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Abstract

Expected Shortfall (ES) has been widely accepted as a risk measure that is conceptually
superior to Value-at-Risk (VaR). At the same time, however, it has been criticised for
issues relating to backtesting. In particular, ES has been found not to be elicitable which
means that backtesting for ES is less straight-forward than, e.g., backtesting for VaR.
Expectiles have been suggested as potentially better alternatives to both ES and VaR.
In this paper, we revisit commonly accepted desirable properties of risk measures like
coherence, comonotonic additivity, robustness and elicitability. We check VaR, ES and
Expectiles with regard to whether or not they enjoy these properties, with particular em-
phasis on Expectiles. We also consider their impact on capital allocation, an important
issue in risk management. We find that, despite the caveats that apply to the estimation
and backtesting of ES, it can be considered a good risk measure. In particular, there is
no sufficient evidence to justify an all-inclusive replacement of ES by Expectiles in appli-
cations, especially as we provide an alternative way for backtesting of ES.
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1 Introduction

Risk Management is a core competence of financial institutions like banks, insurance compa-
nies, investment funds and others. Techniques for the measurement of risk are clearly central
for the process of managing risk. Risk can be measured in terms of probability distributions.
However, it is sometimes useful to express risk with one number that can be interpreted as
a capital amount. Tools that map loss distributions or random variables to capital amounts
are called risk measures. The following questions are of crucial importance for financial insti-
tutions:

• What properties should we expect from a risk measure?

• What is a ‘good’ risk measure?

• Does there exist a ‘best’ risk measure?

Much research in economics, finance, and mathematics has been devoted to answer those
questions. Cramér (1930) was one of the earliest researchers on risk capital, introducing ruin
theory ([14]). A major contribution was made by Markowitz (1952, [39]) with modern portfolio
theory. The variance of the Profit and Loss (P&L) distribution became then the dominating
risk measure in finance. But using this risk measure has two important drawbacks. It requires
that the risks are random variables with finite variance. It also implicitly assumes that their
distributions are approximately symmetric around the mean since the variance does not
distinguish between positive and negative deviations from the mean. Since then, many risk
measures have been proposed, of which Value-at-Risk (VaR) and Expected Shortfall (ES)
seem to be the most popular.

In the seminal work by Artzner et al. in 1999 ([2]) desirable properties of risk measures have
been formalized in a set of axioms. Because Expected Shortfall has the important property
of coherence, it has replaced VaR, which does not satisfy this property in all cases, in many
institutions for risk management and, in particular, for capital allocation ([46]). The Basel
Committee on Banking Supervision also recommends replacing VaR by ES in internal market
risk models [3]. Recently, a study by Gneiting ([28]) has pointed out that there is an issue
with direct backtesting of Expected Shortfall estimates because Expected Shortfall is not
elicitable. Therefore, with a view on the feasibility of backtesting, in recent studies ([4, 48])
Expectiles have been suggested as coherent and elicitable alternatives to Expected Shortfall.
See also [10] for a detailed discussion of the issue.

In this paper, we discuss and compare the properties of some popular risk measures based on
the loss distribution in order to provide answers to the questions raised above and to study
their impact in terms of risk management.

We consider a portfolio of m risky positions, where Li, i ∈ {1, . . . ,m}, represents the loss in
the i-th position. Then, in the generic one-period loss model, the portfolio-wide loss is given by
L =

∑m
i=1 Li. In this model losses are positive numbers, whereas gains are negative numbers.

We assume that the portfolio loss variable L is defined on a probability space (Ω,F , P ).

The paper is organized as follows: After the introductory section 1, Section 2 recalls the
main definitions and properties of what is expected from a risk measure, like coherence,
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comonotonic additivity, law invariance, elicitability and robustness, before presenting the
three downside risk measures that we want to evaluate in this study. In Section 3, we compare
these risk measures with respect to their properties, starting with an overview. After summing
up the most important results about subadditivity of Value-at-Risk, we look at different
concepts of robustness, discuss the elicitability of Expected Shortfall and Expectiles, and
prove that Expectiles are not comonotonically additive. Section 4 deals with capital allocation
and diversification benefits, important areas of application for risk measures and for risk
management. We recall the definition of risk contributions of risky positions to portfolio-wide
risk and show how to compute risk contributions for Expectiles. Furthermore, we introduce
the concept of diversification index for the quantification and comparison of the diversification
of portfolios. We then present in Section 5 methods for backtesting in general and look in
more detail at Expected Shortfall. The paper ends in Section 6 with a discussion of the
advantages and disadvantages of the different risk measures and a recommendation for the
choice of a risk measure in practice.

2 Risk measures: definition and basic properties

Risk and risk measure are terms that have no unique definition and usage. It would be natural
to measure risk in terms of probability distributions. But often it is useful to express risk
with one number. Mappings from spaces of probability distributions or random variables into
the real numbers are called risk measures. In this paper, a risk measure is understood as
providing a risk assessment in form of a capital amount that serves as some kind of buffer
against unexpected future losses1.

2.1 Coherence and related properties

Artzner et al. [2] demonstrate that, given some “reference instrument”, there is a natural way
to define a measure of risk by describing how close or far a position is from acceptance by
the regulator. In the context of Artzner et al. the set of all risks is the set of all real-valued
functions on a probability space Ω, which is assumed to be finite. Artzner et al. define “the
measure of risk of an unacceptable position once a reference, prudent, investment has been
specified as the minimum extra capital . . . which, invested in the reference instrument, makes
the future value of the modified position become acceptable.” Artzner et al. call the investor’s
future net worth ‘risk’. Moreover, they state four axioms which any risk measure used for
effective risk regulation and management should satisfy. Such risk measures are then said to
be coherent. Coherence bundles certain mathematical properties that are possible criteria for
the choice of a risk measure.

Definition 2.1 A risk measure ρ is called coherent if it satisfies the following conditions:

• Homogeneity: ρ is homogeneous if for all loss variables L and h ≥ 0 it holds that

ρ(hL) = h ρ(L). (2.1)

1See [40] for alternative interpretations of risk measures.
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• Subadditivity: ρ is subadditive if for all loss variables L1 and L2 it holds that

ρ(L1 + L2) ≤ ρ(L1) + ρ(L2). (2.2)

• Monotonicity: ρ is monotonic if for all loss variables L1 and L2 it holds that

L1 ≤ L2 ⇒ ρ(L1) ≤ ρ(L2). (2.3)

• Translation invariance: ρ is translation invariant if for all loss variables L and a ∈ R

it holds that
ρ(L− a) = ρ(L)− a. (2.4)

Comonotonic additivity is another property of risk measures that is mainly of interest as a
complementary property to subadditivity.

Definition 2.2 Two real-valued random variables L1 and L2 are said comonotonic if there
exist a real-valued random variable X (the common risk factor) and non-descreasing functions
f1 and f2 such that

L1 = f1(X) and L2 = f2(X). (2.5a)

A risk measure ρ is comonotonically additive if for any comonotonic random variables
L1 and L2 it holds that

ρ(L1 + L2) = ρ(L1) + ρ(L2). (2.5b)

Comonotonicity may be considered the strongest possible dependence of random variables
([24]). Hence, if a risk measure is both subadditive and comonotonically additive, then on
the one hand it rewards diversification (via subadditivity) but on the other hand does not
attribute any diversification benefits to comonotonic risks (via comonotonic additivity) –
which appears quite intuitive. Risk measures that depend only on the distributions of the
losses are of special interest because their values can be estimated from loss observations only
(i.e. no additional information like stress scenarios is needed).

Definition 2.3 A risk measure ρ is law-invariant if

P (L1 ≤ ℓ) = P (L2 ≤ ℓ), ℓ ∈ R ⇒ ρ(L1) = ρ(L2). (2.6)

2.2 Elicitability

An interesting criterion when estimating and backtesting a risk measure is elicitability ([28]).
For the definition of elicitability we first introduce the concept of strictly consistent scoring
functions.

Definition 2.4 A scoring function is a function

s : R× R → [0,∞),

(x, y) → s(x, y)

where x and y are the point forecasts and observations respectively.
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Example 2.1 The following examples of score functions are of interest for this paper:

s(x, y) = (x− y)2, squared error

s(x, y) =

{
τ (x− y)2, x < y

(1− τ) (y − x)2, x ≥ y
, 0 < τ < 1 fixed, weighted squared error

s(x, y) = |x− y|, absolute error

s(x, y) =

{
α (x− y), x < y

(1− α) (y − x), x ≥ y
, 0 < α < 1 fixed, weighted absolute error

Definition 2.5 Let ν be a functional on a class of probability measures P on R:

ν : P → 2R, P 7→ ν(P ) ⊂ R,

where 2R denotes the power set of R. A scoring function s : R × R → [0,∞) is consistent
for the functional ν relative to the class P if and only if, for all P ∈ P, t ∈ ν(P ) and x ∈ R,

EP [s(t, L)] ≤ EP [s(x, L)] .

The function s is strictly consistent if it is consistent and

EP [s(t, L)] = EP [s(x, L)] . ⇒ x ∈ ν(P )

Definition 2.6 The functional ν is elicitable relative to P if and only if there is a scoring
function S which is strictly consistent for ν relative to P.

Elicitability is a helpful criterion for the determination of optimal forecasts: the class of
(strictly) consistent scoring functions for a functional is identical to the class of functions
under which (only) the functional is an optimal point forecast. Hence, if we have found a
strictly consistent scoring function for a functional ν, we can determine the optimal forecast
x̂ for ν(P ) by

x̂ = argmin
x

EP [s(x, L)]

Hence elicitability of a functional of probability distributions may be interpreted as the prop-
erty that the functional can be estimated by generalised regression. So far we have only
distinguished between elicitable and non-elicitable functionals. However, it turns out that
some useful risk measures are not elicitable but almost elicitable in the following sense.

Definition 2.7 (Conditional elicitability) A functional ν of P is called condition-
ally elicitable if there exist functionals γ̃ and γ such that

ν(P ) = γ(P, γ̃(P )),

where γ̃ is elicitable relative to P and γ is such that γc defined by

γc : P → 2R, P 7→ γ(P, c) ⊂ R

is elicitable relative to P for all c ∈ R.
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2.3 Robustness

Another important issue when estimating risk measures is robustness. Without robustness,
results are not meaningful, since then small measurement errors in the loss distribution can
have a huge impact on the estimate of the risk measure. This is why we investigate robustness
in terms of continuity. Since most of the relevant risk measures are not continuous with
respect to the weak topology, we need a stronger notion of convergence. Therefore, and due
to some scaling properties which are convenient in risk management, one usually considers
the Wasserstein distance when investigating the robustness of risk measures.

Recall that the Wasserstein distance between two probability measures P and Q is defined
as

dW (P,Q) = inf{E[|X − Y |] : X ∼ P, Y ∼ Q} (2.7)

When we call a risk measure robust with respect to the Wasserstein distance, we mean
continuity with respect to the Wasserstein distance in the following sense:

Definition 2.8 ([4]) Let Pn, n ≥ 1, and P be probability measures, and Xn ∼ Pn, n ≥ 1
and P ∼ X. A risk measure ρ is called continuous at X with respect to the Wasserstein
distance if

lim
n→∞

dW (Xn, X) = 0 ⇒ lim
n→∞

|ρ(Xn −X)| = 0.

Cont et al. ([13]) use a slightly different, potentially more intuitive concept of robustness which
takes the estimation procedure into account. They investigate robustness as the sensitivity of
the risk measure estimate to the addition of a new data point to the data set which is used
as basis for estimation. It turns out that for the same risk measure the estimation method
can have a significant impact on the sensitivity. For instance, the risk measure estimate can
react in a completely different way on an additional data point if we fit a parametric model
instead of using the empirical loss distribution.

Cont et al. also show that there is a conflict between the subadditivity and robustness of a
risk measure. In contrast to robustness based on continuity with respect to weak topology
or Wasserstein distance, the concept of Cont et al. allows to distinguish between different
degrees of robustness. However, this concept makes it hard to decide whether or not a risk
measure is still reasonably risk sensitive or no longer robust with respect to data outliers
in the estimation sample. That is why for the purpose of this paper we adopt a notion of
robustness based on the Wasserstein distance.

2.4 Popular risk measures

Variance and standard deviation were historically the dominating risk measures in finance.
However, in the past 20 years or so, they have often been replaced in practical applications
by VaR, which is currently the most popular downside risk measure.

Definition 2.9 The Value-at-Risk (VaR) at level α ∈ (0, 1) of a loss variable L is defined
as the α-quantile of the loss distribution:

VaRα(L) = qα(L) = inf{ℓ : P (L ≤ ℓ) ≥ α}. (2.8)
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VaR is sometimes criticized for a number of different reasons. Most important are its lack of
the subadditivity property and the fact that it completely ignores the severity of losses in the
far tail of the loss distribution. The coherent risk measure Expected Shortfall was introduced
to solve these issues.

Definition 2.10 ([1]) The Expected Shortfall (ES) at level α ∈ (0, 1) (also called Tail
Value-at-Risk or Superquantile) of a loss variable L is defined as

ESα(L) =
1

1− α

∫ 1

α

qu(L)du

= E[L|L ≥ qα(L)] + (E[L|L ≥ qα(L)]− qα(L))

(
P[L ≥ qα(L)]

1− α
− 1

)
.

(2.9)

If P[L = qα(L)] = 0 (in particular, if L is continuous), ESα(L) = E[L|L ≥ qα(L)].

ES has been shown not to be elicitable ([28]). That is why Expectiles have been suggested as
coherent and elicitable alternatives ([4, 48]).

Definition 2.11 For 0 < τ < 1 and square-integrable L, the τ-Expectile eτ (L) is defined
as

eτ (L) = argmin
ℓ∈R

E[τ max(L− ℓ, 0)2 + (1− τ)max(ℓ− L, 0)2] (2.10)

Note that, as for the variance, the notion of Expectile requires finite second moments.

3 Properties of the standard risk measures

Although considering different risk measures would give a more complete picture of the risk-
iness of a portfolio, in practice one often has to choose one figure, which should be reported
as a basis for strategic decisions. To help for this choice, let us start by giving an overview
over the considered risk measures and their properties (see Table 1), before coming back to
them with more details.

3.1 Coherence

The subadditivity property fails to hold for VaR in general, so VaR is not a coherent measure.
The lack of subadditivity contradicts the notion that there should be a diversification benefit
associated with merging portfolios. As a consequence, a decentralization of risk management
using VaR is difficult since we cannot be sure that by aggregating VaR numbers for different
portfolios or business units we will obtain a bound for the overall risk of the enterprise.
Moreover, VaR at level α gives no information about the severity of tail losses which occur
with a probability less than 1− α, in contrast to ES at the same confidence level.

2According to [43] it can be shown that VaR at level α is robust with respect to the weak topology at F0

if F−1

0
is continuous at α.
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Table 1: Properties of standard risk measures

Property variance VaR ES eτ (for τ ≥ 1/2)

Coherence x x

Comonotonic additivity x x

Robustness x2

w.r.t. weak topology

Robustness x x x x
w.r.t. Wasserstein distance

Elicitability x x

Conditional x x x x
Elicitability

When looking at aggregated risks
∑n

i=1 Li, it is well known ([1]) that the risk measure ES is
coherent. In particular it is subadditive, i.e.

ESα

( n∑

i=1

Li

)
≤

n∑

i=1

ESα(Li).

In contrast, VaR is not subadditive in general. Indeed, examples (see e.g. [23]) can be given
where it is superadditive, i.e.

V aRα

( n∑

i=1

Li

)
>

n∑

i=1

V aRα(Li).

Whether or not VaR is subadditive depends on the properties of the joint loss distribution.
We will not provide an exhaustive review of results on conditions for the subadditivity of
VaR, but present only three of these results in the remainder of this section, namely three
standard cases:

(i) The random variables are independent and identically distributed (iid) as well as posi-
tively regularly varying.

(ii) The random variables have an elliptical distribution.

(iii) The random variables have an Archimedean survival dependence structure.

For further related results, see e.g. [15], [23], [24], [25] or [26].

Ad (i). The following result presents a condition on the tail behavior of iid random variables
for Value-at-Risk to satisfy asymptotic subadditivity.

Proposition 3.1 ([23]) Consider independent and identically distributed random variables
Xi, i = 1, . . . , n with parent random variable X and cumulative distribution function FX .
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Assume they are regularly varying with tail index β > 0, which means that the right tail
1− FX of their distribution satisfies

lim
x→∞

1− FX(ax)

1− FX(x)
= a−β , for all a > 0

Then the risk measure VaR is asymptotically subadditive for X1, . . . , Xn if and only if β ≥ 1:

lim
αր1

V aRα

(∑n
i=1Xi

)
∑n

i=1 V aRα(Xi)
≤ 1 ⇔ β ≥ 1.

Ad (ii). Another important class of distributions which implies the subadditivity of VaR is
the class of elliptical distributions.

Proposition 3.2 ([24]) Let X = (X1, . . . , Xn) be a random vector having an elliptical dis-
tribution. Consider the set of linear portfolios M = {Z =

∑n
i=1 λiXi |

∑n
i=1 λi = 1}.

Then VaR at level α is subadditive on M if 0.5 < α < 1 :

V aRα(Z1 + Z2) ≤ V aRα(Z1) + V aRα(Z2), Z1, Z2 ∈ M.

Ad (iii). Furthermore, there exists an analogous result for another type of dependence, the
Archimedean survival copula:

Proposition 3.3 ([25]) Consider random variables Xi, i = 1, . . . , n which have the same
continuous marginal distribution function F . Assume the tail distribution F̄ = 1 − F is
regularly varying with tail index −β < 0, i.e. F̄ (x) = x−βG(x) for some function G slowly
varying at infinity, and assume (−X1 . . . ,−Xn) has an Archimedean copula with generator
Ψ, which is regulary varying at 0 with index −α < 0. Then for all α > 0, we have

• VaR is asymptotically subadditive for all β > 1;

• VaR is asymptotically superadditive for all β < 1.

Recently, numerical and analytical techniques have been developed in order to evaluate the
risk measures VaR and ES under different dependence assumptions regarding the loss random
variables. Such techniques certainly help for a better understanding of the aggregation and
diversification properties of risk measures, in particular of non-coherent measures such as
VaR. In this paper, we do not review all these techniques and results but refer to [26] and
the references therein for an overview.

Nevertheless, it is worth mentioning two recent studies, a new numerical algorithm intro-
duced by Embrechts and co-authors ([26]) to provide bounds of VaR of aggregated risks,
and a study by Kratz ([32], [33]) on the evaluation of VaR of aggregated heavy tailed risks.
The numerical algorithm introduced in [26] allows for the computation of reliable lower and
upper bounds for the VaR of high-dimensional (inhomogeneous) portfolios, whatever the
dependence structure is. Quoting the authors, “surprisingly, additional positive dependence
information (like positive correlation) does typically not improve the upper bound substan-
tially. In contrast higher order marginal information on the model, when available, may lead
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to strongly improved bounds. It is a good news since, in practice, typically only the marginal
loss distribution functions are known or statistically estimated, while the dependence struc-
ture between the losses is either completely or partially unknown.” In [33], a new approach,
called Normex, is developed to provide accurate estimates of high quantiles for aggregated
heavy tailed risks. This method depends only weakly upon the sample size and gives good
results for any non-negative tail index of the risks.

3.2 Robustness

With respect to the weak topology most of the common risk measures are discontinuous.
Therefore and due to some convenient scaling properties detailed in Proposition 2.1 of [43],
in risk management one usually considers robustness as continuity with respect to the Wasser-
stein distance as defined by (2.7). According to Stahl et al. ([43]), variance, Expected Shortfall,
Expectiles, and mean are discontinuous with respect to the weak topology whereas VaR at
the level α is robust at F0 if F−1

0 is continuous at α. Stahl et al. observe that mean, VaR,
and Expected Shortfall are continuous with respect to the Wasserstein distance and Bellini
et al. ([4]) show that Expectiles are Lipschitz-continuous with respect to the Wasserstein
distance with constant K = max{ α

1−α
; 1−α

α
}, which implies continuity with respect to the

Wasserstein distance.

With regard to robustness in the sense given in [13] (as mentioned in section 2.3), Cont et al.
demonstrate that historical Expected Shortfall is much more sensitive to the addition of a data
point than VaR. Moreover, in contrast to VaR, ES is sensitive to the data point’s size. The
authors also investigate the impact of the estimation method on the sensitivity and find that
historical Expected Shortfall at 99% level is much more sensitive than Gaussian and Laplace
Expected Shortfall. Moreover, they discuss a potential conflict between the requirements of
subadditivity, and therefore also coherence, and robustness of a risk measure estimate.

Taking into account that VaR because of its definition as a quantile is insensitive to the sizes
of data points that do not fall into a neighborhood of VaR, the observations by Cont et al.
are not too surprising. The notion of ES was introduced precisely as a remedy to the lack of
risk sensitivity of VaR.

Finally, note that in practice, the estimation of ES will be based on larger subsamples than the
estimation of VaR. For instance, when using 100, 000 simulation iterations, ES at 99% level is
estimated with 1,000 points while the VaR estimate is based on a small neighborhood of the
99,000th order statistic. Moreover, when investigating empirically the scaling properties of
VaR and ES of aggregated financial returns, Hauksson et al. ([29]) noticed that the numerical
stability of the scaling exponent was much higher with ES. This observation, in a way, counters
the comments of Cont with regard to the amount of data needed for estimation. For often
one can use high frequency data to precisely estimate ES and then use the scaling property
to determine ES for aggregated risks.

3.3 Conditional Elicitability of Expected Shortfall

The lack of coherence of Value-at-Risk (VaR), which is up to now the most popular risk
measure in practice, draws the attention to another downside risk measure, Expected Shortfall
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(ES) as defined in (2.9). Expected Shortfall is a coherent risk measure and, in contrast to
Value-at-Risk, is sensitive to the severity of losses beyond Value-at-Risk. Nevertheless, as soon
as it comes to forecasting and backtesting Expected Shortfall, a potential deficiency arises
compared to Value-at-Risk. Gneiting [28]) showed that Expected Shortfall is not elicitable.
He proved that the existence of convex level sets is a necessary condition for the elicitability
of a risk measure and disproved the existence of convex level sets for the Expected Shortfall.
It is interesting to note that other important risk measures like the variance are not elicitable
either ([36]).

Expected Shortfall is not elicitable, but, like the variance, is conditionally elicitable. This
is a straightforward application of Definition 2.7 of conditional elicitability, noticing that
Expected Shortfall can be represented as a combination of E[L|L ≥ c] and c = qα(L).

3.4 Expectiles as an elicitable alternative to Expected Shortfall

Since Value-at-Risk is not coherent and Expected Shortfall lacks direct elicitability, it is in-
teresting to look for risk measures which are coherent as well as elicitable. Possible candidates
are Expectiles which we defined in Definition 2.11.

Lemma 3.1 ([4]) eτ (L) is the unique solution ℓ of the equation

τE[max(L− ℓ, 0)] = (1− τ)E[max(ℓ− L, 0)].

Consequently, eτ (L) satifies

eτ (L) =
τE[L1{L≥eτ (L)}] + (1− τ)E[L1{L<eτ (L)}]

τP [L ≥ eτ (L)] + (1− τ)P [L < eτ (L)]

Proposition 3.4 ([4]) Expectiles have the following properties:

(i) For 0 < τ < 1, Expectiles are homogeneous and law-invariant.

(ii) For 1/2 ≤ τ < 1, Expectiles are subadditive (and hence coherent), whereas, for 1/2 ≥
τ > 0, they are superadditive.

(iii) Expectiles are elicitable.

(iv) Expectiles are additive for linearly dependent random variables, i.e.

corr[L1, L2] = 1 ⇒ eτ (L1 + L2) = eτ (L1) + eτ (L2).

Bellini and Bignozzi [5] have recently shown that with a slightly narrower definition of elic-
itability, Expectiles are indeed the only law-invariant and coherent elicitable risk measures.

From Lemma 3.1 and Proposition 3.4, it looks as if Expectiles were ideal to make good for
the deficiencies of VaR and ES. This is not the case, however, because Expectiles are not
comonotonically additive.

Proposition 3.5 For 1/2 < τ < 1 Expectiles are not comonotonically additive.
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Proof of proposition 3.5.
If eτ were comonotonically additive then by Theorem 3.6 of [45] it would be a so-called spectral
risk measure. But then by Corollary 4.3 of [48] it would not be elicitable, in contradiction to
Proposition 3.4 (iii). ✷

4 Capital allocation and diversification benefits

For risk management purposes, it is useful to decompose the portfolio-wide risk into compo-
nents (risk contributions) that are associated with the sub-portfolios or assets the portfolio
comprises of. There are quite a few approaches to this problem. See [46] for an overview. In the
following, we discuss the so-called Euler allocation in more detail, as well as the quantification
and comparison of the portfolio diversification.

4.1 Capital allocation using Expected Shortfall or Expectiles

Tasche in ([44]) argues that from an economic perspective, with a view on portfolio optimiza-
tion, it makes most sense to determine risk contributions as sensitivities (partial derivatives).
What makes the definition of risk contributions by partial derivatives even more attractive is
the fact that by Euler’s theorem such risk contributions add up to the portfolio-wide risk if
the risk measure under consideration is homogeneous. Technically speaking, we suggest the
following definition of risk contributions.

Definition 4.1 Let L,L1, . . . , Lm be random variables such that L =
∑m

i=1 Li and let ρ be

a risk measure. If the derivative dρ(L+hLi)
d h

exists for h = 0 then the risk contribution of Li to
ρ(L) is defined by

ρ(Li |L) =
dρ(L+ hLi)

d h

∣∣∣∣
h=0

. (4.1)

If the derivatives on the right-hand side of (4.1) all exist for i = 1, . . . ,m and the risk measure
ρ is homogeneous in the sense of (2.1) then Euler’s theorem implies

ρ(L) =

m∑

i=1

ρ(Li |L). (4.2)

Tasche in [44] shows that if one of the Li has a smooth density conditional on the realizations
of the other Li’s then the risk contributions of Expected Shortfall in the sense of Definition 4.1
all exist and have an intuitive shape. However, the process of identifying sufficient conditions
for the existence of partial derivatives of a risk measure and their calculation can be tedious.
For coherent risk measures, Delbaen in [17] advised an elegant method to determine the
risk contributions. In the following theorem we describe the risk contributions to Expected
Shortfall. In Theorem 4.2 we then use Delbaen’s method to derive the risk contributions to
Expectiles.
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Theorem 4.1 ([44], [17]) If the partial derivative as described in (4.1) exists for ρ chosen
as Expected Shortfall, then the risk contribution of a position Li to the portfolio’s Expected
Shortfall can be calculated as

ESα(Li|L) = E[Li|L ≥ qα(L)] (4.3)

With Delbaen’s approach, we can also derive the capital allocation for Expectiles.

Theorem 4.2 If the partial derivative as described in (4.1) exists for ρ = eτ , then, for
1/2 ≤ τ < 1, the risk contribution of a position Li to the portfolio’s Expectile can be calculated
as

eτ (Li|L) =
τE[Li1{L>eτ (L)}] + (1− τ)E[Li1{L≤eτ (L)}]

τP [L > eτ (L)] + (1− τ)P [L ≤ eτ (L)]
. (4.4)

Proof of Theorem 4.2.
The sketch of the proof follows Delbaen’s method ([17]). Recall that the weak subgradient of
a convex function f : L∞(Ω) → R at X ∈ L∞(Ω) (see Section 8.1 of [17]), is defined as:

∇f(X) = {ϕ : ϕ ∈ L1(Ω) such that for all Y ∈ L∞(Ω), f(X + Y ) ≥ f(X) + E[ϕY ]}.

In order to identify the subgradient of the risk measure eτ , we note that

• eτ is a law-invariant coherent risk measure,

• as shown in [31], eτ has the so-called Fatou-property (a continuity property),

• as shown in [4], we have that

eτ (L) = max
{
E[ϕL] : ϕ ∈ Mτ

}
, with

Mτ =
{
ϕ ≥ 0 is bounded with E[ϕ] = 1 and supϕ

inf ϕ ≤ max
(

τ
1−τ

, 1−τ
τ

)}
,

• as shown in [4], for ϕ̄ =
τ 1{L>eτ (L)} + (1− τ)1{L≤eτ (L)}

τ P[L > eτ (L)] + (1− τ) P[L ≤ eτ (L)]
, we have

ϕ̄ ∈ Mτ and eτ (L) = E[ϕ̄ L].

Theorem 17 of [17] now implies that ϕ̄ is an element of ∇eτ (L), i.e. it holds for all bounded
random variables L∗ that

eτ (L+ L∗) ≥ eτ (L) + E[ϕ̄ L∗].

From proposition 5 of [17] it follows that, if ∇eτ (L) has only one element, then we have

d eτ (L+ hL∗)

d h

∣∣∣∣
h=0

= E[ϕ̄ L∗]. (4.5)

Taking L∗ = Li in equation (4.5) implies (4.4). ✷

Remark 4.1 The proof of Theorem 4.2 shows that risk contributions for Expectiles (and also
for Expected Shortfall) can still be defined, even if the derivatives in the sense of Definition 4.1
do not exist. This may happen if the distribution of the loss variable is not smooth (e.g. not
continuous). Then the subgradient set ∇eτ (L) may contain more than one element such that
there is no unique candidate vector for the risk contributions. See [35] for more details on
this approach to risk contributions for coherent risk measures.
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4.2 Diversification benefits

In risk management, evaluating diversification benefits properly is key to both insurance and
investments, since risk diversification may reduce a company’s need for risk-based capital.
To quantify and compare the diversification of portfolios, indices have been defined, such
as the closely related notions of diversification benefit defined by Bürgi et al. in [7], and
the diversification index by Tasche in [46]. Both indices are not universal risk measures and
depend on the choice of the risk measure and on the number of the underlying risks in the
portfolio.

As mentioned earlier, subadditivity and comonotonic additivity of a risk measure are im-
portant conditions for proper representation of diversification effects. In this case, capital
allocation as introduced in Section 4.1 can be helpful for identifying risk concentrations.

Let us define the diversification index ([46]):

Definition 4.2 Let L1, . . . , Ln be real-valued random variables and let L =
∑n

i=1 Li. If ρ is
a risk measure such that ρ(L), ρ(L1), . . . , ρ(Ln) are defined, then

DIρ(L) =
ρ(L)∑n
i=1 ρ(Li)

(4.6)

denotes the diversification index of portfolio L with respect to the risk measure ρ.
If risk contributions ρ(Li|L) of Li to ρ(L) (see Definition 4.1) exist, then

DIρ(Li|L) =
ρ(Li|L)

ρ(Li)
(4.7)

denotes the marginal diversification index of subportfolio Li with respect to the risk measure
ρ.

For the case of a homogeneous, subadditive, and comonotonically additive risk measure,
Tasche derived the following properties of the diversification index:

Properties 4.1 ([46]) Let ρ be a homogeneous, subadditive, and comonotonically additive
risk measure. Then

• DIρ(L) ≤ 1 (due to subadditivity).

• DIρ(L) ≈ 1 indicates that L1, . . . , Ln are ‘almost’ comonotonic. The closer to one the
index of diversification is, the less diversified is the portfolio.

• If DIρ(Li|L) < DIρ(L), then there exists ǫi > 0 such that DIρ(L+ hLi) < DIρ(L), for
all 0 < h < ǫi.

It is not clear how far below 100% the diversification index should be to indicate high diversi-
fication because, in the presence of undiversifiable risk, even a large optimised portfolio might
still have a relatively high index. Nonetheless, comparison between marginal diversification
indices and the portfolio’s diversification index can be useful to detect unrealized diversifica-
tion potential. Hence, instead of investigating the absolute diversification index, it might be
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better to look for high unrealized diversification potential as a criterion to judge a portfolio
as highly concentrated.

Note that risk measures like standard deviation or Expectiles would show a 100% diversifica-
tion index for portfolios with perfectly linearly correlated positions but not for comonotonic
positions with less than perfect linear correlation. Hence, for risk measures that are not
comonotonically additive there is a danger of underestimating lack of diversification due to
non-linear dependence.

A notion similar to the diversification index was proposed in [7] to quantify the diversification
performance of a portfolio of risks. Bürgi et al. define the notion of diversification benefit,
denoted by DB, of a portfolio L =

∑n
i=1 Li as

DB(L) = 1−
RACρ(

∑n
i=1 Li)∑n

i=1RACρ(Li)
(4.8)

where RAC denotes the Risk Adjusted Capital defined as the least amount of additional
capital needed to prevent a company’s insolvency at a given level of default probability:

RACρ(L) = ρ(L)− E(L)

where ρ(L) denotes the risk measure chosen for L. Clearly, DB has properties very similar to
the properties of the the diversification index, namely:

Properties 4.2 ([7]) Let ρ be a homogeneous, subadditive, and comonotonically additive
risk measure. Then

• 0 ≤ DB(L) ≤ 1 (due to subadditivity)

• The interpretation of the diversification benefit is straightforward, namely

DB(L) =





1 indicates full hedging
0 indicates comonotonic risks

x ∈]0, 1[ indicates that there is 100x% of capital reduction
due to diversification.

(4.9)

Hence the higher DB(L), the higher the diversification (in contrast to the diversification
index DIρ).

The same comments apply to both Properties 4.1 and Properties 4.2. Both indices depend not
only on the choice of ρ and on the portfolio size n, but even more strongly on the dependence
structure between the risks. Neglecting dependence may lead to a gross underestimation of
RAC. This has been analytically illustrated with a simple model in [8], where it is demon-
strated that introducing dependence between the risks drastically reduces the diversification
benefits.

When it comes to comparing the consequences of choosing VaR and ES respectively for the
measurement of diversification benefits, we can really see the limitation of VaR as a risk
measure. Even if there is a part of the risk that is undiversifiable, VaR might not catch it
as demonstrated in Proposition 3.3 of [27]. In [8], VaR shows a diversification benefit for a
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very high number n of risks, while ES does not decrease for this range of n, thus correctly
reflecting the fact that the risk cannot completely be diversified away.

Moreover, the type of dependence does matter. Linear dependence (measured with the linear
correlation) cannot accurately describe dependence between extreme risks, in particular in
times of stress. Neglecting the non-linearity of dependence may lead to an overestimation of
the diversification benefits. This is well described by Bürgi et al. [7] who consider elliptical
and Archimedean copulae for risk modelling and compare their impacts on the evaluation of
RAC and hence also on the diversification benefit.

5 Backtesting: which methods can be used?

What does backtesting mean? According to Jorion [30], it is a set of statistical procedures
designed to check if the real losses, observed ex post, are in line with VaR forecasts. We may
of course extend this definition to any risk measure.

Recently, Gneiting ([28]) has raised the issue of direct backtesting when using Expected
Shortfall (ES) as a risk measure. This is not an issue for risk measures like VaR or Expectiles
because of their elicitability, as seen previously. Is it a real issue in practice for ES? Some fi-
nancial institutions seem to have circumvented this problem even when using the risk measure
ES. In the following, we discuss which backtest methods can be used in practice. In particular,
we propose an empirical approach that consists in approximating ES with quantiles – which
allows to make use of backtesting methods for VaR.

As observed in Section 3.3, ES is a combination of two elicitable components. A natural ap-
proach to the backtesting of ES therefore is to backtest both components separately according
to their associated respective scoring functions (described in [28]).

More generally, the choice of the backtesting method should depend on the type of forecast.
There are backtesting methods for:

(i) Point forecasts for the value of a variable; they are usually represented as the condi-
tional expectation E[Yt+k | F(Ys, s ≤ t)] where F(Ys, s ≤ t) represents the available
information up to time t on the time series Y . There is a huge amount of literature,
notably in econometrics, on point forecasts and on well-established methods for their
out-of-sample backtesting (e.g. [12] or [21]).

(ii) Probability range forecasts or interval forecasts (e.g. forecasts of Value-at-Risk or of
Expected Shortfall); they project an interval in which the forecast value is expected to
lie with some probability p (e.g. the interval (−∞, V aRp(Yt+k)] where V aRp(Yt+k) is
the projected p-quantile of Yt+k). Much work, in particular with regard to backtesting,
has been done on interval forecasts in the last 15 years. A good reference on this topic is
Christoffersen ([11]). Backtesting for VaR has been well developed, due to the interest
of the financial industry in this risk measure. We refer e.g. to Davé et al. ([16]), and,
for a review on backtesting procedures for the VaR, to Campbell ([9]).

(iii) Forecasts of the complete probability distribution P[Yt+k ≤ . | F(Ys, s ≤ t)] or its prob-
ability density function, if existing.
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It is worth noticing that if there is a solution to (iii) then there are also solutions for (i) and
(ii), and that (iii) makes it possible to backtest ES, avoiding then the issue raised by Gneiting
([28]) for the direct backtesting of ES.

In contrast to VaR, ES is sensitive to the severity of losses exceeding the threshold VaR
because the risk measure ES corresponds to the full tail of a distribution. Hence, seen as a
part of the distribution beyond a threshold, the accuracy of the forecast of ES may be directly
checked using tests on the accuracy of forecasts of probability distributions. Note that the
tail of the distribution might be evaluated through a Generalized Pareto Distribution (GPD)
above a high threshold via the Pickands theorem (see [38] or [22]).

In the following, we provide more detail on (ii) and (iii).

5.1 Backtesting VaR and ES

Backtesting VaR. A popular procedure is based on the so-called violation process briefly
described here. Since by definition of VaR, assuming a continuous loss distribution, we have
P(L > V aRα(L)) = 1− α, it follows that the probability of a violation of VaR is 1− α. We
define the violation process of VaR as

It(α) = 1{
L(t)>V aRα(L(t))

}. (5.1)

Here 1 denotes the indicator function of the event {L(t) > V aRα(L(t))}.

Christoffersen ([11]) showed that VaR forecasts are valid if and only if the violation process
It(α) satisfies two conditions:

• the unconditional coverage hypothesis : E[It(α)] = 1− α, and

• the independence condition: It(α) and Is(α) are independent for s 6= t

Under these two conditions, the It(α)’s are independent and identically distributed Bernoulli
random variables with success probability 1−α. Hence the number of violations has a Binomial
distribution.

In practice, we want to compare VaR predictions with observed values to assess the quality
of the predictions. To do so, we consider an estimate of the violation process by replacing
VaR by its estimates and check that this process behaves like independent and identically
distributed Bernoulli random variables with violation (success) probability close to 1− α. If
the proportion of VaR violations is not significantly different from 1 − α, then we conclude
that the estimation/prediction method is reasonable.

Backtesting ES. A similarly simple approximative approach to the backtesting of ES can
be based on a representation of ES as integrated VaR ([1], Proposition 3.2):

ESα(L) =
1

1− α

∫ 1

α

qu(L) du

≈
1

4
[ qα(L) + q0.75α+0.25(L) + q0.5α+0.5(L) + q0.25α+0.75(L) ] , (5.2)

17



where qα(L) = V aRα(L). Hence, if qα(L), q0.75α+0.25(L), q0.5α+0.5(L), and q0.25α+0.75(L) are
successfully backtested, then to some extent also the estimate of ESα(L) can be considered
reliable.
This approach is attractive not only for its simplicity but also because it illustrates the fact
that for the same level of certainty a much longer sample is needed for the validation of
ESα(L) than for VaRα(L) (see also [47]). The Basel Committee suggests a variant of this
ES-backtesting approach which is based on testing level violations for two quantiles at 97.5%
and 99% level [3].

5.2 Backtesting distribution forecasts

Let us outline a method for the out-of-sample validation of distribution forecasts, based on
the Lévy-Rosenblatt transform, named also Probability Integral Transform (PIT). As pointed
out before, this methodology is important since testing the distribution forecasts could be
helpful, in particular for tail-based risk measures like ES.

The use of the PIT for backtesting financial models is recent. The foundations were laid by
Diebold and coauthors. Diebold et al. in [19] tackled the problem of density forecast evaluation
from a risk management perspective, suggesting a method for testing distribution forecasts in
finance, based on the uniform distribution of the Lévy-Rosenblatt transform (or PIT) ([34] and
[41]). Applying the Lévy theorem to the PIT, they observed that if a sequence of distribution
forecasts coincides with the sequence of unknown conditional laws that have generated the
observations, then the sequence of PIT are independent and identically distributed U(0, 1). In
[20], they extended the density forecast evaluation to the multivariate case, involving cross-
variable interactions such as time-varying conditional correlations, and provided conditions
under which a technique of density forecast ‘calibration’ can be used to improve deficient
density forecasts. They finally applied the PIT method on high-frequency financial data
(volatility forecasts) to illustrate its application.

Nevertheless, there was still some gap to fill up before a full implementation and use in prac-
tice. Blum in his PhD thesis ([6]) studied various issues left open, and proposed and validated
mathematically a method based on PIT also in situations with overlapping forecast intervals
and multiple forecast horizons. Blum illustrated this in his thesis dealing with economic
scenario generators (ESG). Typically, financial institutions make use of scenario generators,
producing thousands of scenarios, each one having its own forecast value for a certain value
at a certain future time. Those values define an empirical distribution, which represents a
distribution forecast. Hence the backtesting will be done on the modeling distribution; it is an
out-of-sample backtesting of distribution forecasts. For details of the methodology, we refer
to [6], [42] and the references therein and only summarize the main steps in the following.

The asymptotic limit distribution of many scenarios converges to the marginal cdf Φi(x) =
P(Xi < x | Fi−m) where Xi corresponds to the scenario forecast of a variable X at out-
of-sample time point ti and Fi−m to the information available up to time ti−m from the
simulation start, m being the number of forecast steps.

The empirical distribution Φ̂i can be shown to be close to Φ, when taking many scenarios.
Hence, identifying them, we have at ti a distribution forecast Φ̂i(x) and a historically observed
value xi.
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Now we apply the PIT to build the random variables Zi := Φ̂i(xi). These have been proved by
Diebold et al. ([19], [20]) to be independent and identically U(0, 1)-distributed whenever the
conditional distribution forecast Φi(.) coincides with the true process by which the historical
data have been generated.

For practical purposes, it then suffices to test if the PIT-transformed variables Zi are inde-
pendent and identically U(0, 1)-distributed. If one of these conditions is rejected, the model
does not pass the out-of-sample test. As noted by Diebold ([18]), this is not a test on the
model, so it does not mean the model is valueless. Rejection only means that there may be
a structural difference between the in-sample and out-of-sample periods, or that the model
does not hold up to the full predictive data.

Various statistical tests are possible, like standard tests such as the χ2 test for uniformity
or the Kendall-Stuart test for the significance of the autocorrelations. Going on with the
Diebold et al. methodology, their non-parametric test, proposed in [19] (see also [20] for the
multivariate case), may also be useful. This test consists of comparing histograms obtained
from Zi and U(0, 1) respectively, and of detecting deviations from the independence property
when considering correlograms of the Zi and their lower integer powers.

Note that tests based on PIT have some limitation due to serial correlation. One way to
overcome this issue is for instance, as suggested in [42], to generate realistic forecast scenarios
via refined bootstrapping.

6 Conclusion

In this paper, we have listed a number of properties that are commonly considered must-haves
for good risk measures: coherence, comonotonic additivity, robustness, and elicitability. We
have then revisited the popular risk measures Value-at-Risk (VaR) and Expected Shortfall
(ES) as well as the recently suggested Expectiles and checked which of these properties they
satisfy:

• It is well-known that VaR lacks subadditivity in general and, therefore, might fail to
appropriately account for risk concentrations. However, we found that for many prac-
tical applications this might not be a serious issue, as long as the underlying risks have
a finite variance, or, in some cases, a finite mean. The fact that VaR does not cover
tail risks ‘beyond’ VaR is a more serious deficiency although ironically it makes VaR
a risk measure that is more robust than the other risk measures we have considered.
This deficiency can be particularly serious when one faces choices of various risks with
different tails. VaR and ES will present different optimal results that are well known to
be sub-optimal in terms of risk for VaR (e.g. [37], Example 6.7).

• ES makes good for the lack of subadditivity and sensitivity for tail risk of VaR but
has recently be found to be not elicitable. This means that backtesting of ES is less
straightforward than backtesting of VaR. We have found that nonetheless there are a
number of feasible approaches to the backtesting of ES although it must be conceded
that to reach the same level of certainty more validation data is required for ES than
for VaR.
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• Expectiles have been suggested as coherent and elicitable alternatives to ES. However,
while Expectiles indeed have a number of attractive features, their underlying con-
cept is less intuitive than the concepts for VaR or ES. In addition, Expectiles are not
comonotonically additive which implies that in applications they may fail to detect risk
concentrations due to non-linear dependencies.

To conclude, we have found that among the risk measures we discussed, ES seems the best
for use in practice, despite some caveats with regard to its estimation and backtesting, which
can be carefully mitigated. We have not found sufficient evidence to justify an all-inclusive
replacement of ES by its recent competitor Expectile. Nonetheless, it is certainly worthwhile
to keep in mind Expectiles as alternatives to ES and VaR in specific applications.
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[15] J. Dańıelson, B. Jorgenson, G. Samorodnitsky, M. Sarma, C. de Vries, Fat
tails, VaR and subadditivity. Journal of Econometrics 172(2), (2013) 283-291.
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