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Abstract

Risk diversification is the basis of insurance and investment. It is thus crucial to study the

effects that could limit it. One of them is the existence of systemic risk that affects all

the policies at the same time. We introduce here a probabilistic approach to examine the

consequences of its presence on the risk loading of the premium of a portfolio of insurance

policies. This approach could be easily generalized for investment risk. We see that, even

with a small probability of occurrence, systemic risk can reduce dramatically the diversifica-

tion benefits. It is clearly revealed via a non-diversifiable term that appears in the analytical

expression of the variance of our models. We propose two ways of introducing it and discuss

their advantages and limitations. By using both VaR and TVaR to compute the loading,

we see that only the latter captures the full effect of systemic risk when its probability to

occur is low.
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1 Introduction

Every financial crisis reveals the importance of systemic risk and, as a consequence, the lack

of diversification. Diversification is a way to reduce the risk by detaining many different risks,

with various probabilities of occurrence and a low probability of happening simultaneously.

Unfortunately, in times of crisis, most of the financial assets move together and become very

correlated. The 2008/09 crisis is not an exception. It has highlighted the interconnectedness

of financial markets when they all came to a stand still for more than a month waiting for

the authorities to restore confidence in the system (see e.g. the Systemic Risk Survey of the

bank of England available on line). For any financial institution, it is important to be aware of

the limits to diversification, while, for researchers in this field, studying the mechanisms that

hamper diversification is crucial for the understanding of the dynamics of the system (see e.g.

[2], [3] and references therein). Both risk management and research on risk would enhance our

capacity to survive the inevitable failures of diversification. A small fact, like turmoils in the

sub-prime in the US real-estate market, a relatively small market compared to the whole US

real-estate market, can trigger a major financial crisis that extends to all markets and all regions

in the globe. Systemic risk manifests itself by a breakdown of the diversification benefits and

the appearance of dependence structures that were not deemed important during normal times.

In this study, we introduce a simple stochastic modelling to understand and point out the

limitations to diversification and the mechanism leading to the occurrence of systemic risk. The

idea is to combine two generating stochastic processes that, through their mixture, produces

in the resulting process a non-diversifiable component, which we identify to a systemic risk.

Depending on the way of mixing these processes, the diversification benefit appears with various

strengths due to the emergence of the systemic component. The use of such a model, which

is completely specified, allows us to obtain analytical expressions for the variance, and then to

identify the non-diversifiable term. With the help of Monte Carlo simulations, we explore the

various components of the model and check that we reproduce the analytical results.

The paper is organized as follows: in a first section, we introduce, to measure the effects on

diversification, the standard insurance framework for pricing risk and define the risk measures

that are used in this study. The second section is dedicated to the mathematical presentation

of the model and its various approaches to systemic risk, as well as numerical applications. The

obtained results are compared numerically and analytically in the third section, where we also

discuss the influence of the choice of risk measure on the diversification benefits. We conclude

the study and suggest new perspectives to extend it.
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2 Insurance framework

Before moving to stochastic modelling, let us introduce the insurance framework in which we

are going to compute the risk diversification. It is an example of application, but this study on

systemic risk could easily be generalized to any financial institution.

2.1 The technical risk premium

In insurance, risk is priced based on the knowledge of the loss probability distribution. Let L

be the random variable (rv) representing a loss defined on a probability space (Ω,A, IP).

• One policy case

For any policy incurring a loss L(1), we can define, as in [4], the technical premium, P ,

that needs to be paid, as:

P = IE[L(1)] + ηK + e with (1)

η: the return expected by shareholders before tax

K: the risk capital assigned to this policy

e: the expenses incurred by the insurer to handle this case.

An insurance is a company in which we can invest. Therefore the shareholders that have

invested a certain amount of capital in the company expect a return on investment. So

the insurance firm has to make sure that the investors receive their dividends, which

corresponds to the cost of capital the insurance company must charge on its premium.

This is what we have called η.

We will assume that the expenses are a small portion of the expected loss

e = aIE[L(1)] with 0 < a << 1 ,

which transforms the premium as

P = (1 + a)IE[L(1)] + ηK (2)

We can now generalize this premium principle (2) for N similar policies (or contracts).

• Case of a portfolio of N policies

The premium for one policy in the portfolio, incurring now a total loss L(N) = N × L(1),

can then be written as

P =
(1 + a)IE[L(N)] + ηKN

N
= (1 + a) IE[L(1)] + η

KN

N
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where KN is the capital assigned to the entire portfolio.

2.2 Cost of Capital and Risk Loading

First we have to point out that the role of capital for an insurance company is to ensure that the

company can pay its liability even in the worst cases, up to some threshold. For this, we need

to define the capital we have to put behind the risk. We are going to use a risk measure, say

ρ, defined on the loss distribution. It allows to estimate the capital needed to ensure payment

of the claim up to a certain confidence level. We then define the risk-adjusted-capital K as a

function of the risk measure ρ associated to the risk1 L as

K = ρ(L)− IE[L] (3)

since the risk is defined as the deviation from the expectation.

Note that we could have also defined K as K = ρ(L)− IE[L]− P since the premiums can serve

to pay the losses. It would change the premium P defined in (1) into P̂ defined by

P̂ =
1 + a− η

1 + η
IE[L] +

η

1 + η
ρ(L)

Such an alternative definition would reduce the capital but does not change fundamentally the

results of the study.

Consider a portfolio of N similar policies, using the notation for the loss as in § 2.1. Let R

denote the risk loading per policy, defined as the cost of the risk-adjusted-capital per policy.

Using (3), R can be expressed as a function of the risk measure ρ, namely

R = η
KN

N
= η

(
ρ(L(N))

N
− IE[L(1)]

)
(4)

2.3 Risk Measures

We will consider for ρ two standard risk measures, the Value-at-Risk (VaR) and the tail Value-

at-Risk (TVaR). Let us remind the definitions of these quantities (see e.g. [7]).

The Value-at-Risk with a confidence level α is defined for a risk L by

VaRα(L) = inf{q ∈ R : IP(L > q) ≤ 1− α} = inf{q ∈ R : FL(q) ≥ α} (5)

where q is the level of loss that corresponds to a VaRα (simply the quantile of L of order α),

1We use here the word ”risk” instead of ”loss”. In fact, these two words are used for one another in an
insurance context.
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and FL the cdf of L.

The tail Value-at-Risk at a confidence level α of L satisfies

TVaRα(L) =
1

1− α

∫ 1

α
VaRu(L)du =

FL contin.
IE[L | L > V aRα(L)]

When considering a discrete rv L, it can be approximated by a sum, which may be seen as the

average over all losses larger than VaRα:

TVaRα(L) =
1

1− α

1∑
ui≥α

qui(L)∆ui (6)

where qui(L) = VaRui(L) and ∆ui ≡ ui − ui−1 corresponds to the probability mass of the

particular quantile qui .

3 Stochastic modelling

Suppose an insurance company has underwritten N policies of a given risk. To price these

policies, the company must know the underlying probability distribution of this risk, as seen in

the previous section. In this study, we assume that each policy is exposed n times to this risk.

In a portfolio of N policies, the risk may occur n × N times. So, we introduce a sequence

(Xi, i = 1, . . . , Nn) of rv’s Xi defined on (Ω,A, IP) to model the occurrence of the risk, with

a given severity l. Note that we choose a deterministic severity, but it could be extended to a

random one, with a specific distribution.

Hence the total loss amount, denoted by L, associated to this portfolio is given by

L = l SNn with SNn :=
Nn∑
i=1

Xi

3.1 A first model, under the iid assumption

We start with a simple model, considering a sequence of independent and identically distributed

(iid) rvs Xi’s. Let X denote the parent rv and assume that it is simply Bernoulli distributed,

i.e. the loss lX occurs with some probability p:

X =

{
1 with probability p

0 with probability 1− p

Recall that IE[X] = p and var(X) = p(1− p).
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Hence the total loss amount L = l SNn of the portfolio is modeled by a binomial distribution

B(Nn, p):

IP[L = k] = l

(
Nn

k

)
pk(1− p)Nn−k, for k = 0, · · · , Nn (7)

with IE[L] =

Nn∑
i=1

IE[Xi] = lNnp, and, by independence, var(L) = lNn var(X) = lnp(1− p).

We are interested in knowing the risk premium the insurance will ask to a customer if he buys

this insurance policy. So we compute the cost of capital given in (4) for an increasing number

N of policies in the portfolio, which becomes for this model:

R = η

(
ρ(L)

N
− lnp

)
(8)

since the notation L(N) in (4) has been simplified to L in this section.

Note that the relative risk per policy defined by the ratio R/IE[L(1)] is given by

R

IE[L(1)]
= η

(
ρ(L)

lnp
− 1

)
(9)

Numerical application.

We compute the quantities of interest by fixing the various parameters. We choose for instance

the number of times one policy is exposed to the risk to be n = 6. Then we take as cost of

capital η = 15%, which is a reasonable value given the fact that the shareholders will obtain a

return on investment after taxes of approximately 10%, when considering a standard tax rate

of 30%. For a discussion on the choice of the value of η, we refer to [4]. The unit loss l will

be fixed to l = 10. We choose in the rest of the study α = 99% for the threshold of the risk

measure ρ.

We present in Table 1 an example of the distribution of the loss L = lS1n for one policy (N = 1)

when taking e.g. p = 1/n = 1/6 (same probability for each of the n exposures). This would be

the typical distribution for the outcome of a particular value when throwing a dice (see [1]).

The expected total loss amount is given by IE[L] = lIE[S1n] = 10. We see that there is a 26.32%

probability (corresponding to IP[S1n > 10] = 1− IP[S1n ≤ 10]) that the company will turn out

paying more than the expectation. Thus, we cannot simply ask the expected loss as premium.

This justifies the premium principle adopted in § 2.1.

Now, we compute the cost of capital per policy given in (4) as a function of the number N of

policies in the portfolio. The results are displayed in Table 2 for both risk measures VaR and

TVaR, and when taking p = 1/6, 1/4 and 1/2, respectively. The expected total loss amount
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Table 1: The loss distribution for one policy with n = 6 and p = 1/6.

number of losses Policy Loss Probability Mass Cdf
k l X(ω) IP[S1n = k] IP[S1n ≤ k]

0 0 33.490% 33.490%
1 10 40.188% 73.678%
2 20 20.094% 93.771%
3 30 5.358% 99.130%
4 40 0.804% 99.934%
5 50 0.064% 99.998%
6 60 0.002% 100.000%

IE[L] = lIE[S1n] = nlp will change accordingly.

Note that, when considering a large number N of policies, the binomial distribution of L could

be replaced by the normal distribution N (Nnp,Nnp(1− p)) (for Nn ≥ 30 and p not close to 0,

nor 1; e.g. np > 5 and n(1−p) > 5) using the Central Limit Theorem (CLT). The VaR of order

α of L could then be deduced from the αth-quantile, qα, of the standard normal distribution

N (0, 1), as:

V aRα(L) =
√
Nnp(1− p) qα +Nnp (10)

Thus the risk loading R would become, in the case of ρ being VaR:

R = η ×
√
nlp(1− p)

N
qα

ever smaller as a function of N .

We can see in Table 2 that the risk loading drops practically by a factor 100 for a portfolio of

10’000 policies, compared with the one computed for one policy (N = 1) that represents 30%

of the loss expectation (IE[L] = 10 in this case). We notice also numerically that, if R increases

with p, the relative risk per policy R/IE[L(1)] decreases when p increases. When considering the

Gaussian approximation and the explicit VaR given in (10), the relative risk per policy when

choosing ρ =VaR, is, as a function of p, of the order 1/
√
p, giving back the numerical result.

Finally, it is worth noting that the risk loading with TVaR is always slightly higher than with

VaR for the same threshold, as TVaR goes beyond VaR in the tail of the distribution.

In this setting, a fair game is defined by having an equal probability of losing at each exposure:

p = 1/n. The biased game will be when the probability differs from 1/n, generally bigger. We

can thus define two states, one with a ”normal” or equilibrium state (p = 1/n) and a ”crisis”

state with a probability q >> p. In the next section, we will introduce this distinction.
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Table 2: The Risk loading per policy as a function of the number N of
policies in the portfolio (with n = 6).

Risk Loading R per policy
Risk measure Number N with probability

ρ of Policies p = 1/6 p = 1/4 p = 1/2

VaR
1 3.000 3.750 4.500
5 1.500 1.650 1.800

10 1.050 1.200 1.350
50 0.450 0.540 0.600

100 0.330 0.375 0.420
1’000 0.102 0.117 0.135

10’000 0.032 0.037 0.043

TVaR
1 3.226 3.945 4.500
5 1.644 1.817 1.963

10 1.164 1.330 1.482
50 0.510 0.707 0.675

100 0.372 0.425 0.476
1’000 0.116 0.134 0.154

10’000 0.037 0.042 0.049

IE[L]/N 10.00 15.00 30.00

3.2 Introducing a structure of dependence to reveal a systemic risk

We propose two examples of models introducing a structure of dependence between the risks,

in order to explore the occurrence of a systemic risk and, as a consequence, the limits to

diversification. We still consider the sequence (Xi, i = 1, . . . , Nn) to model the occurrence of

the risk, with a given severity l, for N policies, but do not assume anymore that the Xi’s are

iid.

3.2.1 A dependent model, but conditionally independent

We assume that the occurrence of the risks Xi’s depends on another phenomenon, represented

by a rv, say U . Depending on the intensity of the phenomenon, i.e. the values taken by U ,

a risk Xi has more or less chances to occur. Suppose that the dependence between the risks
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is totally captured by U . Consider, w.l.o.g., that U can take two possible values denoted by 1

and 0; U can then be modeled by a Bernoulli B(p̃), 0 < p̃ << 1. The rv U will be identified to

the occurrence of a state of systemic risk. So if p̃ could mathematically take any value between

0 and 1, but we choose it here to be very small since we want to explore rare events. We still

model the occurrence of the risks with a Bernoulli, but with a parameter depending on U . Since

U takes two possible values, the same holds for the parameters of the Bernoulli distribution of

the conditionally independent rv’s Xi | U , namely

Xi | (U = 1) ∼ B(q) and Xi | (U = 0) ∼ B(p)

We choose q >> p, so that whenever U occurs (i.e. U = 1), it has a big impact in the sense

that there is a higher chance of loss. We include this effect in order to have a systemic risk

(non-diversifiable) in our portfolio.

Looking at the total amount of losses SNn, its distribution can then be written, for k ∈ IN, as

IP(SNn = k) = IP[(SNn = k) | (U = 1)]IP(U = 1) + IP[(SNn = k) | (U = 0)]IP(U = 0)

= p̃ IP[(SNn = k) | (U = 1)] + (1− p̃) IP[(SNn = k) | (U = 0)]

The conditional and independent variables, S̃q := SNn| (U = 1) and S̃p := SNn| (U = 0), are

distributed as Binomials B(Nn, q) and B(Nn, p), with mass probability distributions denoted

by fS̃q
and fS̃p

respectively. The mass probability distribution fS of SNn appears as a mixture

of fS̃q
and fS̃p

(see e.g. [6]):

fS = p̃ fS̃q
+ (1− p̃) fS̃p

with S̃q ∼ B(Nn, q) and S̃p ∼ B(Nn, p) (11)

Note that p̃ = 0 gives back the normal state, developed in § 3.1.

The expected loss amount for the portfolio, denoting L = L(N), is given by

IE[L] = l × IE[SNn] = l ×
(
p̃ IE[S̃q] + (1− p̃) IE[S̃p]

)
= Nnl

(
p̃ q + (1− p̃) p

)
whereas for each policy, it is

l

N
IE[L] = l n

(
p̃ q + (1− p̃) p

)
(12)

from which we deduce the risk loading defined in (3) and (4).

Let us evaluate the variance var(SNn) of SNn. Straightforward computations (see [1]) give

IE[S2
Nn] = Nn

[
p̃ q
(
1− q +Nnq

)
+ (1− p̃) p

(
1− p+Nnp

)]
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which, combined with (12), provides

var(SNn) = Nn
[
q(1− q)p̃+ p(1− p)(1− p̃) +Nn(q − p)2p̃(1− p̃)

]
from which we deduce the variance for the loss of one contract as 1

N2 var(L) = l2

N2 var(SNn),

i.e.
1

N2
var(L) =

l2n

N

(
q(1− q)p̃+ p(1− p)(1− p̃)

)
+ l2n2(q − p)2p̃(1− p̃) (13)

Notice that in the variance for one contract, the first term will decrease as the number of

contracts increases, but not the second one. It does not depend on N and thus represents the

non-diversifiable part of the risk.

Table 3: For Model (11), the Risk loading per policy as a function of the probability of occurrence of a
systemic risk in the portfolio using VaR and TVaR measures with α = 99%. The probability of giving a loss
in a state of systemic risk is chosen to be q = 50%.

Risk measure Number N Risk Loading R
ρ of Policies in a normal state with occurrence of a crisis state

p̃ = 0 p̃ = 0.1% p̃ = 1.0% p̃ = 5.0% p̃ = 10.0%

VaR
1 3.000 2.997 4.469 4.346 5.693
5 1.500 1.497 2.070 3.450 3.900

10 1.050 1.047 1.770 3.300 3.450
50 0.450 0.477 1.410 3.060 3.030

100 0.330 0.327 1.605 3.000 2.940
1’000 0.102 0.101 2.549 2.900 2.775

10’000 0.032 0.029 2.837 2.866 2.724

TVaR
1 3.226 3.232 4.711 4.755 5.899
5 1.644 1.707 2.956 3.823 4.146

10 1.164 1.266 2.973 3.578 3.665
50 0.510 0.760 2.970 3.196 3.141

100 0.372 0.596 2.970 3.098 3.020
1’000 0.116 0.396 2.970 2.931 2.802

10’000 0.037 0.323 2.970 2.876 2.732

IE[L]/N 10.00 10.02 10.20 11.00 12.00

Numerical application.

For this application, we keep the same parameters n = 6 and p = 1/n as in § 3.1 , and we

choose the loss probability during the crisis to be q = 1/2. We explore different probabilities

p̃ of occurrence of a crisis. The calculation consists in mixing the two Binomial distributions,

according to (11), for an increasing number of policies N . Results for the two choices of risk
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measures are shown in Table 3.

In Table 3, we see well the effect of the non-diversifiable risk. As expected, when the probability

of occurrence of a crisis is high, the diversification does not play a significant role anymore

already with 100 contracts in the portfolio. The interesting point is that for p̃ ≥ 1%, the risk

loading barely changes when there is a large number of policies (starting at N = 1000) in the

portfolio. This is true for both VaR and TVaR. The non-diversifiable term dominates the risk.

When looking at a lower probability p̃ of occurrence of a crisis, we notice that the choice of the

risk measure matters. For instance, when choosing p̃ = 0.1%, the risk loading, compared to

the normal state, is multiplied by 10 in the case of TVaR, for N = 10′000 policies, and hardly

moves in the case of VaR! This effect remains, but to a lower extend, when diminishing the

number of policies. It is clear that the VaR measure does not capture well the crisis state, while

TVaR is sensitive to the change of state, even with such a small probability and a high number

of policies.

3.2.2 A more realistic setting to introduce a systemic risk

We adapt further the previous setting to a more realistic description of a crisis. At each of

the n exposures to the risk, in a state of systemic risk, the entire portfolio will be touched by

the same increased probability of loss, whereas, in a normal state, the entire portfolio will be

subject to the same equilibrium probability of loss.

For this modeling, it is more convenient to rewrite the sequence (Xi, i = 1, . . . , Nn) with

a vectorial notation, namely (Xj , j = 1, . . . , n) where the vector Xj is defined by Xj =

(X1j , . . . , XNj)
T . Hence the total loss amount SNn can be rewritten as

SNn =
n∑
j=1

S̃(j) where S̃(j) is the sum of the components of Xj : S̃(j) =
N∑
i=1

Xij

We keep the same notation for the Bernoulli rv U determining the state and for its parameter

p̃. But now, instead of defining a normal (U = 0) or a crisis (U = 1) state on each element of

(Xi, i = 1, . . . , Nn), we do it on each vector Xj , 1 ≤ j ≤ n. It comes back to define a sequence

of iid rv’s (Uj , j = 1, . . . , n) with parent rv U . Hence we deduce that S̃(j) follows a Binomial

distribution whose probability depends on Uj :

S̃(j) | (Uj = 1) ∼ B(N, q) and S̃(j) | (Uj = 0) ∼ B(N, p)

Note that these conditional rv’s are independent.

11



Let us introduce the event Al defined, for l = 0, . . . , n, as

Al := {l vectors Xj are exposed to a crisis state and n−l to a normal state} =
( n∑
j=1

Uj = l
)

whose probability is given by IP(Al) = IP
( n∑
j=1

Uj = l
)

=

(
n

l

)
p̃l (1− p̃)n−l.

We can then write that

IP(SNn = k) =
n∑
l=0

IP(SNn = k | Al)IP(Al) =
n∑
l=0

(
n

l

)
p̃l (1− p̃)n−l IP

[
S̃(l)
q + S̃(n−l)

p = k
]

(14)

with, by conditional independence,

S̃(l)
q =

l∑
j=1

(
S̃(j) | Uj =1

)
∼ B(Nl, q) and S̃(n−l)

p =

n−l∑
j=1

(
S̃(j) | Uj =0

)
∼ B(N(n− l), p) (15)

Expectation and variance are obtained by straightforward computations (see [1]). We have

IE[SNn] = Nn
((
q − p

)
p̃+ p

)
(16)

and, for one contract,

1

N
IE[L] =

l

N
IE[SNn] = nl (p̃ q + (1− p̃) p)

which is equal to the expectation (12) obtained with the previous method. The variance can

be deduced from (16) and

IE[S2
Nn] = Nn

(
q(1− q)p̃+ p(1− p)(1− p̃)

)
+ N2n2

(
p(1− p̃) + qp̃

)2
+N2n(q − p)2p̃(1− p̃)

hence

var(SNn) = Nn
[
q(1− q)p̃+ p(1− p)(1− p̃) +N(q − p)2p̃(1− p̃)

]
which is different from the variance var(SNn) obtained with the previous model in § 3.2.1.

Now for one contract we obtain:

1

N2
var(L) =

l2

N2
var(SNn) =

l2n

N

(
q(1− q)p̃+ p(1− p)(1− p̃)

)
+ l2n (q − p)2p̃(1− p̃) (17)

Notice that the last term appearing in (17) is only multiplied by n and not n2 as in (13), and

not diversifiable by the number N of policies. It looks alike the one of (13), however its effect

is smaller than in the previous model. With this method we have also achieved to produce a

process with a non-diversifiable risk.
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Numerical application.

Let us revisit our numerical example. In this case, we cannot, contrary to the previous cases,

directly use an explicit expression for the distributions. We have to go through Monte-Carlo

simulations. At each of the n exposures to the risk, we first have to choose between a normal or

a crisis state. Since, we take here n = 6, the chances of choosing a crisis state when p̃ = 0.1%

is very small. To get enough of the crisis states, we need to do enough simulations, and then

average over all the simulations. The results shown in Table 4 are obtained with 10 million

simulations. We ran it also with 1 and 20 million simulations to check the convergence. It

converges well as can be seen in Table 5.

Table 4: For Model (14), the Risk loading per policy as a function of the probability of occurrence of a
systemic risk in the portfolio using VaR and TVaR measures with α = 99%. The probability of giving a loss
in a state of systemic risk is chosen to be q = 50%.

Risk measure Number N Risk Loading R
ρ of Policies in a normal state with occurrence of a crisis state

p̃ = 0 p̃ = 0.1% p̃ = 1.0% p̃ = 5.0% p̃ = 10.0%

VaR
1 3.000 2.997 2.969 4.350 4.200
5 1.500 1.497 1.470 1.650 1.800

10 1.050 1.047 1.170 1.350 1.500
50 0.450 0.477 0.690 0.990 1.200

100 0.330 0.357 0.615 0.945 1.170
1’000 0.102 0.112 0.517 0.882 1.186

10’000 0.032 0.033 0.485 0.860 1.196
100’000 0.010 0.008 0.475 0.853 1.199

TVaR
1 3.226 3.232 4.485 4.515 4.448
5 1.644 1.792 1.870 2.056 2.226

10 1.164 1.252 1.342 1.604 1.804
50 0.510 0.588 0.824 1.183 1.408

100 0.375 0.473 0.740 1.118 1.358
1’000 0.116 0.348 0.605 1.013 1.295

10’000 0.037 0.313 0.563 0.981 1.276
100’000 0.012 0.301 0.550 0.970 1.269

IE[L]/N 10.00 10.02 10.20 11.00 12.00

The results shown in Table 4 follow what we expect. The diversification due to the total number

of policies is more effective for this model than for the previous one, but we still experience a

part which is not diversifiable. We have also computed the case with 100’000 policies since we

used Monte Carlo simulations. It is interesting to note that, as expected, the risk loading in

the normal state continues to decrease. In this state, it decreases by
√

10. However, except for
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p̃ = 0.1% in the VaR case, the decrease becomes very slow when we allow for a crisis state to

occur. The behavior of this model is more complex than the previous one, but more realistic,

and we reach also the non-diversifiable part of the risk. For a high probability of occurrence of

a crisis (1 every 10 years), the limit with VaR is reached already at 100 policies, while, with

TVaR, it continues to slowly decrease.

Concerning the choice of risk measure, we see a similar behavior as in Table 3 for the case

N = 10′000 and p̃ = 0.1%: VaR is unable to catch the possible occurrence of a crisis state,

which shows its limitation as a risk measure. Although we know that there is a part of the

risk that is non-diversifiable, VaR does not catch it really when N = 10′000 or 100′000 while

TVaR does not decrease significantly between 10′000 and 100′000 reflecting the fact that the

risk cannot be completely diversified away.

Finally, to explore the convergence of the simulations, we present in Table 5 the results obtained

for N = 100 and for various number of simulations.

Table 5: Testing the numerical convergence: the Risk loading as a function of the number of Monte Carlo
simulations, for N = 100, Model (14), and the same parameters as in Table 4.

Risk measure Number N Risk Loading R
ρ of Policies in a normal state with occurrence of a crisis state

p̃ = 0 p̃ = 0.1% p̃ = 1.0% p̃ = 5.0% p̃ = 10.0%

VaR
1 million 0.330 0.357 0.615 0.945 1.170

10 million 0.330 0.357 0.615 0.945 1.155
20 million 0.330 0.357 0.615 0.945 1.170

TVaR
1 million 0.375 0.476 0.738 1.115 1.358

10 million 0.374 0.472 0.739 1.117 1.357
20 million 0.375 0.473 0.740 1.118 1.358

IE[L]/N 10.00 10.02 10.20 11.00 12.00

It appears that, already for this number of policies (N = 100), the number of simulations has

no influence. Obviously, with a lower number of policies, the number of simulations plays a

more important role as one would expect, while for a higher number of policies, it is insensitive

to the number of simulations above 1 million.
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4 Comparison and discussion

Let us start with the following table, presenting a summary of the expectation and the variance

of the total loss amount per policy, obtained for each model.

Table 6: Summary of the analytical results (expectation and variance per policy) for the 3 models with cdf
defined by (7), (11) and (14), respectively.

Model Expectation
1

N
IE[L] Variance

1

N2
var(L)

(7) ln p
l2n

N
p(1− p)

(11) ln
(
p̃ q + (1− p̃) p

) l2n

N

(
q(1− q)p̃+ p(1− p)(1− p̃)

)
+ l2n2(q− p)2p̃(1− p̃)

(14) ln
(
p̃ q + (1− p̃) p

) l2n

N

(
q(1− q)p̃+ p(1− p)(1− p̃)

)
+ l2n (q− p)2p̃(1− p̃)

For the first model (7), we see that the variance decreases with increasing N , while for both

other models (11) and (14) , the variance contains a term that does not depend on N , which

corresponds to the presence of a systemic risk, and is not diversifiable. Note that the vari-

ance for Model (11) contains a non-diversifiable part that corresponds to n times the non-

diversifiable part of the variance for Model (14). This is consistent with the numerical results

in Tables 3 and 4; indeed the smaller the non-diversifiable part, the longer the decrease of the

risk loading R (i.e. effect of diversification) with increase of number of policies. The latter

model is the most interesting because it shows both the effect of diversification and the effect

of the non-diversifiable term in a more realistic way. It assumes the occurrence of states that

are dangerous to the whole portfolio, which is characteristic of a state of crisis in the financial

markets. Thus it is more suitable to explore other properties and the limits of diversification in

times of crisis.

Concerning the choice of risk measure, we have already noticed that there was an issue when

evaluating the VaR with small p̃. There are other less obvious stability problems, as for instance

the VaR in Model with cdf (11) for p̃ = 1%. It starts to decrease with N increasing, then

raises again for large N , while the TVaR decreases with N increasing, then stabilizes to a

value whenever N ≥ 50. For p̃ = 0.1%, in both models with cdf (11) and (14) respectively,

VaR is very close to the case (7) without systemic risk, while TVaR starts to be significantly

impacted already with 50 policies, indicating that the systemic risk appears mostly beyond the

99% threshold. Even if there is a part of the risk that is non-diversifiable, VaR, under certain

circumstances, might not catch it (see [5], Proposition 3.3).
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5 Conclusion

In this study, we have shown the effect of diversification on the pricing of insurance risk through

a first simple modeling. Then, for understanding and analyzing possible limitations to diversifi-

cation benefits, we propose two alternative stochastic models, introducing dependence between

risks by assuming the existence of an underlying systemic risk. These models, defined with

mixing distributions, allow for a straightforward analytical evaluation of the impact of the non-

diversifiable part, which appears in the close form expression of the variance. We have adopted

here purposely a probabilistic approach for modelling the dependence and the existence of sys-

temic risk. It could be easily generalized to a time series interpretation by assigning a time-step

to each exposure n. In the last model, the occurrence of the rv U = 1 could then be identified

to the time of crisis.

In real life, insurers have to pay special attention to the effects that can weaken the diversification

benefits. For instance, in the case of motor insurance, the appearance of a hail storm will

introduce a ”bias” in the usual risk of accident due to a cause independent of the car drivers,

which will hit a big number of cars at the same time and thus cannot be diversified among

the various policies. There are other examples in life insurance for instance with pandemic or

mortality trend that would affect the entire portfolio and cannot be diversified away. Special

care must be given to those risks as they will affect greatly the risk loading of the premium as

can be seen in our examples. These examples might also find applications for real cases. This

approach can be generalized to investments and banking; both are subject to systemic risk,

although of different nature than in the above insurance examples.

The last model we suggested, introducing the occurrence of crisis, may find an interesting

application for investment and the change in risk appetite of investors. It will be the subject

of a following paper. Moreover, the models we introduce here allow to point out explicitly to

the impact of dependence; they are simple enough to compute analytic expression and analyze

the impact of the emergence of systemic risks. Yet, they are formulated in such a way that

extensions to more sophisticated models, are easy and clear. In particular, it makes possible to

obtain an extension to non identically distributed rv’s, or when considering random severity.

Another interesting perspective would be to consider econometric models with multiple states.
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