the p-values of nulls

of q > 0, but the null of no-cointegration is only non-rejected starting in 1996, with

a brief relapse for sample origins around the introduction of the euro. To sum-

marize, the tests under the Johansen finite sample approximation mostly show no

cointegration except during the 1981-1995 period, but the p-values may exhibit large

variations when the sample size changes. Inference hence appears partly unreliable.

We now compare the previous results with those under the local approximations

reported in figures 5-7. With the approximation under a local alternative, the p-

values and conclusions are more stable. Yet they differ according to which of M∗µ

and Mτ is considered. We focus our analysis on Mτ since it is robust to the position

of the deterministic trends with respect to the cointegration space. The tests and

distributions lead to conclude to the presence of two cointegration relations through-

out the sample, with the apparition of a third when considering samples spanning

only post-1990 data. It is through this third cointegration relation that we discuss

the convergence and divergence of the economies considered. The p-values for the

null that q ≤ 2 are very close to unity when considering samples that either con-

tain data from the 1970s or that span only post-2000 data. Figure 7 in particular

is most instructive in that it clearly shows that European economies converged in

the run-up to euro qualification but that they immediately started diverging follow-

ing its introduction in 1999. The actual p-values reported in the figure correspond

to averages over several regimes (convergence/divergence). Hence, their actual levels

may be misleading, since we do not consider rolling windows of observations, though

21



their dynamics is not. In light of our Monte Carlo results from section 4, the most

convincing reported results are in 7, panels (b) and (c) .

In conclusion, discarding the information content of the deterministic parameters

leads to under-estimating the dimension of the cointegration space. Figure 8 shows

that whereas using the distribution in Johansen (2002a), a modeler infers the pres-

ence of almost no cointegrating relations (at most one) amongst the five European

economies considered, this does not hold when taking the value of the determinis-

tic trend parameter into account: the degree of concordance among the European

business cycles is tested to be lower and much more volatile using Johansen (2002a)

than according to the framework proposed here.

6 Conclusions

This paper shows that finite sample null distributions of test statistics can be ap-

proximated using asymptotic distributions under a local alternative. Although the

local asymptotic distributions are commonly used to assess the power of tests, the

application we propose seems new in the literature. We show how the methodology

can be used to model finite sample interactions between multivariate deterministic

components and stochastic trends and we apply it to approximating the Johansen

(1988) likelihood ratio test for the rank of cointegration.

We show that the approximating distribution of the test may depend on the

parameters of the deterministic components that enter the data generating process.

Simulations indicate that finite sample distributions tend to be better approximated

via a locally explosive stochastic behavior. This is in particular the case when the

model allows for more than one stochastic trends under the null.
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In an empirical application to the estimation of the number of cointegration vec-

tors among the GDP series of five continental European economies, it is shown that

the finite sample approximation technique of Johansen (2002a) may lead to under-

estimating the dimension of the cointegrating space; it also leads to a higher degree

of volatility in the reported inference results. The technique we propose provides

sharper finite sample results on the degree of concordance among the business cycles

of continental Europe. It is found empirically that the economies started diverging

around the introduction of the euro.
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A Appendices

A.1 Proofs of lemma 1

Let nd = 1, from expression (4), we see that

T−1/2x[Tr] = T−1/2C

[Tr]∑
i=1

eφ(Tr−i)/T εi + CΨ

[
T−1

∑[Tr]
i=1 e

φ([Tr]−i)/T

T−2
∑[Tr]

i=1 ie
φ([Tr]−i)/T

]
+ T−1/2CT (L)

(
ε[Tr] + ΨBTd[Tr]

)
+ T−1/2A

and
(
T−1

∑[Tr]
i=1 e

φ([Tr]−i)/T , T−2
∑[Tr]

i=1 ie
φ([Tr]−i)/T

)
→

T→∞

(
fφ (r) ,

∫ r
0
fφ (u) du

)
.Hence

E [xT ] = O
(
T 1/2

)
and C

∑t
i=1 e

φ(t−i)/T εi defines a – near if φ 6= 0 – I(1) stochastic

trend so that xT ∼ Op

(
T 1/2

)
. Using expression (9), T−1/2x[Tr] ⇒ CKΨ,φ (r). This

holds also for nd = 0 with corresponding adjustments to the definitions.

A.2 Proof of propositions 2 and 3

We follow the proof of Johansen (1996), starting with lemma 10.1 (denoted lemma

J-10.1, and we use similar notation in the following). Since ΠT → αβ′ as T → ∞,

the expressions in lemma J-10.1 also hold here when considering (t, T ) → (∞,∞) .

Hence, the empirical sums Sij, for i, j = 0, 1, provide consistent estimates of the

asymptotic conditional second moment, even though the residuals Rij are not cor-

rected for the deterministic terms. Indeed, as ΨBTdt = Op

(
T−1/2

)
, we get:

T−1

T∑
t=1

ΨBTdtd
′
tB
′
TΨ′= Ψ

 ∑T
t=1

1
T 2 0

0
∑T

t=1
t2

T 4

Ψ′ →
T→∞

0.

so that, from theorem J-14.1, with α1 = Ip and β1 =
(
eφ/T − 1

)
Ip, under the

conditions of a local-to-unit root and of a local deterministic trend, the following

convergence results apply to the process generated by (6): S00
P→ Σ00, β

′S11β
P→

Σββ, and β′S10
P→ Σβ0.
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The notation we use is τ = CΨ1nd+1, where 1nd+1 is a vector of ones of dimension

nd + 1, and γ orthogonal to β and τ such that (β, τ, γ) has full rank p; also fφ (r) =(
fφ (r) ,

∫ r
0
fφ
)′

if nd = 1 and fφ = fφ if nd = 0.

We assume τ 6= 0. Therefore, as T →∞ and r ∈ [0, 1] , define G (r) such that

T−1/2 (γ, τ)′ x[Tr] ⇒ G (r) , (13)

with

G (r) =

 γ′CJφ (r)

τ ′CKΨ,φ (r)


When nd = 0, τ ′CKΨ,φ (r) = τ ′CJφ (r) + fφ (r) .

The case nd = 0 follows from theorems J-11.1 and J-14.4 with the results and

notation above. These theorems also apply to our setting when appropriately replac-

ing lemmata J-10.2, J-10.3 and J-14.3 with those given by our framework. This is

what we do below and the proof of proposition 2 is then similar to those of theorems

J-11.1 and J-14.4; we will not repeat them entirely here.

Since β′α is invertible, β⊥ (α′⊥β⊥)−1 α′⊥+α (β′α)−1 β′ = Ip hence (β, α⊥) has full

rank. Moreover, as C = β⊥ (α′⊥β⊥)−1 α′⊥ and α and β are defined via the space they

span and their product, hence we can choose α⊥ = (γ, τ) . Then

G (r) = α′⊥CJφ (r) + (01×p−q−1, τ
′CΨfφ (r))

′
(14)

Equation (13) replaces lemma J-10.2, with

T−1 (γ, τ)′ S11 (γ, τ)⇒
∫ 1

0

GG′dr (15)

(γ, τ)′ S11β = Op (1) (16)
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and
{
S01 −

(
αβ′ +

(
eφ/T − 1

)
Ip
)
S11

}
(γ, τ) = T−1

∑
t ΨBTdtR

′
1 (γ, τ) + Sε1 (γ, τ)

which weakly converges to

Ψ

∫ 1

0

(1, r) G′dr + Σ

∫ 1

0

(dW) G′ (17)

because T 1/2BTd[Tr] → (1, r) .

Equations (15) to (17) replace lemmata J-10.3 and J-14.3 in the proof. Define

S (λ) = λS11 − S10S
−1
00 S01. Then, using T−1/2 (γ, τ)′ x[Tr] ⇒ G (r) , as (β, τ, γ) is of

full rank:∣∣∣(β,T−1/2γ, T−1/2τ
)′
S (λ)

(
β,T−1/2γ, T−1/2τ

)∣∣∣
⇒

∣∣∣∣∣∣∣
 λΣββ 0

0 λ
(∫ 1

0
GG′dr

)
−

 Σβ0Σ−1
00 Σ0β 0

0 0


∣∣∣∣∣∣∣

=
∣∣λΣββ − Σβ0Σ−1

00 Σ0β

∣∣ ∣∣∣λ(∫ 1

0
GG′dr

)∣∣∣
which has p− q zero roots and q positive roots. We can also write∣∣∣(β,T−1/2γ, T−1/2τ

)′
S (λ)

(
β,T−1/2γ, T−1/2τ

)∣∣∣
= |β′S (λ) β|

∣∣∣∣∣∣∣
 T−1/2γ′

T−1/2τ ′

{S (λ)− S (λ) β [β′S (λ) β]
−1
β′S (λ)

} T−1/2γ′

T−1/2τ ′


′∣∣∣∣∣∣∣

Now, let ρ = λT fixed and (λ, T ) → (0,∞) . We show that the p − q smallest root

of S (λ) decrease to zero at the rate T−1 and that T λ̂ converges:

β′S (λ) β = ρT−1β′S11β − β′S10S
−1
00 S01β

P→ −Σβ0Σ−1
00 Σ0β

so that |β′S (λ) β| has no roots. Additionally

T−1/2 (γ, τ)′ S (λ) β = −T−1/2 (γ, τ)′ S10Σ−1
00 Σ0β+op (1)

and

(γ, τ)′
{
S (λ)− S (λ) β [β′S (λ) β]−1 β′S (λ)

}
(γ, τ)

= ρT−1 (γ, τ)′ S11 (γ, τ)− (γ, τ)′ S10ΛS01 (γ, τ) +op (1)

(18)
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with

Λ =Σ−1
00 − Σ−1

00 Σ0β

[
Σβ0Σ−1

00 Σ0β

]−1
Σβ0Σ−1

00 = α⊥ (α′⊥Ωα⊥)
−1
α′⊥. (19)

From (13), G is the projection of CKΨ,φ on (γ, τ) = α⊥, hence

(γ, τ)′ S10α⊥ = (γ, τ)′ S10 (γ, τ)⇒
∫ 1

0

G (dG)′ (20)

Combining (15), (19) and (20), we see that, according to (18), the roots ρ asymp-

totically satisfy∣∣∣∣∣ρ
(∫ 1

0

GG′dr

)
−
(∫ 1

0

GdG′
)

(α′⊥Ωα⊥)
−1

(∫ 1

0

GdG′
)′∣∣∣∣∣ = 0. (21)

Hence given that the roots of (21) |S (λ)| tend to zero at rate Op (T−1) . Rescale the

diffusion G as G0 = (α′⊥CΩC′α⊥)
−1/2

G to obtain the result: the likelihood ratio

statistic T
∑p

i=q+1 log
(

1− λ̂i
)

satisfies

− 2 logQ (H (q) |H (p)) (22)

⇒ tr

{∫ 1

0

dG0G
′
0

[∫ 1

0

G0G
′
0

]−1 ∫ 1

0

G0 (dG0)′
}

(23)

In the presence of a deterministic component entered unrestrictedly in the regression

model (so that it is partialled out as the lagged differences in Z2), G0 in (22) is then

corrected for a mean (nd = 0), or both a mean and a linear trend (nd = 1). Given

that fφ (r) is nonlinear, the regression coefficients will be nonzero for φ 6= 0.

Should the modeler suspect the presence of a deterministic trend in the process,

following Johansen (1994), she would test for the null hypothesis H∗ (q) : Π = αβ′

and Ψdt = Ψ0 + Ψ1t with α′⊥Ψ1 = 0; this leads to setting the model with Xt−1 =

(xt−1, t) instead of xt−1 entering the cointegrating space. Then τ = CΨ01nd+1 and

G only depends on Ψ via Ψ0. Now the LR statistic admits a different asymptotic
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distribution:

− 2 logQ (H∗ (q) |H∗ (p)) (24)

⇒ tr

{∫ 1

0

(dG0) G
′
[∫ 1

0

GG
′
]−1 ∫ 1

0

G (dG0)′
}
.

where G = (G0, r) corrected for the mean and it is function of Ψ0.
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Number of Probability that LRµ is less than entry

stochastic trends 0.5 0.9 0.95 0.975 0.99

Asymptotica

1 2.42 6.69 8.08 9.66 11.58

2 9.34 15.58 17.84 19.61 21.96

3 20.19 28.44 31.26 34.06 37.29

4 34.87 45.25 48.42 51.80 55.55

5 55.37 65.96 69.98 73.03 77.91

Ahn-Reinselb for T = 25

1 2.52 6.97 8.42 10.06 12.06

2 10.15 16.94 19.40 21.32 23.87

3 22.94 32.31 35.52 38.71 42.38

4 41.52 53.87 57.64 61.67 66.13

5 69.22 82.45 87.47 91.29 97.39

Finite Sample, simulated with T = 25

ψ = 0 1 2.13 5.43 6.66 7.85 9.51

2 8.47 14.09 16.07 18.06 20.17

3 18.99 27.23 29.99 32.62 35.49

4 34.18 44.80 48.42 51.76 55.62

5 54.49 68.36 72.98 77.37 82.40

ψ = 0.25 1 2.12 5.37 6.56 7.68 9.36

2 8.37 13.97 16.05 17.86 20.24

3 18.92 27.14 29.93 32.34 35.50

4 34.09 44.83 48.42 51.60 56.02

5 54.42 68.33 73.03 77.55 82.58

ψ = 0.5 1 2.01 5.26 6.51 7.67 9.25

2 8.23 13.82 15.85 17.68 20.00

3 18.72 26.87 29.59 32.23 35.36

4 33.88 44.57 48.12 51.55 55.86

5 54.19 68.14 72.66 77.09 82.76

ψ = 1 1 1.57 4.90 6.08 7.27 8.91

2 7.74 13.21 15.19 16.99 19.53

3 18.20 26.20 28.93 31.38 34.74

4 33.43 44.00 47.62 50.86 55.00

5 53.70 67.70 72.05 76.12 81.98

ψ = 2 1 0.77 3.67 4.77 5.82 7.23

2 7.10 12.27 14.04 15.74 18.05

3 17.65 25.50 28.06 30.51 33.65

4 33.03 43.50 47.13 50.62 54.71

5 53.50 67.32 71.84 75.59 80.59

a from Hamilton (1994)

b Using the Ahn-Reinsel correction, see Cheung & Lai (1993)

Table 1: Comparison of the distributions of the Likelihood Ratio test where a con-

stant enters unrestrictedly in the model. The first five rows report the asymptotic

quantiles recorded in the appendix of Hamilton (1994). The following rows report

respectively the finite sample approximation of Ann-Reinsel over samples of T = 25

observations. The remaining rows record simulated finite sample distributions under

the null and local alternatives when the data generating process presents a drift lying

in the space spanned by the common stochastic trends. The drift is parameterized

as T−1/2 (ψ, 0, ...)′ .
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Table 2: The table reports the Monte Carlo j quantiles xj of the distribution of the

LR statistics for model M0under the null of p − q common stochastic trends and in the

presence of a local deterministic trend with parameter ψ. The table also reports the p-

values of the Mann-Whitney test statistics for the test of identical distributions between

the finite sample distribution of the LR statistic and its local-asymptotic approximation

under the local alternative of near-stochastic trends parameterized by φ. The number of

Monte Carlo replications is 20,000 and the sample size T .

p-values of the Mann-Whitney test statistic in %

T ψ p− q x50 x90 x95 x97.5 x99 φ = 1 φ = .75 φ = .5 φ = .25 φ = 0 φ = −0.25

50 0 1 0.59 2.96 4.13 5.34 6.78 0.0 0.0 0.0 35.2 57.7 15.1
50 0 2 5.56 10.50 12.34 14.14 16.20 0.0 0.0 0.0 0.1 44.5 0.0
50 0 3 14.70 22.39 24.77 27.37 30.06 0.0 0.0 0.0 0.8 0.1 0.0
50 0 4 28.61 38.30 41.43 44.31 48.04 0.0 0.0 0.0 4.0 0.0 0.0
50 0 5 47.00 59.59 63.71 67.63 72.68 0.0 0.0 29.3 0.0 0.0 0.0

50 0.25 1 0.61 3.10 4.25 5.45 7.05 0.0 0.0 0.0 1.6 96.0 17.6
50 0.25 2 5.59 10.69 12.45 14.05 16.44 0.0 0.0 0.0 0.0 0.9 0.0
50 0.25 3 14.84 22.25 24.77 27.05 29.67 0.0 0.0 0.0 11.0 1.3 0.0
50 0.25 4 28.54 38.32 41.39 44.00 47.87 0.0 0.0 0.0 9.5 0.0 0.0
50 0.25 5 46.88 59.34 63.71 67.41 72.40 0.0 0.0 20.2 0.0 0.0 0.0

50 0.5 1 0.63 3.04 4.32 5.51 7.12 0.0 0.0 0.0 1.7 32.0 86.1
50 0.5 2 5.68 10.80 12.61 14.57 16.67 0.0 0.0 0.0 0.0 55.7 1.0
50 0.5 3 14.90 22.65 25.30 27.81 30.53 0.0 0.0 0.0 0.0 77.3 0.0
50 0.5 4 28.65 38.60 42.01 44.83 48.69 0.0 0.0 0.0 1.1 0.0 0.0
50 0.5 5 47.23 59.86 64.00 67.88 72.04 0.0 0.0 0.0 3.4 0.0 0.0

50 1 1 0.69 3.56 4.99 6.29 7.87 0.0 0.0 0.0 0.0 39.8 0.0
50 1 2 5.94 11.31 13.02 14.82 16.87 0.0 0.0 0.0 0.0 0.0 0.3
50 1 3 15.36 22.97 25.45 27.74 30.76 0.0 0.0 0.0 0.0 0.0 82.5
50 1 4 29.09 39.47 42.84 45.97 49.45 0.0 0.0 0.0 0.0 0.0 79.7
50 1 5 47.64 60.23 64.26 67.99 72.78 0.0 0.0 0.0 0.0 0.0 0.0

100 0 1 0.61 2.88 4.02 5.20 6.72 0.0 0.0 0.0 6.2 42.9 61.7
100 0 2 5.53 10.53 12.37 14.13 16.37 0.0 0.0 0.0 1.1 21.9 1.4
100 0 3 14.66 21.97 24.54 27.25 30.10 0.0 0.0 0.0 0.9 5.8 0.0
100 0 4 27.95 37.72 41.01 43.99 47.70 0.0 0.0 0.0 4.8 2.0 0.0
100 0 5 45.64 58.05 62.14 65.75 70.38 0.0 0.0 0.0 16.9 0.0 0.0

100 0.25 1 0.60 2.91 4.00 5.21 6.75 0.0 0.0 0.0 8.7 96.5 97.1
100 0.25 2 5.58 10.73 12.61 14.31 16.42 0.0 0.0 0.0 0.0 57.5 0.0
100 0.25 3 14.75 22.20 24.75 27.32 30.22 0.0 0.0 0.0 0.0 0.8 0.0
100 0.25 4 28.05 37.75 40.94 43.63 47.46 0.0 0.0 0.0 0.0 0.0 0.0
100 0.25 5 45.64 57.81 61.75 65.05 70.25 0.0 0.0 0.0 1.1 0.0 0.0

100 0.5 1 0.60 2.99 4.21 5.51 7.28 0.0 0.0 0.0 2.0 60.0 40.9
100 0.5 2 5.67 10.89 12.71 14.34 16.69 0.0 0.0 0.0 0.0 2.5 4.7
100 0.5 3 14.63 22.25 24.88 27.25 29.99 0.0 0.0 0.0 0.0 28.8 0.0
100 0.5 4 28.14 38.03 41.38 44.13 47.31 0.0 0.0 0.0 0.0 39.3 0.0
100 0.5 5 45.83 58.01 61.88 65.67 69.51 0.0 0.0 0.0 0.0 2.4 0.0

100 1 1 0.69 3.54 4.92 6.10 8.15 0.0 0.0 0.0 0.0 95.7 0.3
100 1 2 5.96 11.48 13.55 15.44 17.82 0.0 0.0 0.0 0.0 0.0 90.8
100 1 3 15.14 23.07 25.57 27.81 30.74 0.0 0.0 0.0 0.0 0.0 1.4
100 1 4 28.64 38.58 41.76 44.55 48.60 0.0 0.0 0.0 0.0 0.0 0.5
100 1 5 46.21 58.61 62.30 65.37 70.35 0.0 0.0 0.0 0.0 0.0 31.4

200 0 1 0.62 2.96 4.22 5.41 7.13 0.0 0.0 0.0 2.6 27.0 41.3
200 0 2 5.52 10.59 12.45 14.33 16.56 0.0 0.0 0.0 0.4 42.9 4.0
200 0 3 14.51 21.77 24.32 26.78 29.78 0.0 0.0 0.0 3.2 37.7 0.0
200 0 4 27.72 37.45 40.72 43.55 46.67 0.0 0.0 0.0 0.0 16.2 0.0
200 0 5 45.03 57.24 60.87 64.13 68.97 0.0 0.0 0.0 0.0 0.0 0.0

200 0.25 1 0.61 2.96 4.15 5.45 7.20 0.0 0.0 0.0 5.3 63.3 49.1
200 0.25 2 5.56 10.50 12.34 13.92 16.04 0.0 0.0 0.0 0.0 7.3 0.1
200 0.25 3 14.51 21.92 24.72 27.10 30.40 0.0 0.0 0.0 0.0 42.2 0.2
200 0.25 4 27.72 37.25 40.33 43.25 46.83 0.0 0.0 0.0 0.0 70.6 0.0
200 0.25 5 45.08 57.17 60.83 64.31 68.61 0.0 0.0 0.0 0.1 0.2 0.0

200 0.5 1 0.60 3.16 4.32 5.45 7.13 0.0 0.0 0.0 1.1 44.4 75.3
200 0.5 2 5.66 10.80 12.67 14.47 16.84 0.0 0.0 0.0 0.0 45.7 18.5
200 0.5 3 14.56 22.22 24.78 27.19 29.96 0.0 0.0 0.0 0.0 63.7 0.0
200 0.5 4 27.93 37.54 40.50 43.59 47.25 0.0 0.0 0.0 0.0 9.5 0.0
200 0.5 5 45.07 57.34 61.31 64.58 68.58 0.0 0.0 0.0 0.0 79.7 0.0

200 1 1 0.70 3.66 5.07 6.40 8.52 0.0 0.0 0.0 0.0 48.7 0.0
200 1 2 5.88 11.37 13.38 15.43 17.58 0.0 0.0 0.0 0.0 0.0 62.6
200 1 3 15.07 22.73 25.23 27.75 31.07 0.0 0.0 0.0 0.0 0.0 0.1
200 1 4 28.33 38.21 41.64 44.21 47.71 0.0 0.0 0.0 0.0 0.0 0.1
200 1 5 45.60 57.64 61.37 65.12 69.52 0.0 0.0 0.0 0.0 0.0 0.1
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Table 3: The table reports the Monte Carlo j quantiles xj of the distribution of the

LR statistics for model Mµ under the null of p − q common stochastic trends and in the

presence of a local deterministic trend with parameter ψ. The table also reports the p-

values of the Mann-Whitney test statistics for the test of identical distributions between

the finite sample distribution of the LR statistic and its local-asymptotic approximation

under the local alternative of near-stochastic trends parameterized by φ. The number of

Monte Carlo replications is 20,000 and the sample size T .

p-values of the Mann-Whitney test statistic in %

T ψ p− q x50 x90 x95 x97.5 x99 φ = 1 φ = .75 φ = .5 φ = .25 φ = 0 φ = −0.25

50 0 1 2.25 5.81 7.25 8.52 9.92 0.0 0.0 0.0 15.0 0.0 0.0
50 0 2 8.88 14.51 16.45 18.38 20.78 0.0 0.1 30.0 0.0 0.0 0.0
50 0 3 19.42 27.29 29.89 32.34 35.59 0.0 60.0 7.3 0.0 0.0 0.0
50 0 4 34.41 44.33 47.76 50.62 54.27 1.3 79.7 11.1 0.0 0.0 0.0
50 0 5 53.91 66.45 70.37 74.07 78.80 0.0 4.2 31.8 39.3 0.0 2.8

50 0.25 1 2.22 6.04 7.40 8.62 10.47 0.0 0.0 0.0 78.7 0.0 0.0
50 0.25 2 8.85 14.71 16.69 18.42 20.82 0.0 0.0 65.7 0.0 0.0 0.0
50 0.25 3 19.47 27.32 29.61 32.11 34.40 10.9 98.9 0.8 0.0 0.0 0.0
50 0.25 4 34.28 44.50 47.78 50.79 54.55 34.6 67.3 3.3 0.0 0.0 0.0
50 0.25 5 53.84 66.31 70.52 73.90 78.85 0.2 0.0 72.1 33.4 0.6 0.5

50 0.5 1 2.14 5.78 7.08 8.37 9.89 0.0 0.0 0.0 20.0 0.0 0.0
50 0.5 2 8.78 14.49 16.57 18.32 20.40 0.0 0.0 10.0 3.5 0.0 0.0
50 0.5 3 19.46 27.42 29.94 32.34 35.68 23.1 65.2 1.2 0.0 0.0 0.0
50 0.5 4 34.24 44.49 47.84 50.81 54.18 0.9 38.1 49.5 3.2 0.0 0.0
50 0.5 5 53.83 66.34 70.49 74.16 79.22 7.5 0.2 4.7 5.7 0.1 0.0

50 1 1 1.72 5.55 6.92 8.04 9.74 0.0 0.0 0.0 6.6 0.0 0.0
50 1 2 8.51 14.05 15.89 17.63 19.71 0.0 0.0 0.0 41.5 0.0 0.0
50 1 3 19.21 26.80 29.57 31.92 34.83 73.5 35.2 50.7 1.2 0.0 0.0
50 1 4 34.13 44.45 47.57 50.91 54.66 14.2 7.9 90.2 0.1 0.0 0.0
50 1 5 53.63 66.07 69.87 73.14 78.00 12.2 92.4 0.4 50.4 44.5 1.9

100 0 1 2.37 6.31 7.74 9.06 10.66 0.0 0.0 0.0 20.0 27.4 0.0
100 0 2 9.17 15.38 17.55 19.59 22.09 0.0 0.0 0.6 53.8 0.3 0.0
100 0 3 19.88 28.16 30.80 33.33 36.65 0.0 0.1 11.4 10.8 0.0 0.0
100 0 4 34.90 45.48 48.72 51.64 55.39 0.0 0.0 43.0 1.2 0.0 0.0
100 0 5 54.09 66.83 71.05 74.71 79.13 0.0 0.0 2.1 93.1 16.4 6.7

100 0.25 1 2.38 6.15 7.60 8.84 10.71 0.0 0.0 0.0 3.4 11.7 0.0
100 0.25 2 9.19 15.29 17.38 19.32 21.70 0.0 0.0 0.1 32.6 0.2 0.4
100 0.25 3 20.00 28.19 30.96 33.55 36.70 0.0 0.9 45.5 11.9 24.1 0.0
100 0.25 4 34.96 45.26 48.45 51.10 55.28 0.0 0.9 48.1 2.0 0.9 0.3
100 0.25 5 53.93 66.71 70.77 74.50 79.22 0.0 0.0 13.1 5.0 28.1 2.0

100 0.5 1 2.22 6.05 7.61 8.98 10.83 0.0 0.0 0.0 0.0 17.5 0.0
100 0.5 2 9.12 15.19 17.35 19.39 21.61 0.0 0.0 2.8 16.4 0.0 0.0
100 0.5 3 19.83 28.05 30.48 33.10 35.94 0.0 0.0 0.0 8.2 52.9 0.0
100 0.5 4 34.82 45.04 48.19 51.13 54.76 0.0 0.0 40.5 42.9 2.5 0.0
100 0.5 5 54.03 66.60 70.34 73.75 78.64 0.0 0.1 0.8 68.7 6.2 11.3

100 1 1 1.85 5.73 7.10 8.53 10.21 0.0 0.0 0.0 0.3 2.4 0.0
100 1 2 8.83 14.85 17.09 18.99 21.26 0.0 0.0 0.0 0.0 67.9 1.9
100 1 3 19.64 27.82 30.47 33.28 36.09 0.0 0.0 0.0 3.7 5.8 0.1
100 1 4 34.72 44.73 47.90 50.95 55.34 23.9 0.8 0.6 46.4 4.7 17.9
100 1 5 53.79 66.29 70.07 73.53 77.16 59.3 0.0 0.1 34.6 52.8 70.8

200 0 1 2.48 6.45 8.00 9.50 11.24 0.0 0.0 0.0 0.2 20.8 0.1
200 0 2 9.37 15.60 17.61 19.66 22.30 0.0 0.0 0.0 1.0 3.4 0.0
200 0 3 20.22 28.70 31.48 34.02 37.30 0.0 0.0 2.9 10.0 10.3 0.3
200 0 4 35.10 45.65 49.18 52.66 56.24 0.0 0.0 2.7 27.0 7.8 0.0
200 0 5 54.35 66.92 71.01 74.57 78.53 0.0 1.7 1.1 99.3 65.7 0.1

200 0.25 1 2.38 6.44 8.15 9.66 11.45 0.0 0.0 0.0 1.2 76.6 2.6
200 0.25 2 9.15 15.40 17.63 19.90 22.38 0.0 0.0 0.0 18.2 8.0 0.4
200 0.25 3 20.18 28.65 31.62 34.20 37.44 0.0 0.0 0.2 8.4 58.0 8.8
200 0.25 4 35.09 45.46 48.85 52.08 56.03 0.0 0.0 4.6 72.8 0.8 3.7
200 0.25 5 54.22 66.96 71.00 74.58 79.26 0.0 0.0 5.3 16.1 29.2 3.2

200 0.5 1 2.29 6.35 7.93 9.40 11.23 0.0 0.0 0.0 0.2 1.4 0.0
200 0.5 2 9.15 15.45 17.74 19.55 21.78 0.0 0.0 0.0 1.5 29.3 0.2
200 0.5 3 20.13 28.51 31.11 33.39 36.59 0.0 0.0 0.0 17.4 70.2 62.6
200 0.5 4 35.05 45.42 48.71 51.58 55.65 0.0 0.0 2.4 46.5 44.6 1.3
200 0.5 5 54.07 66.74 70.73 74.41 79.18 0.0 0.0 0.2 47.3 29.3 37.5

200 1 1 1.85 5.81 7.32 8.83 10.68 0.0 0.0 0.0 0.0 59.5 0.0
200 1 2 8.89 15.06 17.25 19.36 21.90 0.0 0.0 0.0 0.0 4.0 45.5
200 1 3 19.89 28.23 31.06 33.75 37.22 0.0 0.0 0.0 0.0 5.6 17.5
200 1 4 34.80 45.44 48.90 52.18 55.93 0.0 0.0 0.0 0.2 80.3 91.5
200 1 5 53.90 66.37 70.14 73.59 77.58 63.2 0.0 0.0 6.3 87.8 98.3
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Table 4: The table reports the Monte Carlo j quantiles xj of the distribution of the

LR statistics for model M∗µ under the null of p − q common stochastic trends and in the

presence of a local deterministic trend with parameter ψ. The table also reports the p-

values of the Mann-Whitney test statistics for the test of identical distributions between

the finite sample distribution of the LR statistic and its local-asymptotic approximation

under the local alternative of near-stochastic trends parameterized by φ. The number of

Monte Carlo replications is 20,000 and the sample size T .

p-values of the Mann-Whitney test statistic in %

T ψ p− q x50 x90 x95 x97.5 x99 φ = 1 φ = .75 φ = .5 φ = .25 φ = 0 φ = −0.25

50 0 1 5.30 9.52 11.00 12.46 14.07 0.0 0.0 0.0 0.0 0.0 0.0
50 0 2 14.99 21.41 23.55 25.36 27.94 0.0 0.0 0.0 0.0 0.0 0.0
50 0 3 28.61 37.28 40.00 42.57 45.54 0.0 0.0 0.0 0.0 0.0 0.0
50 0 4 46.72 57.57 61.15 64.21 68.14 0.0 0.0 0.0 0.0 0.0 0.0
50 0 5 69.20 83.14 87.31 91.87 97.18 41.3 0.0 0.7 0.0 0.0 0.9

50 0.25 1 5.30 9.52 10.94 12.37 13.85 0.0 0.0 0.0 0.0 0.0 0.0
50 0.25 2 14.99 21.35 23.52 25.34 27.65 0.0 0.0 0.0 0.0 0.0 0.0
50 0.25 3 28.62 37.15 39.81 42.32 45.44 0.0 0.0 0.0 0.0 0.0 0.0
50 0.25 4 46.54 57.77 61.25 64.55 68.06 0.0 0.0 0.0 0.0 0.0 0.0
50 0.25 5 69.39 83.35 87.91 91.81 96.29 0.2 16.6 3.8 0.5 0.2 0.7

50 0.5 1 5.30 9.43 10.85 12.23 14.10 0.0 0.0 0.0 0.0 0.0 0.0
50 0.5 2 14.97 21.41 23.48 25.20 27.54 0.0 0.0 0.0 0.0 0.0 0.0
50 0.5 3 28.71 37.29 40.00 42.85 45.67 0.0 0.0 0.0 0.0 0.0 0.0
50 0.5 4 46.50 57.90 61.34 64.37 68.21 0.0 0.0 0.0 0.0 0.0 0.0
50 0.5 5 69.47 83.26 87.47 91.61 96.42 0.0 0.7 8.0 0.0 0.0 0.1

50 1 1 5.34 9.52 11.03 12.38 14.03 0.0 0.0 0.0 0.0 0.0 0.0
50 1 2 14.98 21.38 23.45 25.43 27.85 0.0 0.0 0.0 0.0 0.0 0.0
50 1 3 28.53 37.23 40.23 42.68 45.32 0.0 0.0 0.0 0.0 0.0 0.0
50 1 4 46.67 57.95 61.63 65.07 68.83 0.0 0.0 0.0 0.0 0.0 0.0
50 1 5 69.52 83.25 87.91 91.73 95.43 0.0 0.0 0.2 2.3 1.0 0.0

100 0 1 5.50 10.14 11.76 13.44 15.40 16.1 0.6 11.3 1.6 0.7 0.0
100 0 2 15.40 22.41 24.77 27.22 29.72 0.3 0.0 0.0 0.0 0.0 0.0
100 0 3 29.40 38.52 41.63 44.19 47.22 0.0 0.0 0.0 0.0 0.0 0.0
100 0 4 47.35 58.81 62.27 65.76 69.68 0.1 0.0 0.2 0.0 0.0 0.0
100 0 5 69.80 83.76 87.94 92.31 97.19 77.3 19.1 20.0 0.3 6.9 9.2

100 0.25 1 5.49 10.08 11.73 13.24 15.31 0.5 0.1 4.7 0.1 1.0 0.1
100 0.25 2 15.49 22.37 24.87 27.04 29.62 0.0 0.0 0.1 0.0 0.0 0.5
100 0.25 3 29.36 38.63 41.45 44.26 47.97 0.0 0.0 0.0 0.0 0.0 0.0
100 0.25 4 47.44 58.78 62.21 65.43 69.75 0.0 0.0 0.0 0.0 0.0 0.1
100 0.25 5 69.72 83.10 87.91 91.47 96.01 8.3 14.4 6.8 0.0 0.8 36.5

100 0.5 1 5.49 10.14 11.82 13.40 15.33 19.1 0.3 2.6 0.5 5.8 1.0
100 0.5 2 15.57 22.47 24.94 26.92 29.80 0.0 0.0 0.0 0.0 0.0 0.1
100 0.5 3 29.28 38.54 41.58 44.09 47.09 0.0 0.0 0.0 0.0 0.0 0.5
100 0.5 4 47.31 58.88 62.24 65.37 69.64 0.0 0.6 0.0 0.0 0.0 0.0
100 0.5 5 69.62 83.48 87.84 91.18 95.73 15.0 10.2 0.6 0.1 4.0 20.2

100 1 1 5.56 10.09 11.74 13.31 15.40 7.4 1.3 0.6 0.0 0.0 0.0
100 1 2 15.60 22.44 24.70 26.80 29.41 0.0 0.0 0.0 0.1 0.0 0.0
100 1 3 29.36 38.73 41.65 44.23 47.61 0.0 0.0 0.0 0.1 0.0 0.0
100 1 4 47.36 58.45 61.98 65.21 69.76 0.0 0.0 0.0 0.1 0.0 0.6
100 1 5 69.61 83.18 87.24 90.88 95.18 0.0 18.7 4.8 0.9 0.1 5.6

200 0 1 5.58 10.41 12.21 14.07 16.07 0.1 46.9 5.2 43.5 68.9 11.2
200 0 2 15.67 22.87 25.31 27.39 30.44 0.9 12.1 13.6 25.0 4.6 0.0
200 0 3 29.69 39.19 42.26 45.19 48.77 0.0 12.9 0.2 81.8 0.7 1.3
200 0 4 47.76 59.54 62.98 66.23 70.21 9.5 76.7 40.3 1.0 30.7 0.7
200 0 5 70.04 83.91 88.36 91.87 96.16 54.8 14.0 21.8 0.7 58.0 1.2

200 0.25 1 5.63 10.47 12.20 13.84 15.78 0.0 30.4 0.9 56.6 24.9 77.5
200 0.25 2 15.68 22.78 25.28 27.57 30.19 0.7 30.2 1.3 5.7 15.8 5.0
200 0.25 3 29.77 39.54 42.51 45.57 49.50 65.9 20.9 15.2 41.6 11.8 0.0
200 0.25 4 47.71 59.31 62.80 65.92 70.46 0.9 5.0 0.5 4.8 0.3 22.8
200 0.25 5 70.02 83.74 88.19 92.17 97.02 25.2 93.1 37.8 91.8 10.7 77.6

200 0.5 1 5.63 10.36 12.09 13.52 15.41 14.1 39.3 55.2 7.9 96.2 14.4
200 0.5 2 15.77 22.74 25.14 27.54 30.26 1.3 22.8 4.8 3.2 22.1 1.2
200 0.5 3 29.70 39.04 42.26 45.31 48.18 15.5 1.7 0.1 8.6 14.6 0.1
200 0.5 4 47.73 59.28 62.90 66.19 70.19 54.0 43.5 17.0 11.3 0.5 0.2
200 0.5 5 69.85 83.93 88.59 92.61 97.90 22.2 9.8 27.8 49.3 51.6 30.5

200 1 1 5.59 10.39 12.14 14.06 16.26 12.2 69.7 12.3 84.1 20.8 0.1
200 1 2 15.66 22.67 25.08 27.38 30.46 0.0 0.0 2.1 0.6 19.0 6.3
200 1 3 29.73 39.06 42.54 45.42 48.63 3.2 0.0 46.7 2.4 0.4 7.6
200 1 4 47.64 59.34 63.09 66.37 70.49 0.0 0.1 0.4 5.3 6.1 11.9
200 1 5 69.96 83.38 87.84 91.53 95.66 0.1 15.7 35.0 3.5 0.1 2.9
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Table 5: The table reports the Monte Carlo j quantiles xj of the distribution of the

LR statistics for model Mτ under the null of p − q common stochastic trends and in the

presence of a local deterministic trend with parameter ψ. The table also reports the p-

values of the Mann-Whitney test statistics for the test of identical distributions between

the finite sample distribution of the LR statistic and its local-asymptotic approximation

under the local alternative of near-stochastic trends parameterized by φ. The number of

Monte Carlo replications is 20,000 and the sample size T .

p-values of the Mann-Whitney test statistic in %

T ψ p− q x50 x90 x95 x97.5 x99 φ = 1 φ = .75 φ = .5 φ = .25 φ = 0 φ = −0.25

50 0 1 4.37 8.66 10.35 11.89 13.72 0.0 0.0 0.0 0.0 0.0 0.0
50 0 2 13.00 19.67 21.78 23.83 26.35 0.0 0.0 0.0 0.0 0.0 0.0
50 0 3 25.68 34.39 37.02 39.59 42.58 0.0 0.0 0.0 0.0 0.0 0.0
50 0 4 42.71 53.78 57.09 60.36 64.39 0.0 0.0 0.0 0.0 0.0 0.0
50 0 5 64.11 77.75 82.35 86.78 91.62 1.4 0.0 0.0 0.0 0.0 0.0

50 0.25 1 4.38 8.77 10.34 11.67 13.46 0.0 0.0 0.0 0.0 0.0 0.0
50 0.25 2 12.96 19.54 21.66 23.73 26.00 0.0 0.0 0.0 0.0 0.0 0.0
50 0.25 3 25.59 34.49 37.19 39.58 42.41 0.0 0.0 0.0 0.0 0.0 0.0
50 0.25 4 42.45 53.90 57.33 60.37 64.07 0.0 0.0 0.0 0.0 0.0 0.0
50 0.25 5 64.33 78.20 82.59 86.69 91.24 0.0 0.0 0.0 0.0 0.0 0.0

50 0.5 1 4.38 8.63 10.14 11.64 13.63 0.0 0.0 0.0 0.0 0.0 0.0
50 0.5 2 13.04 19.73 21.73 23.73 25.89 0.0 0.0 0.0 0.0 0.0 0.0
50 0.5 3 25.67 34.48 37.38 39.89 43.27 0.0 0.0 0.0 0.0 0.0 0.0
50 0.5 4 42.46 53.89 57.26 60.31 64.07 0.0 0.0 0.0 0.0 0.0 0.0
50 0.5 5 64.30 78.22 82.59 86.29 90.66 0.0 0.0 0.0 0.0 0.0 0.0

50 1 1 4.40 8.72 10.37 11.83 13.61 3.0 0.0 0.0 0.0 0.0 0.0
50 1 2 12.98 19.64 21.84 23.96 26.39 0.0 0.0 0.0 0.0 0.0 0.0
50 1 3 25.56 34.28 37.14 39.95 43.03 0.0 0.0 0.0 0.0 0.0 0.0
50 1 4 42.62 54.07 57.61 60.88 64.70 0.0 0.0 0.0 0.0 0.0 0.0
50 1 5 64.20 78.26 82.56 86.56 91.09 17.7 0.0 0.0 6.5 0.0 0.0

100 0 1 4.56 9.25 11.10 12.74 14.73 12.7 0.1 0.0 13.3 3.1 0.0
100 0 2 13.45 20.53 22.84 25.09 27.92 0.0 0.0 0.0 0.0 0.0 0.0
100 0 3 26.48 35.67 38.50 41.32 44.29 0.0 0.0 0.0 0.0 0.0 0.0
100 0 4 43.32 54.93 58.45 61.78 65.74 0.0 0.0 0.0 0.0 0.0 0.0
100 0 5 64.73 78.65 82.82 87.09 92.41 14.8 0.1 1.4 0.0 7.2 1.1

100 0.25 1 4.54 9.22 11.01 12.64 14.28 0.0 0.3 4.2 0.0 0.4 0.0
100 0.25 2 13.53 20.60 23.22 25.37 28.10 0.0 0.0 0.0 0.0 0.0 0.4
100 0.25 3 26.36 35.66 38.64 41.29 45.15 0.0 0.0 0.0 0.0 0.0 0.0
100 0.25 4 43.40 54.86 58.41 61.58 65.58 0.0 0.0 0.0 0.0 0.0 0.0
100 0.25 5 64.69 78.07 82.78 86.45 91.75 1.4 4.3 0.7 0.0 0.1 15.9

100 0.5 1 4.59 9.24 11.01 12.73 14.56 38.2 0.0 0.9 0.0 0.3 0.1
100 0.5 2 13.65 20.71 23.17 25.30 28.00 0.0 0.0 0.0 0.0 0.0 0.0
100 0.5 3 26.32 35.51 38.45 41.20 44.67 0.0 0.0 0.0 0.0 0.0 0.0
100 0.5 4 43.23 54.68 58.31 61.52 65.04 0.0 0.0 0.0 0.0 0.0 0.0
100 0.5 5 64.53 78.39 82.89 86.12 91.06 15.6 0.9 0.6 0.0 3.1 0.4

100 1 1 4.57 9.26 11.00 12.57 14.73 99.8 88.3 0.5 0.2 0.0 0.0
100 1 2 13.60 20.64 23.00 25.09 27.76 17.7 0.5 0.1 0.1 0.0 0.0
100 1 3 26.36 35.61 38.76 41.50 44.79 32.1 0.0 0.2 0.1 0.0 0.0
100 1 4 43.27 54.70 58.18 61.46 65.63 41.9 0.0 0.0 0.0 0.0 0.7
100 1 5 64.57 78.17 82.26 86.10 91.02 75.5 58.4 2.5 1.5 0.3 0.0

200 0 1 4.65 9.55 11.32 13.31 15.39 1.0 14.7 3.1 22.5 55.2 9.4
200 0 2 13.67 21.00 23.48 25.62 28.59 0.0 2.0 3.8 10.7 10.0 0.0
200 0 3 26.76 36.17 39.45 42.25 45.99 0.0 5.3 0.0 22.0 0.1 1.0
200 0 4 43.66 55.47 59.41 62.48 66.62 0.1 40.8 1.3 1.3 98.7 0.4
200 0 5 65.11 78.73 83.12 87.10 91.46 5.3 0.2 7.1 0.2 33.0 0.0

200 0.25 1 4.73 9.59 11.37 13.06 15.13 0.0 15.0 0.0 14.7 10.9 23.3
200 0.25 2 13.71 20.93 23.32 25.77 28.22 5.3 98.6 3.5 7.3 8.3 11.8
200 0.25 3 26.75 36.34 39.47 42.09 46.38 1.9 1.2 5.5 43.3 57.7 0.3
200 0.25 4 43.78 55.36 58.81 61.86 65.90 0.0 1.4 0.0 36.6 0.8 2.7
200 0.25 5 64.91 78.66 83.11 87.01 91.30 0.3 16.3 6.0 76.7 22.0 42.5

200 0.5 1 4.70 9.55 11.16 12.77 14.72 37.7 11.9 28.2 2.6 54.3 24.9
200 0.5 2 13.75 20.88 23.26 25.49 28.42 7.8 0.3 14.5 0.5 14.0 11.5
200 0.5 3 26.74 36.25 39.48 42.19 45.64 47.3 0.0 1.5 3.0 2.8 0.8
200 0.5 4 43.65 55.33 58.83 61.94 65.91 16.6 25.7 35.8 5.1 0.0 0.3
200 0.5 5 64.76 78.97 83.05 87.72 92.39 42.8 2.5 0.7 7.3 38.4 37.3

200 1 1 4.64 9.54 11.35 13.17 15.34 4.6 82.0 45.0 71.2 20.2 0.2
200 1 2 13.69 20.84 23.31 25.40 28.33 38.4 0.4 4.4 1.3 25.8 0.1
200 1 3 26.67 36.23 39.47 42.48 45.74 1.7 0.9 29.9 8.5 1.2 1.5
200 1 4 43.71 55.32 58.96 62.53 66.44 74.4 18.9 1.5 14.5 0.3 2.5
200 1 5 64.94 78.21 82.41 86.37 90.44 12.3 58.2 29.0 1.5 0.0 2.2
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Figure 1: Smooth kernel estimation of the densities of the finite sample distribution
of the LRτ statistic and corresponding local asymptotic approximations. The sample
size is T = 100, the deterministic component is parameterized as T−1/2 (ψ, 0, ...)′

where ψ = 0.5. (p− q) denotes the number of common stochastic trends. Local
asymptotic approximations are denoted according to the parameter of the near-
stochastic trends φ. A normal approximation using the same mean and variance as
the finite sample distribution of LRτ is also drawn. The number of observations
used in the local approximation and the number of Monte Carlo replications are
both 20,000.
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Figure 2: QQ plot of the densities of the finite sample (T = 100, ψ = .5) distributions
of LRτ and corresponding local asymptotic approximations (φ = .25). p− q denotes
the number of common stochastic trends. The number of observations used in the
local approximation and the number of Monte Carlo replications are both 20,000.
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Figure 3: Panel (a): Natural logarithm of the quarterly Gross Domestic Product (in
constant prices) of France (FR), Germany (GE), Italy (IT), the Netherlands (NL)
and Spain (SP). Panel (b): the same variables in deviation from an estimated linear
trend.
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Figure 4: p-values of the Likelihood Ratio test of at most q cointegrating relations
for models M∗µ (Panel (a)) and Mτ (Panel (b)), respectively with a deterministic
trend restricted to lie within the cointegrating space and entering unrestrictedly.
The distributions under the null are computed using the finite sample correction in
Johansen (2002a,b). The dates on the horizontal axis report the starting observation
of the sample used in the test, the end-point is held constant at 2006(4). The solid
horizontal line represents the 10% level.
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Figure 5: p-values of the Likelihood Ratio test of at most q cointegrating relations
for models M∗µ (Panel (a)) and Mτ (Panel (b)) respectively with a deterministic
trend restricted to lie within the cointegrating space and entering unrestrictedly.
The distributions are the local asymptotic simulated distribution using φ = 1/2
where we impose that ψ = 0. The dates on the horizontal axis report the starting
observation of the sample used in the test, the end-point is held constant at 2006(4).
The solid horizontal line represents the 10% level.
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Figure 6: p-values of the Likelihood Ratio test of at most q cointegrating relations for
model M∗µ with a deterministic trend restricted to lie within the cointegrating space.
The distributions under the null are the local asymptotic simulated distribution
where the linear trend coefficient is estimated via OLS. Panels (a) to (c) use values
of φ = 0, 1/2 and 1. The dates on the horizontal axis report the starting observation
of the sample used in the test, the end-point is held constant at 2006(4). The solid
horizontal line represents the 10% level.
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Figure 7: p-values of the Likelihood Ratio test of at most q cointegrating relations for
model Mτ with a deterministic trend entering the cointegrating space unrestrictedly.
The distributions under the null are the local asymptotic simulated distribution
where the linear trend coefficient is estimated via OLS. Panels (a) to (c) use values
of φ = 0, 1/2 and 1. The dates on the horizontal axis report the starting observation
of the sample used in the test, the end-point is held constant at 2006(4). The solid
horizontal line represents the 10% level.
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Figure 8: The figure reports the selected rank of cointegration under models M∗µ (left
column) and Mτ (right column) according to the LR tests at a 0.10 significance level.
The distributions considered are the Johansen (2002) finite sample approximation
(first row) and the local approximations suggested in the paper for various values

of the parameters φ and ψ. Rows corresponding to ψ̂ use the parametric bootstrap
technique described in section 5.
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