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Abstract

In this paper, we study a multi-periodic production planning problem in
agriculture. This problem belongs to the class of crop rotation planning
problems, which have received increased attention in the literature in re-
cent years. Crop cultivation and fallow periods must be scheduled on land
plots over a given time horizon so as to minimize the total surface area
of land used, while satisfying crop demands every period. This problem is
proven strongly NP -hard. We propose a 0-1 linear programming compact
formulation based on crop-sequence graphs. An extended formulation is then
provided with a polynomial-time pricing problem, and a Branch-and-Price-
and-Cut (BPC) algorithm is presented with adapted branching rules and
cutting planes. The numerical experiments on instances varying the number
of crops, periods and plots show the effectiveness of the BPC for the extended
formulation compared to solving the compact formulation, even though these
two formulations have the same linear relaxation bound.

Keywords: OR in agriculture, crop rotations, production planning, column
generation, branch-and-price-and-cut
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1. Introduction

Although definitions of sustainable agriculture may vary, agricultural sys-
tems are generally considered as sustainable if they sustain themselves along
a long period of time, that is, if they are economically viable, environmen-
tally safe, and socially fair. In particular, sustainable agricultural practices
are usually requested to incorporate alternatives to toxic fertilizers and pesti-
cides, avoid excessive tillage and preserve soils. Many research papers about
sustainable agriculture focus on the pollution and social side-effects of in-
tensive agriculture, such as water spoiled by pesticides, crop diseases, and
concentration of production in fewer and bigger farms that can afford large
investments in costly automative production systems and technologies (e.g.,
[1; 2]). Consistent with this diagnosis, recommendations on the need for new
sustainable agricultural systems can be found in [3]. Crop rotations, com-
bined with fallow periods where the land rests in order to recover its soil
attributes after production, enable crop diversification on both space and
time dimensions. Typical crop rotation problems usually focus on building
rotations that maximize a profit or yield function, where the total surface
area of land is either unbounded or fixed [4; 5; 6; 7]. This paper deals with
an aspect of sustainability which is rarely considered in optimization of agri-
cultural production systems: the minimization of the surface area needed
to cover crop demands that vary over time. A compact formulation for a
mixed-integer variant of the problem was originally introduced in [8], follow-
ing a communication in the EURO XXI Conference in 2006. Since then, a
number of papers have addressed crop rotation planning in a sustainable de-
velopment context. For example, a column generation approach was applied
in [7], where the objective is to maximize space occupation and the master
problem includes adjacency constraints between plots. Column generation
was also used in [9] for a crop rotation problem with land divided into plots,
but with continuous variables representing the surface area assigned to a
given rotation, hence requiring no branching. Another example can be found
in [10] where harvested crops can be stocked for a limited period of time,
and demands are subject to uncertainty. [11] presents multi-objective crop
rotation models that take risk into account, converted into linear programs
and solved with standard Linear Programming (LP) methods. A survey on
crop rotation decisions exists [12] but does not include most recent papers in
optimization. Dantzig-Wolfe decomposition [13] was applied to our problem
in [14], but with no inclusion in a branch-and-price approach to obtain opti-
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mal integer solutions. To our knowledge no branch-and-price algorithm has
ever been designed so far for any crop rotation planning problem.

The original model presented in [8] was motivated by a Madagascan case
study where the minimization of cultivated space contributed to the sustain-
able development of the primary forest in the long term. Indeed, farmers
in Madagascar are used to clearing more and more primary forest areas -
although this is prevented by law - in order to extend their cultivation sur-
face area to better cover their needs. A plot could be cultivated with several
crops in the same period in this study. We direct the reader to [8] for more
details on the agricultural Madagascan context. In this paper, we present
a fully-combinatorial problem where a single crop can be cultivated on each
plot at each period.

The paper is organized as follows. Section 2 introduces notation and crop-
sequence graphs. Section 3 describes a compact formulation of the problem.
Section 4 proves NP -hardness. Section 5 provides a Covering Integer Pro-
gramming extended formulation derived from a Dantzig-Wolfe decomposition
approach. Section 6 presents the Branch-and-Price-and-Cut with branching
rules and cutting planes. Section 7 presents computational experiments for
various time horizons, number of crops and plot sizes. Section 8 concludes
the paper.

2. Notations and crop-sequence graphs

We consider the following notations for the Minimum-Space Crop Rota-
tion Planning problem (MSCRP ):

• t = 1, . . . , T : the periods of the planning horizon.

• p = 1, . . . , P : the set of land plots that can possibly be used

• C : the set of crops, with f ∈ C the fallow index considered as a specific
crop for modeling reasons

• Ct ⊆ C : the set of crops that can be cultivated at period t

• dct : the demand (in tons) of crop c ∈ Ct \ {f} at period t

• L : the number of fallow periods after which the yield no longer in-
creases
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State v Succ(v) Pred(v)
(rice, l, 1) (bean, l, 2), (f, 1, 0) (f, l, 0)

(rice, l, l′), 1 < l′ < L′ (bean, l, l′ + 1), (f, 1, 0) (bean, l, l′ − 1)
(rice, l, L′) (f, 1, 0) (bean, l, L′ − 1)

(f, l, 0) (f,min(l + 1, L), 0), (rice, l, 1), (bean, l, 1) (rice, l, l′), (bean, l, l′)

Figure 1: Table of successors and predecessors of a state with two alternating crops

• L′ : the maximum number of consecutive periods a plot can be culti-
vated before returning fallow

• sp : the surface area of plot p (in ha)

The state of a plot p is a triplet v = (c, l, l′) where c is the crop (or
fallow) at the current period, l ≤ L is the fallow length, i.e., the number of
consecutive fallow periods before cultivation (if this number is greater than L
then it is replaced by L), and l′ ≤ L′ is the cultivation length, i.e. the number
of consecutive cultivation periods up to the current period. The only possible
states are (f, l, 0) for l = 1, . . . , L, and (c, l, l′) for c ∈ C \ {f}, l = 1, . . . , L,
l′ = 1, . . . , L′. When the plot is cultivated in period t and remains cultivated
in the next period t + 1 the cultivation length l′ of the plot is increased by
one. When the maximum length of cultivation L′ is reached, the plot has to
return fallow, with fallow length l = 1 and cultivation length l′ = 0. When
a plot has been left fallow for l periods, it can either remain fallow the next
period with length min(l + 1, L) or go back to cultivation with some crop c,
fallow length l and cultivation length l′ = 1. We denote by Succ(v) the set
of possible successors of state v at the next period, and by Pred(v) the set
of predecessors of state v at the previous period. Figure 1 provides the list
of possible successors and predecessors of each state if C = {rice, bean, f},
rice precedes bean and bean precedes rice.

We denote by Vpt the set of possible states of plot p at period t. At the
beginning of the planning horizon, Vp0 is reduced to a single state startp. We
note for t = 1, . . . , T

Apt = {(v, v′) ∈ Vp,t−1 × Vpt : v′ ∈ succ(v)}

the set of possible transitions from a state v ∈ Vp,t−1 to a state v′ ∈ Vpt,
as illustrated by Figure 1. We also note, for each state v ∈ Vpt, A

+
pt(v) =
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f , 2, 0 f , 2, 0

r, 2, 1

f , 2, 0

f , 1, 0

b, 2, 2

b, 2, 1

f , 2, 0

f , 1, 0

r, 2, 2

r, 2, 1

r, 1, 1

f , 2, 0

f , 1, 0

b, 2, 2

b, 2, 1

b, 1, 2

b, 1, 1

f , 2, 0

f , 1, 0

r, 2, 2

r, 2, 1

r, 1, 2

r, 1, 1

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

l = 2, a = 2, r cultivable at odd seasons, b at even seasons, Succ(r) = {h}, Succ(h) = {r}

Figure 2: Crop-sequence graph

{(v, v′) : (v, v′) ∈ Ap,t+1} and A−pt(v) = {(v′, v) : (v′, v) ∈ Apt} the set of
transitions that start at state v and end at state v at period t, respectively.

Now, consider the acyclic directed graph Gp = (V p, Ap) with V p =
∪0≤t≤TVpt ∪ {endp}, where node endp represents the end of a rotation, and
Ap = ∪1≤t≤TApt∪{(v, endp) : v ∈ VpT}. We call this graph the crop-sequence
graph. By construction, any path from startp to endp in graph Gp identifies a
feasible crop rotation on plot p. For each crop c ∈ Ct \{f}, we call Acpt ⊂ Apt
the set of arcs such that crop c is cultivated at the final endpoint of transition
a. Each arc a ∈ Acpt is valued by spwpac, where wpac is the number of tons of
crop c obtained by transition a on one hectare of plot p. All other arcs, i.e.,
those which have a fallow state (f, l, 0) as final endpoint and those that ter-
minate at endp, have a zero value. Figure 6 describes such a crop-sequence
graph for two possible crops rice (r) and bean (b) and two periods. The
following section describes a compact formulation of the problem.
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Figure 2 describes such a crop-sequence graph for two possible crops rice
(r) and bean (b) and five periods. The following section describes a compact
formulation of the problem.

3. Compact formulation

The Minimum-Space Crop Rotation Planning (MSCRP ) problem is that
of constructing crop rotations minimizing the total space area required for
covering seasonal crop demands. We introduce the following Compact For-
mulation (CF ) for MSCRP .

min
P∑
p=1

∑
a∈Ap1

spxpa1 (1)

s.t
P∑
p=1

∑
a∈Ac

pt

spwpacxpat ≥ dct ∀c ∈ Ct \ {f}, t = 1, . . . , T (2)

(CF )
∑

a∈A−pt(v)
xpat =

∑
a∈A+

pt(v)

xpa,t+1
∀p = 1, . . . , P, t = 1, . . . , T − 1,
v ∈ Vpt

(3)

xpat ∈ {0, 1} (4)

Binary decision variable xpat is equal to one if and only if plot p uses
transition a in period t. The objective function (1) minimizes the total surface
area of plots p that are used for production, i.e. such that

∑
a∈Ap1

xpa1 = 1.

Global constraints (2) ensure that the total production of a crop is at least
the demand for every period. Flow conservation constraints (3) are local
constraints associated with a plot p and define a path structure for a rotation
on that plot. Note that if

∑
a∈Ap1

xpa1 = 0, for this plot p all variables xpat
are equal to zero which means that no crop rotation is used on that plot.
The linear relaxation of CF will be noted CF . We study the complexity of
the MSCRP problem in the following section.

4. Problem complexity

We prove the NP -hardness of this problem with a polynomial reduction
from the (unweighted) Set Covering Problem (SCP ). In the unweighted
SCP , we are given a set of elements I = {1, . . . , n} and a collection of sub-
sets of elements S = {S1, . . . , Sm} such that Sj ⊂ I. The objective is to find
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a collection S ′ ⊂ S such that
⋃
Sj∈S′ Sj = I and the size |S ′| of the cover is

minimum.

Theorem 1. MSCRP is strongly NP -hard and reduces to the Set Cov-
ering Problem (SCP ).

Proof: We transform a general SCP instance into a specific MSCRP
instance in the following way. Take P = m, T = m + n, C = {f, 0} ∪ I =
{f, 0, 1, . . . , n}, sp = 1 and startp = (f, L, 0) for all p = 1, . . . , P . Moreover
set Ct = {f, 0} for t = 1, . . . ,m and Cm+c = {c, 0} for all c = 1, . . . , n;
crop c can only be produced in period m + c and no other crop but crops
c and 0 can be produced in that period. We only set demands for crops of
C \{f, 0} = {1, . . . , n}, with dc,m+c = 1 for each crop c = 1, . . . , n. These are
the only demands to be covered, in particular there are no demands to cover
in periods 1, . . . ,m. Also, set L = L′ = m+n. Finally, we set all crop yields
equal to zero, except the following yields for c = 1, . . . , n, j = 1, . . . ,m:

w̄c−1,cL,j+c = 1 iff c ∈ Sj, c− 1 ∈ Sj (5)

w̄0,c
L,j+c = 1 iff c ∈ Sj, c− 1 6∈ Sj (6)

where, for sake of simplicity, we change yield notations as w̄c
′,c
L,j+c = wpac with

a the transition from state (c′, L, j + c − 1) to state (c, L, j + c). We now
show the NP -completeness of the decision version of MSCRP . In order to
do this, we show that if there exists a set cover of cost of no more than K
in the SCP instance, then there exists a crop rotation plan of cost of no
more than K in the MSCRP instance, and vice-versa. Let us show the first
implication.

(i) Assume that there exists a collection of no more than K subsets cov-
ering I in the SCP instance. For each subset Sj of this cover, we transform
it into a rotation j on a plot for MSCRP in the following way:

• for t = 1, . . . ,m− j, the plot is left fallow (f),

• for t = m− j + 1, . . . ,m, the plot is cultivated with crop 0,

• for t = m+ 1, . . . ,m+ n, in period m+ c (c = 1, . . . , n), if c ∈ Sj then
crop c is cultivated, otherwise crop 0 is cultivated.
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If c ∈ Sj, then in rotation j and in period m+ c crop c is cultivated, and the
state of the plot is l = L and l′ = m + c − (m − j) = j + c in this period.
Therefore by (5,6) the yield of crop c is 1 so the demand dc,m+c = 1 in period
m+ c is covered. As for all c = 1, . . . , n there exists at least one subset Sj in
the SCP cover such that c ∈ Sj, all demands dc,m+c = 1 are covered. Since
the rotations so built are in one-to-one correspondence with the subsets of
the SCP cover, we have no more than K plots used for covering the crop
demands.

(ii) Conversely, assume that there exists a set of K rotations in the
MSCRP instance covering the crop demands for t = m + 1, . . . ,m + n.
Denote by J the set of indices j ∈ {1, . . . ,m} such that at least one demand
dc,m+c is covered, in the MSCRP solution, by a yield satisfying:

w̄c−1,cL,j+c = 1 or w̄0,c
L,j+c = 1 (7)

As for each j ∈ J a distinct plot should have started to be cultivated from
period t = m − j + 1 and we have no more than K plots, then |J | ≤ K.
Moreover as the K rotations form a feasible solution for MSCRP , then for
all c = 1, . . . , n there exists j ∈ J satisfying (7), i.e., such that c ∈ Sj. So,
to transform a MSCRP solution of size K into a SCP cover of size not
more than K, simply select subsets Sj for j ∈ J . This concludes the NP -
completeness proof. As the above transformation of a general SCP instance
into a particular MSCRP instance is a pseudo-polynomial transformation
(see [15]), MSCRP is NP -hard in the strong sense, i.e., there exists no exact
algorithm that solves the problem in a time which is polynomial in both the
size of the instance and the largest integer of the input data, unless P = NP .

4.1. Extended formulation and column generation

We denote by Rp the set of feasible crop rotations for plot p = 1, . . . , P
over the time horizon, and R = ∪pRp. The compact formulation CF (1-4) of
section 2 can be reformulated as the following Master Problem (MP ) after
a Dantzig-Wolfe decomposition [13].
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min
P∑
p=1

sp
∑
r∈Rp

λr (8)

s.t
P∑
p=1

∑
r∈Rp

wrpctλr ≥ dct ∀t = 1, . . . , T, c ∈ Ct \ {f} (9)

(MP )
∑
r∈Rp

λr ≤ 1 ∀p = 1, . . . , P (10)

λr ∈ {0, 1} ∀r ∈ R (11)

where binary variable λr = 1 if and only if rotation r ∈ R is selected in the
solution and wrpct is the number of tons of crop c produced by rotation r on
plot p at period t.

The well-known iterative principle of a column generation approach [16]
can be summarized as follows on the MSCRP . Let MP denote the linear
relaxation of MP . The aim is to solve MP to optimality and get a lower
bound which has the same value as the solution of the dual problem given by
the Lagrangian relaxation of constraints (2) in the compact formulation (1-4)
[17]. One starts to solve a Restricted Master Problem (RMP), i.e. problem
MP restricted to a small subset of rotations (columns), by the simplex al-
gorithm. This LP-solving of the RMP provides dual variables uct associated
with the covering constraints (9) and dual variables u′p associated with con-
straints (10). Then one checks whether there exists a rotation r ∈ R with
negative reduced cost that could be added to the RMP in order to improve
the LP bound. If no such negative reduced cost column exists, then the cur-
rent solution of the last RMP is optimal for MP , otherwise one adds a subset
of negative reduced-cost columns to the RMP and reiterates the process until
no negative reduced cost column is found.

At an iteration of the above Column Generation process, the subproblem
of finding a column with minimum reduced cost is called the pricing problem.
Given the current dual variables uct and u′p output by the LP-solving of the
last RMP, the reduced cost of a column (or rotation) r ∈ Rp is:

cr = sp −
T∑
t=1

∑
c∈Ct\{f}

wrpctuct − u′p

The pricing problem of minimizing cr over all rotations r ∈ R can be effi-
ciently solved, despite the exponential size of R, by running a shortest-path
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dynamic programming procedure in each graph Gp. Given that a node in Gp

is a state (c, l, l′) for each season t = 1, . . . , T , the number of nodes in Gp is
in O(|C|LL′T ). As each graph Gp is acyclic, one can use Bellman algorithm
to find a shortest path in that graph. To minimize cr over all possible paths
r ∈ Rp, simply associate cost −spwpacuct to each arc (transition) a that pro-
duces crop c at period t (with wpaf = 0 if the arc ends at a fallow), and
associate cost sp− u′p to each arc whose initial endpoint is startp, and a zero
cost to each arc whose terminal endpoint is endp.

At the end of the column generation algorithm, the value of the last RMP
is the value of the linear relaxation of MP . One could run a MIP solver on
the subset of columns of this last RMP, but this does not ensure optimality
of the integer solution. This heuristic, noted HEUR, will be compared to
the exact methods in the numerical experiments section. Branch-and-price
is a branch-and-bound method which finds an optimal integer solution, if no
time limit is fixed, using the above column generation algorithm to compute
the LP bound at each node. We refer to [18; 19] for a detailed description of
branch-and-price. Branch-and-Price-and-Cut (BPC) is an enriched branch-
and-price where cutting planes are iteratively added to accelerate the solving
of the master problem. In the next subsections we describe the branching
rules used for our problem as well as the cut generator.

4.2. Branching scheme

Branching occurs at the end of the processing of a node from the search
tree when the node cannot be pruned, i.e., the obtained lower bound is not
over any known upper bound, and the solution of that node, noted λ̃, is
fractional. Then there exists a plot p, a period t and an arc a such that:

0 <
∑
r∈R̂p:
xrpat=1

λ̃r < 1

where R̂p is the set of columns on plot p in the last RMP, and xrpat = 1 if

transition a is used at period t in rotation r ∈ R̂p, 0 otherwise. The arc a on
which branching will be performed is selected in a set Apt as follows. First,
the smallest t is selected such that there exists a plot p and an arc a ∈ Apt
providing a fractional value of

∑
r∈R̂p:xrpat=1 λ̃r. Then, p and a are chosen

such that
∑

r∈R̂p:xrpat=1 λ̃r is the most fractional, i.e., |
∑

r∈R̂p:xrpat=1 λ̃r − 0, 5|
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is minimized and different from 0,5. Note that this simple branching rule
produces search trees with significantly fewer nodes than other branching
rules of comparable complexity, such as choosing over all triples (p, a, t),
p ∈ {1, . . . , P}, t ∈ {1, . . . , T}, a ∈ Apt, the one that gives the most fractional∑

r∈R̂p:xrpat=1 λ̃r, or choosing a triple (p, a, t) randomly. To eliminate a set of

fractional solutions which contains λ̃, separation occurs and two new nodes
are created and added to the search tree. One of them has the additional
constraint: ∑

r∈R̂p:
xrpat=1

λr = 0,

and the other one has the constraint:∑
r∈R̂p:
xrpat=1

λr = 1.

This branching scheme corresponds to branching on the original variables of
the compact formulation CF , and adding branching constraints to the linking
constraints [20]. Once a node has been processed and its linear relaxation has
been solved by the above column generation scheme, an aggressive pruning
strategy is added to the standard pruning process. Given a best known
integral solution of value z̄, any node is pruned if its lower bound is over the
solution of the following (NP -hard) knapsack problem:

max
P∑
p=1

spyp

s.t.
P∑
p=1

spyp < z̄

yp ∈ {0, 1}

As this knapsack problem has a number of variables equal to P which is gen-
erally not large, and the surface areas are generally small, it can be efficiently
solved, for example by dynamic programming based algorithms [21].

When looking for a column variable with the minimum reduced cost in
the pricing problem of column generation, each dual value corresponding to a
branching constraint on an arc a ∈ Apt is simply subtracted from the cost of
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arc a in graph Gp for the shortest path computation. In the next subsection,
we present the cutting planes added to accelerate problem solving.

4.3. Cutting planes

During the processing of any node of the search tree, column and row
generations are carried out, in that order, in a loop. This loop starts with
column generation: a subproblem of MP , characterized by a set of branching
constraints and including a set of inequalities valid for MP , is solved to
optimality. Then if the node cannot be pruned, cutting plane generation
takes place. When a cut is generated, it is added to the last RMP of the
current node, and another iteration of the column-and-row generation loop
begins. Otherwise, if no cuts are generated, the algorithm exits from this
loop, and either the node is pruned or branching occurs.
Cutting planes are generated as follows. When the last solution given by
column generation, noted λ̃, is fractional, two separation heuristics try to
generate inequalities valid for MP in respect to integrality constraints, but
violated by λ̃.
Cutting planes are generated from the compact formulation CF . A solution
x(λ) to CF is built from a MP solution λ as:

x
(λ)
pat =

∑
r∈R̂p:
xrpat=1

λr (12)

After a change of variables x̄pat = 1 − xpat, constraints (2) of CF become
knapsack constraints:

P∑
p=1

∑
a∈Apt

spwpacx̄pat ≤
P∑
p=1

∑
a∈Apt

spwpac − dct for t = 1, . . . , T, c ∈ Ct (13)

with x̄pat ∈ {0, 1}. The two separation heuristics mentioned above try to
generate an inequality valid for one of the above knapsack constraints (13),

but violated by x(λ̃). When cut generation succeeds, the generated inequality
valid for the knapsack constraint is uncomplemented and translated in the
extended formulation by using variable substitution (12).

The idea of using valid inequalities for the knapsack polytope to tackle
more complex 0-1 problems was present in [22], and suggested in the case
of a sparse constraint matrix. Note that the sets of variables with non-zero
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coefficients in constraints (13) are pairwise disjoint, which results in a sparse
constraint matrix. [23] describes several classes of inequalities valid for the
knapsack polytope, such as (i) extended cover inequalities and (ii) weight
inequalities, which are both generated in our BPC.

(i) Extended cover inequalities are separated by the greedy heuristic of
[24] and built as follows. Given a period t and a crop c, we first build
a minimal cover D by adding pairs of indices (p, a), with a ∈ Apt , in
non-increasing order of the value

∑
r∈R̂p:xrpat=1 λ̃r, where λ̃ is the current

fractional solution. We add such indices (p, a) in a greedy way until
the sum of their coefficients spwpac exceeds the demand dct. Then we
compute w̄ = max(p,a)∈D wpac and set E = {(p, a) : wpac ≥ w̄}. In
the case of success, the separation heuristic returns an extended cover
inequality of the form: ∑

(p,a)∈(D∪E)

x̄pat ≤ |D| − 1

i.e.,
∑

(p,a)∈(D∪E)

xpat ≥ |E|+ 1

which is violated by x(λ̃). After variable substitutions (12) we obtain
the following inequality valid for MP and violated by λ̃:∑

(p,a)∈(D∪E)

∑
r∈R̂p:
xrpat=1

λr ≥ |E|+ 1

(ii) Weight inequalities are also associated with a period t and a crop c ∈ Ct,
and are built in the following way. First, we construct in a greedy way
a pack set O by adding in O indices (p, a) in non-increasing order of
the value

∑
r∈R̂p:xrapt=1 λ̃r as in (i). Instead of adding these indices until

demand dct is covered as in (i), one stops at the last iteration for which
the demand remains uncovered and computes the residual capacity:

δ = dct −
∑

(p,a)∈O

∑
r∈R̂p:
xrapt=1

wpacλ̃r

We call N the set of indices of variables which are in the knapsack
constraints but not in O. The separation heuristic of [23] returns a
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weight inequality of the form:∑
(p,a)∈O

wpacx̄pat +
∑

(p,a)∈N

max{0, wpac − δ}x̄pat ≤
∑

(p,a)∈O

wpac

i.e.,
∑

(p,a)∈O

wpacxpat +
∑

(p,a)∈N

max{0, wpac − δ}xpat ≥
∑

(p,a)∈N

max{0, wpac − δ}

which is violated by x(λ̃). After variable substitutions (12) we get the
following inequality valid for MP and violated by λ̃:∑
(p,a)∈O

∑
r∈R̂p:
xrapt=1

wpacλr+
∑

(p,a)∈N

∑
r∈R̂p:
xrpat=1

max(0, wpac−δ)λr ≥
∑

(p,a)∈N

max(0, wpac−δ)

A cut generated in the compact formulation CF is therefore translated
into a cut for the extended formulation MP according to the mapping (12).
Each variable appearing in a cut in the compact formulation has its coeffi-
cient modified in the objective function of the pricing problem; however the
structure of the pricing problem is unaffected.

4.4. Restricted master heuristic

In the case of a large-size instance, the BPC algorithm may not provide
an integer feasible solution in a reasonable amount of time. To increase
the efficiency of our BPC, we embedded in it a restricted master heuristic.
Restricted master heuristics are the most commonly used primal heuristics
with column generation [25]. They consist in solving a restricted master
problem (RMP) with integrality constraints on column variables, for example
by a branch-and-bound algorithm. Our restricted master heuristic provided
very good integer solutions when needed. It is invoked periodically with a
time limit, as long as the gap between the worst lower bound and the best
upper bound is above a given threshold (if no integer solution is known, the
gap is defined as infinite). To build a RMP, a set of columns has to be chosen.
Columns r with the highest average value of λ̃r over the set of closed nodes
are selected.

5. Numerical results

We present in tables 1, 2, 3 and 4, a comparison of our Branch-and-Price-
and-Cut algorithm (BPC), with an Integer Program Solver for the compact
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formulation (IP solver), and a heuristic denoted by Heur which consists
in solving the last restricted master problem obtained by column generation
with integrality constraints as a static integer program. All computations
reported in this paper have been carried out on a personal computer with an
Intel Core i5 processor at 2.50 GHz and 8 Go of RAM. The integer program
solver is IBM ILOG CPLEX 12.4 with default settings. BPC has been coded
in C++ using COIN-OR BCP 1.3.4.

In the tables, for each approach, we report the value of the best integer
solution obtained within a time limit equal to 3600 seconds (value) and the
number of nodes (#nodes) in the search tree. Only in tables 1 and 2, we
add a time column with the running time in seconds, as most instances are
solved to optimality before the time limit of 3600 seconds. When an optimal
solution is obtained by one of the two exact methods and is proven optimal,
its value is marked by ∗. Furthermore, we emphasize in bold instances where
BPC improves both IP solver and Heur. In the last row of each table,
noted #best, we report the ratio of the number of best-found solutions by
the number of instances, for each approach. The last column of each table
denotes the value of the linear relaxation. This information enables pointing
out the hardness of these instances. The larger the gap between the LP value
and the best integer value is, the more difficult an instance is since a large
gap is longer to close for an exact method.

Each instance, denoted by I # crops # periods # plots , is characterized
by the number of crops (# crops), the number of periods that defines the
planning horizon (# periods) and the number of plots (# plots). The yield
of a crop depends on the state of the plot and the transition used to reach
that state ; it increases with fallow length l and decreases with cultivation
length l′.

In tables 1 and 2, we report numerical results on instances with two crops.
The objective is to compare the three approaches on small-sized instances to
evaluate the convergence to optimality of the two exact methods.

In table 1, instances have the same characteristics (20 periods and 7
plots). To diversify the sample, the surface area of each plot is drawn in the
interval [4,11].
We observe that for all instances, the two exact methods find an optimal
solution but BPC is in average 5 times faster than IP solver. Furthermore,
the average gap between the LP value and the optimum is equal to 14.4%.

In table 2, instance sizes are progressively increased by varying the num-
ber of plots from 7 to 69 with five possible values in that range, while keeping

15



the average total surface area constant. The number of periods is 20 or 40.
For the first of the five pairs (I 2 20 , I 2 40 ) the surface area of a plot is
uniformly generated in the interval [5,15], for the second in [3.5,10.5], for the
third in [2.5, 7.5], for the fourth in [1.5, 4.5] and for the last in [0.5, 1.5].
By reducing plot sizes, we increase the number of available plots. Crop de-
mands of these instances are uniformly drawn in a set of small intervals. In
this table, the average gap between the LP value and the best-found integer
solution remains large (12.16%).
For that set of instances, BPC outperforms the two other approaches in
terms of quality of the best-found integer solution with a #best score of
10/10. Furthermore, BPC is in average 25 % faster than IP solver. Also,
note that the number of periods of the planning horizon is a critical param-
eter, with computational times multiplied by a factor up to 10 when passing
from 20 to 40 periods. In tables 3 and 4, we present numerical results

instance BPC IP solver Heur LP
#nodes time value #nodes time value #nodes time value value

I 2 20 7 - 1 2881 74.61 22.00* 5598 119.93 22.00* 1 0.19 30.00 18.88
I 2 20 7 - 2 645 24.26 22.80* 33647 455.33 22.80* 1 0.01 22.80 18.71
I 2 20 7 - 3 6093 175.04 24.30* 112702 956.72 24.30* 1 0.24 25.50 18.84
I 2 20 7 - 4 1843 44.45 25.50* 37402 367.38 25.50* 1 0.11 25.50 20.33
I 2 20 7 - 5 7747 159.15 23.00* 42427 479.30 23.00* 1 0.28 30.00 20.34

#best 5 / 5 5 / 5 2 / 5

Table 1: Computational results for 2 crops, 20 periods and 7 plots

on more difficult instances with a number of plots varying from 30 to 70, a
number of crops from 4 to 8 and a number of periods from 6 to 12. For a
given triplet # crops, # periods, # plots, 5 instances are created, with the
same crop demands. The yields and surface areas vary uniformly by a factor
between 0.8 and 1.2 from a set of reference values, which enables to create
diversified instances. We set L = 4 and L′ = 6 for all instances.
We note that for the last pool of 30 instances, none of the two exact methods
converged to optimality within the time limit of 3600 seconds. Tables 3 and
4 confirm the superiority of BPC over the two other approaches in terms of
quality of the best-found integer solution with a #best score of 33/40 versus
7/40 for the IP solver and 5/40 for the heuristic. Furthermore, we observe
that for the I 8 12 70 instances, IP solver failed to find an integer solution.
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Instances BPC IP solver Heur LP
#nodes time value #nodes time value #nodes time value value

I 2 20 7 - 1 3 0.58 19.90* 1 0.46 19.90* 1 0.00 20.20 16.69
I 2 40 7 - 1 3 3.39 20.40* 1 1.95 20.40* 1 0.08 29.60 17.64
I 2 20 10 - 1 759 6.73 18.13* 13110 77.80 18.13* 1 0.02 19.81 14.79
I 2 40 10 - 1 3 17.92 19.53* 10538 124.02 19.53* 1 0.12 26.53 15.39
I 2 20 14 - 1 1279 15.51 14.90* 418 4.31 14.90* 1 0.02 17.40 13.43
I 2 40 14 - 1 3385 158.27 16.55* 3652 302.39 16.55* 4282 1.57 18.05 13.74
I 2 20 23 - 1 10699 176.67 13.98* 13868 245.34 13.98* 1 0.04 16.32 12.63

I 2 40 23 - 1 54565 1593.36 15.81* 49400 3600 16.08 1 0.30 18.57 14.36
I 2 20 69 - 1 200701 3600 12.40 64594 3600 12.48 1 0.41 12.76 12.06
I 2 40 69 - 1 52891 3600 13.31 4977 3600 13.47 53837 20.42 13.55 12.79

#best 10 / 10 7 / 10 0 / 10

Table 2: Computational results for 2 crops, 20 to 40 periods and 7 to 69 plots

Also note that the number of crops is a critical parameter for tractability,
with a number of nodes often reduced by a factor 10 (within the 3600 seconds
time limit) when passing from 4 crops to 8 crops.

Finally, table 2 confirms a natural result which is useful to design sustain-
able agricultural systems: when the total available land is divided up into a
higher number of smaller plots, the set of possible combinations of land plots
to cover an identical set of demands is enlarged, therefore the total number
of hectares needed for production is reduced and more land is preserved (see
[8] for the formal result and proof). Indeed, for T = 20, the total surface
area needed for covering crop requirements decreases from 19.2 for 7 plots
with an average size of 10, to 12.4 for 69 plots with an average size of 1.
Hence reducing by a factor 10 the unit size of a plot reduces the total space
consumption by 35% with our dataset. For T = 40 we obtain similar results,
as when the average size of a plot passes from 10 to 1, the total surface area
used for production decreases from 20.4 to 13.3. Therefore, the unit size of a
plot is a critical parameter for sustainability, regardless of the increased cost
of managing and maintaining a larger number of plots.

6. Conclusion

Crop rotation planning problems have received increasing attention from
OR researchers in the past five years, especially for sustainable agriculture.
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Instances BPC IP solver Heur LP
#nodes value #nodes value #nodes value value

I 4 6 30 - 1 781151 19.00 658814 19.00 158996 20.00 18.17
I 4 6 30 - 2 871295 21.20 748944 21.20 130724 21.70 20.51
I 4 6 30 - 3 915997 22.30 864819 22.30 83896 22.80 21.50
I 4 6 30 - 4 803839 18.40 54744 18.40* 1 19.20 17.71
I 4 6 30 - 5 684151 19.60 134818 19.60* 38300 20.60 18.89

I 4 12 30 - 1 199307 26.00 102360 26.60 11904400 26.10 24.81
I 4 12 30 - 2 241291 25.10 97161 26.20 12946600 26.20 24.00

I 4 12 30 - 3 210301 25.60 83238 25.60 13498647 26.60 24.19
I 4 12 30 - 4 220809 26.40 98142 26.40 13183513 26.40 25.06

I 4 12 30 - 5 214965 25.70 89329 26.10 12332147 25.80 24.54

#best (including. ties) 10 / 10 7 / 10 1 / 10

Table 3: Computational results for 4 crops, 6 or 12 periods and 30 plots

Some papers proposed a column generation approach for covering variants
of crop rotation planning, but none has ever proposed neither a branch-and-
price nor a branch-and-cut for these problems, to our knowledge. In this
paper, a Branch-and-Cut-and-Price (BPC) is proposed for a specific sizing
problem introduced by the authors, where space consumption is minimized
and seasonal demands are to be covered. This enables sizing with minimum
waste the land space needed for production over a large period of time.
The BPC proposed in this paper largely outperforms the direct solving of
a compact formulation of the problem, as well as a heuristic that consists
in solving the last restricted master program with integer column variables.
Numerical results are robust over a set of 55 instances where one varies the
number of crops, the number of periods and the number of available plots
or unit sizes of a plot. The effectiveness of BPC is evidenced despite the
fact that the pricing subproblem of column generation has the integrality
property, and thus the LP bound of the extended formulation is not better
but equal to that of the compact formulation. Another learning point of the
paper is to measure how much dividing up the land space into smaller plots
can reduce the total number of hectares needed for production, up to 35%
when the unit size of a plot is divided by 10 for the same demands to cover.
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BPC Compact CG+IP
Instances formulation LP

#nodes value #nodes value #nodes value value
I 4 8 70 - 1 369295 39.80 127887 39.80 14490500 40.00 39.13
I 4 8 70 - 2 379093 39.90 161983 39.80 14050751 40.10 39.09

I 4 8 70 - 3 408209 39.40 114737 39.50 1730322 39.50 38.79
I 4 8 70 - 4 411009 39.20 122798 39.10 15012516 39.60 38.56
I 4 8 70 - 5 418393 41.60 157534 41.60 11974769 41.90 40.89
I 4 12 70 - 1 117843 49.30 22989 48.90 12324754 49.30 47.87

I 4 12 70 - 2 113611 47.40 17687 47.60 11808027 47.50 46.29
I 4 12 70 - 3 134575 48.80 23173 48.90 10568251 49.10 47.69

I 4 12 70 - 4 113713 48.70 14096 48.30 9941989 48.70 47.45
I 4 12 70 - 5 136567 47.40 23455 47.50 11126907 47.60 46.41

I 6 8 70 - 1 111647 35.60 31439 35.70 10043917 36.00 34.33
I 6 8 70 - 2 109529 39.00 39770 39.20 9495680 39.40 37.70
I 6 8 70 - 3 114431 35.70 42528 36.10 10135149 35.90 34.55

I 6 8 70 - 4 101635 36.60 33354 36.60 9888217 36.70 35.32
I 6 8 70 - 5 108503 36.70 31903 36.80 9327708 37.40 35.32
I 6 12 70 - 1 24987 43.70 1429 45.40 5818061 43.90 41.79
I 6 12 70 - 2 29971 43.10 1319 47.30 5661629 43.30 41.38
I 6 12 70 - 3 29969 45.00 1250 46.40 6382705 45.90 42.72

I 6 12 70 - 4 25961 44.20 973 48.30 5396047 44.20 42.24
I 6 12 70 - 5 30979 44.70 1304 45.20 6473536 44.90 42.46

I 8 8 70 - 1 22969 49.60 3657 49.70 6730924 50.20 47.55
I 8 8 70 - 2 20935 55.30 2389 55.60 7397200 55.20 52.60

I 8 8 70 - 3 22933 51.50 4890 51.90 6845598 52.20 49.04
I 8 8 70 - 4 25959 52.20 5090 52.70 6800695 53.00 50.38
I 8 8 70 - 5 22951 54.00 3950 54.60 6902827 54.70 51.76
I 8 12 70 - 1 4991 60.10 1 - 3869550 59.70 56.13

I 8 12 70 - 2 4993 61.10 1 - 4214440 61.50 57.51
I 8 12 70 - 3 4991 60.60 1 - 3965560 60.00 56.34

I 8 12 70 - 4 4991 61.90 1 - 4058619 62.40 58.30
I 8 12 70 - 5 4993 60.90 1 - 4193600 61.60 56.95

#best (including. ties) 23 / 30 7 / 30 4 / 30

Table 4: Computational results for 4, 6 and 8 crops with 8 or 12 periods and 70 plots
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colonnes, heuristiques d’approximation garantie et schémas hybrides.
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