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Abstract

We define a new class of positive and Lebesgue measurable functions in terms
of their asymptotic behavior, which includes the class of regularly varying functions.
We also characterize it by transformations, corresponding to generalized moments
when these functions are random variables. We study the properties of this new class
and discuss their applications to Extreme Value Theory.
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Introduction

The field of Extreme Value Theory (EVT) started to be developed in the 20’s, concurrently
with the development of modern probability theory by Kolmogorov, with the pioneers
Fisher and Tippett (1928) who introduced the fundamental theorem of EVT, the Fisher-
Tippett Theorem, giving three types of limit distribution for the extremes (minimum or
maximum). A few years later, in the 30’s, Karamata defined the notion of slowly varying
and regularly varying (RV) functions, describing a specific asymptotic behavior of these
functions, namely:

Definition 0.1. A Lebesgue-measurable function U : R* — R™ is RV at infinity if, for all

>0,
U(xt)

im

x—oo U(x)
p being called the tail index of U, and the case p = 0 corresponding to the notion of slowly
varying function. U is RV at 0" if (1) holds taking the limit x — 0™.
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We had to wait for more than one decade to see links appearing between EVT and RV
functions. Following the earlier works by Gnedenko (see [15]), then Feller (see [13]), who
characterized the domains of attraction of Fréchet and Weibull using RV functions at in-
finity, without using Karamata theory in the case of Gnedenko, de Haan (1970) general-
ized the results using Karamata theory and completed it, providing a complete solution
for the case of Gumbel limits. Since then, much work has been developed on EVT and
RV functions, in particular in the multivariate case with the notion of multivariate regular
variation (see e.g. [7], [9], [26], [27], and references therein).

Nevertheless, the RV class may still be restrictive, particularly in practice. If the limit in (1)
does not exist, all standard results given for RV functions and used in EVT, as e.g. Karamata
theorems, Von Mises conditions, etc..., cannot be applied. Hence the natural question of
extending this class and EVT characterizations, for broader applications in view of (tail)
modelling.

We answer this concern in real analysis and EVT, constructing a (strictly) larger class of
functions than the RV class on which we generalize EVT results and provide conditions
easy to check in practice.

The paper is organized in two main parts. The first section defines our new large class
of functions described in terms of their asymptotic behaviors, which may violate (1). It
provides its algebraic properties, as well as characteristic representation theorems, one
being of Karamata type. In the second section, we discuss extensions for this class of
functions of other important Karamata theorems, and end with results on domains of
attraction. Proofs of the results are given in the appendix.

This study is the first of a series of two papers, extending the class of regularly varying
functions. It addresses the probabilistic analysis of our new class. The second paper will
treat the statistical aspect of it.

1 Study of a new class of functions

We focus on the new class .4 of positive and measurable functions with support R*, char-
acterizing their behavior at co with respect to polynomial functions. A number of proper-
ties of this class are studied and characterizations are provided. Further, variants of this
class, considering asymptotic behaviors of exponential type instead of polynomial one,
provide other classes, denoted by .#, and .#_,, having similar properties and charac-
terizations as .4 does.

Let us introduce a few notations.

When using limits, we will discriminate between existing limits, namely finite or infinite
(00, —00) ones, and not existing ones.

The notation a.s. (almost surely) in (in)equalities concerning measurable functions is
omitted. Moreover, for any random variable (rv) X, we denote its distribution by Fx (x) =
P(X = x), and its tail of distribution by Fx =1-Fyx.The subscript X will be omitted when
no possible confusion.

RV (RV,, respectively) denotes indifferently the class of regularly varying functions (with
tail index p, respectively) or the property of regularly varying function (with tail index p).
Finally recall the notations min(a, b) = aA b and max(a, b) = aVv b that will be used, |x] for
the largest integer not greater than x and [x] for the lowest integer greater or equal than



x, and log(x) represents the natural logarithm of x.

1.1 Theclass .«
We introduce a new class .# that we define as follows.
Definition 1.1. ./ is the class of positive and measurable functions U with support R,

bounded on finite intervals, such that

u U
0 —0 and 1im 22 _ oo 2)
xP+e x—00 XP—€

JpeR,Ve>0, lim
X—00

On .4, we can define specific properties.

Properties 1.1.

(i) ForanyU € 4, p defined in (2) is unique, and denoted by py.

V(x)
ii) LetU,V €  s.t. > py. Then im —— =0.
(i) Le s.t.puy > pv en XI_)ILIO U

(iii) ForanyU,V e # andanya=0,aU+V € H withp,y+v =puV Pv-
(iv) IfU e M with py defined in (2), then1/U € M with p1y = —pu.
(v) LetU € .4 with py defined in (2). If py < —1, then U is integrable on R*, whereas, if

pu > —1, U is not integrable on R™* .
Note that when py = —1, there are examples of functions U which are integrable or
not.

(vi) Sufficient condition for U to belong to .#: Let U be a positive and measurable func-
tion with support R™, bounded on finite intervals. Then

o< lim 2BWON

= UeH
x—oo log(x)

To simplify the notation, when no confusion is possible, we will denote py by p.

Remark 1.1. Link to the notion of stochastic dominance
Let X and Y be rv'’s with distributions Fx and Fy, respectively, with support R*. We say
that X is smaller than Y in the usual stochastic order (see e.g. [28]) if

Fx(x)<Fy(x) forallxeR". 3)

This relation is also interpreted as the first-order stochastic dominance of X over Y, as Fx =
Fy (seee.g. [17]).

Let X, Y berv’s such thatfx =U omdl?y =V, whereU,V € M and py > py. Then Prop-
erties 1.1, (ii), implies that there exists xy > 0 such that, for any x = xy, V(x) < U(x), hence
that (3) is satisfied at infinity, i.e. that X strictly dominates Y at infinity.

Furthermore, the previous proof shows that a relation like (3) is satisfied at infinity for any
functions U and V in M satisfying py > pv. It means that the notion of first-order stochas-
tic dominance or stochastic order confined to rv’s can be extended to functionsin /. In this
way, we can say that if oy > pv, then U strictly dominates V at infinity.

Now let us define, for any positive and measurable function U with support R*,
[e.0]
KU::sup{r:rEIR{ and f xr_lU(x)dx<oo}. 4)
1

Note that xy may take values +oo.



Definition 1.2. For U € ./, xy defined in (4) is called the # -index of U.
Remarks 1.1.

1. If the function U considered in (4) is bounded on finite intervals, then the integral
involved can be computed on any interval [a,o0) with a > 1.

2. When assuming U = F, F being a continuous distribution, the integral in (4) reduces
(by changing the order of integration), for r > 0, to an expression of moment of a rv:

f xr_lf(x)dx:%(f x'dF(x)—F(l)).

1 1

3. We havexy =0 for any tail U = F of a distribution F.
Indeed, suppose there exists F such that xz < 0. Let us denote k3 by x. Since x <

oo — —
x/2 < 0, we have by definition of x thatf x> VF(x)dx = co. But, since F <1 and
1

o0 o0

x/2—-1 < —1, we can also write thatf 2 VFx)dx < f 12" ldx < co. Hence
1 1

the contradiction.

4. Asimilar statement to Properties 1.1, (iii), has been proved for RV functions (see [4]).
Let us develop a simple example, also useful for the proofs.
Examplel.1. Leta € R and U, the function defined on (0,00) by

1, O<x<l1
Ua(x):={ x“ x=1

Then Uy € M with py, = a defined in (2), and its 4 -index satisfiesxy, = —a.

To check that U, € .#, itis enough to find a py,, since its unicity follows by Properties 1.1,
(i). Choosing py, = a, we obtain, for any € > 0, that
Ug(x) .. 1 Uq (X)

lim =lim —=0 and lim = lim x* =00
x—00 xPUat€  x—o00 x€ x—o00 xPUa~€  x—o00

Hence Uy, satisfies (2) with py, = a.
o0
Now, noticing that[ P U,(0)dx<oco < s+a<0,thenitcomes that Ky, defined
1

in (4) satisfies xy, = —a.

As a consequence of the definition of the ./ -index x on .4, we can prove that Proper-
ties 1.1, (vi), is not only a sufficient but also a necessary condition, obtaining then a first
characterization of /.

Theorem 1.1. First characterization of ./
Let U be a positive measurable function with support R* and bounded on finite intervals.

Then log (U
Ue M withpy=-1 < lim M =-7 5)
x—oo log(x)

where py is defined in (2).



Example 1.2. The function U defined by U (x) = x™™¥ does not belong to ./ since the limit
expressed in (5) does not exist .

Other properties on .4 can be deduced from Theorem 1.1, namely:

Properties 1.2. LetU, V € 4 with py and pvy defined in (2), respectively.
(i) Theproduct UV € M with pyy = pu +pv.
(i) Ifpyu<pv<-lorpy<-1<0<py, then theconvolutionU xV € M with py.v =
ov.If-1<py<pvy, thenU *V € M with py«v = py +pv+l.
(iii) I]”)Cango V(x) =00, thenUoV € M with py.v = pupv-

Remark 1.2. A similar statement to Properties 1.2, (ii), has been proved when restrict-
ing the functions U and V to RV probability density functions (see [3]), showing first that
U=x*V(x)

an;o Ux)+V(x)
grability of the function of # having the lowest p.

When U and V are tails of distributions belonging to RV, with the same tail index, Feller
([13]) proved that the convolution of U and V also belongs to this class and has the same
tailindexasU and V.

= 1. In contrast, we propose a direct proof, under the condition of inte-

We can give a second way to characterize .# using xy defined in (4).

Theorem 1.2. Second characterization of ./
Let U be a positive measurable function with support R*, bounded on finite intervals. Then

U € M with associated py <— Ky=—-pu (6)
where py satisfies (2) and xy (4).
Here is another characterization of .#, of Karamata type.

Theorem 1.3. Representation Theorem of Karamata type for 4

(i) Let U € 4 with finite py defined in (2). There exist b > 1 and functions «, § and €
satisfying, as x — oo,

a(x)/log(x) — 0, e(x) - 1, Bx) — pu, (7

such that, forx = b,
U(x)zeXp{a(xHe(x)f ﬁ%ﬂdt}. (8)
b

(i) Conversely, if there exists a positive measurable function U with supportR*, bounded
on finite intervals, satisfying (8) for some b > 1 and functions «, B, and € satisfying
(7), then U € 4 with finite py defined in (2).

Remarks 1.2.

1. Another way to express (8) is the following:

X
U(x)zeXp{a(xH&;gmf ,B(t)dt}. 9)
b



2. The function a defined in Theorem 1.3 is not necessarily bounded, contrarily to the
case of Karamata representation for RV functions.

Example 1.3. Let U € 4 with  -index xy. If there exists ¢ > 0 such that U < c, then
xy =0.

Indeed, since we have lim w > lim M

I g A TTog) =0, applying Theorem 1.1 allows

to conclude.

1.2 Extension of the class .4

We extend in a natural way the class .4, introducing two other classes of functions.

Definition 1.3. .4, and .4 _., are the classes of positive measurable functions U with sup-
port R*, bounded on finite intervals, defined as

U
Moo:={U:Vp€R, limﬂ=0} (10)
x—oo xP
and U
M_m::{U . VpeR, lim —— :oo} (11)
x—oo xP

Notice that it would be enough to consider p <0 (p > 0, respectively) in (10) ((11), respec-
tively). Moreover ., #— and . are disjoint.
We obtain similar properties for %, and .#_,, as the ones given for .4, namely:

Properties 1.3.
() Uedly <= 1/U€E M.
V(x)

(i) If (U,V)€ M_ox M Or M_oo* Moo OF M X Moo, then lim —— =0.
x—o0 UJ(x)

(i) IfU,V € Ms (M_o respectively), then U + V € Moo (M _ Tespectively).

The index xy defined in (4) may also be used to analyze .#, and .#_... It can take infinite
values, as can be seen in the following example.

Example 1.4. Consider U defined on R* by U(x) := e™*. Then U € Mo, with xy = co.
Choosing U(x) = e* leads to U € M_ withky = —oco.

A first characterization of .4, and .#_., can be provided, as done for .# in Theorem 1.1.

Theorem 1.4. First characterization of ¢, and 4_ .,
Let U be a positive measurable function with support R*, bounded on finite intervals. Then

we have
log (U(x)) _

Ue My < lim —00 (12)

x—oo log(x)

and log (U
Uetlo < lim 28U _ (13)

x—oo log(x)



We denote by .+, the union Moo U M _ .

Remark 1.3. Link to a result from Daley and Goldie.
If we restrict M U M+ to tails of distributions, then combining Theorems 1.1 and 1.4 and
Theorem 2 in [6] provide another characterization, namely

Ue MU Moo < XyelPC

where Xy is a rv with tail U and 4 PC is the set of non-negative rv’s X having the property
introduced by Daley and Goldie (see [6]) that, for independent rv’s X and Y,

KXAY)=x(X)+x(Y).

We notice that x(X) defined in [6] (called there the moment index) and applied to rv’s, co-
incides with the ./ -index of U, when U is the tail of the distribution of X.

An application of Theorem 1.4 provides similar properties as Properties 1.2, namely:

Properties 1.4.
1) Let(U,V) € Moo X Moo OF Mico X M OF M_oo X M_so. Then U -V € My, OF Mioo O
M _, Tespectively.

(ii) Let (U,V) € Moo x M withpy =0o0rpy <—1, thenU %V € M with py.y = pv. Let
(U, V) € Moo x Moo, then U xV € My. Let (U, V) € M_oo X M OF M_o0 X M+, then
UxVelM .

(iii) LetU € M+oo and 'V € M such that)cllngo Vix)=ococorV el o, thenUoV € M.

Extending Theorems 1.2-1.3 to #, and .#_., provide the next results, with extra condi-
tions w.r.t. Theorem 1.2.

Theorem 1.5.
Let U be a positive measurable function with support R*, bounded on finite intervals, with
Ky defined in (4). Then
i) @ Uedyy = «Ky=o0.
(b) U continuous, }Ln;o Ux)=0,andxy=00 = UEMy.
) @ Uedlw = «xy=-—00.
(b) U continuous and non-decreasing, andxy = —oo — U€ M _o.

Remarks 1.3.

1. In (i)-(b), the condition xy = co might appear intuitively sufficient to prove that U €
M. This is not true, as can be seen in the following example showing, for instance,
that the continuity assumption is needed. Indeed, we can check that the function U
defined onR™ by

neN\{0}

% otherwise,

{1/x if xe U (mn+1/n")
U(x):=

e

satisfiesxy = oo and lim U (x) = 0, but is not continuous and does not belong to M.
X—00



2. The proof of (i)-(b) is based on an integration by parts, isolating the term t"U(t). The
continuity of U is needed, otherwise we would end up with an infinite number of
jumps of the type U(t*) - U(t™) (#0) onR™.

Theorem 1.6. Representation Theorem of Karamata Type for /., and .4/ _,
(i) IfU € M, then there exist b> 1 and a positive measurable function «a satisfying

a(x)/log(x) T O (14)

such that,Vx = b,
U(x) =exp{—a(x)}. (15)
(i) IfU € M_o, then there exist b > 1 and a positive measurable function « satisfying
(14) such that, Vx= b,
U(x) =exp{a(x)}. (16)
(iii) Conversely, if there exists a positive function U with support R™, bounded on finite
intervals, satisfying (15) or (16), respectively, for some positive function a satisfying
(14), then U € M, or U € M _, respectively.

1.3 On the complement set of .4 U ./

Considering measurable functions U : R* — R*, we have, applying Theorems 1.1 and 1.4,

log (U
that U belongs to .4, ., or M if and only if lim og(U(x))
x—oo  log(x)

Using the notions (see for instance [4]) of lower order of U, defined by
log (U (x))

IJ(U)ZZXII_%IOW, 17)

exists, finite or infinite.

and upper order of U, defined by

— log (U
V) = Tim 28U (18)
x—oo log(x)
we can rewrite this characterization simply by u(U) = v(U).
Hence, the complement set of .4 U.# . in the set of the functions U : R* — R™", denoted
by &, can be written as

O:={U:R" - R" : u(U) <v(U)}.

This set is nonempty: @ # @, as we are going to see through examples. A natural question
is whether the Pickands-Balkema-de Haan theorem (see Theorem A.1 in Appendix A.3)
applies when restricting @ to tails of distributions. The answer follows.

Theorem 1.7.

Any distribution of a rv having a tail in G does not satisfy Pickands-Balkema-de Haan the-
orem.

Examples of distributions F satisfying p(F) < v(F) are not well-known. A non explicit one
was given by Daley (see [5]) when considering rv’s with discrete support (see [6]). We will
provide a couple of explicit parametrized examples of functions in @ which include tails of
distributions with discrete support. These functions can be extended easily to continuous
positive functions not necessarily monotone, for instance adapting polynomes given by
Karamata (see [21]). These examples are more detailed in Appendix A.3.



Example 1.5.
Leta >0, B R such that B # —1, and x, > 1. Let us consider the increasing series defined

by x, = xé”“)n, n =1, well-defined because x, > 1. Note that x, — oo as n — oo.
The function U defined by
U 1, O=sx<x (19)
X) =
xgmﬁ), X € [Xp,Xp+1), VR=1

belongs to G, with

p(U):%-’_aﬁ) and v()=al+p), ifl+>0
a(l+p)
+a

pWU)=al+p) and vU)= , ifl1+p<0.
Moreover, if 1+ < 0, then U is a tail of distribution whose associated rv has moments lower
than-a(1+ B)/(1+ ).

Example 1.6.

Letc>0anda € R such that a # 0. Let (x,) neN be defined by x, =1 and xp41 = 2%lC p>1,
well-defined for ¢ > 0. Note that x, — oo as n — oo.

The function U defined by

1 0<sx<x;
U(x).—{ 20%  x,<X<Xp+1, Vn=1

belongs to G, with
plU)=ac and vU)=o00, ifa>0
pU)=-oc0 and v(U)=ac, ifa<O.

Moreover, if @ < 0, then U is a tail of distribution whose associated rv has moments lower
than —ac.

2 Extension of RV results

In this section, well-known results and fundamental in Extreme Value Theory, as Kara-
mata’s relations and Karamata’s Tauberian Theorem, are discussed on .#. A key tool for
the extension to .# of these standard results, is the characterizations of .# given in The-
orems 1.1 and 1.2.

First notice the relation between the class .# introduced in the previous section and the
class RV defined in (1).

Proposition 2.1. RV, (p € R) is a strict subset of M .

The proof of this claim comes from the Karamata relation (see [22]) given, for any RV
function U with index p € R, by

m log (U (x)) _

) 2
2o logy P (20



which implies, using Properties 1.1, (vi), that U € .4 with .#-index xyy = —p. Moreover,

.. . Ux) . . .
RV # 4, noticing that, for £ > 0, lim o does not necessarily exist, whereas it does for
X—00 X

a RV function U. For instance the function defined on R* by U(x) = 2 + sin(x), is not RV,
log (U
but lim M =0,hence Ue 4.
x—oo  log(x)

2.1 Karamata’s Theorem

We will focus on the well-known Karamata Theorem developed for RV (see [19] and e.g.
[13, 4]) to analyze its extension to .. Let us recall it, borrowing the version given in [7].

Theorem 2.1. Karamata’s Theorem ([19]; e.g. [7])
Suppose U : R™ — R™ is Lebesgue-summable on finite intervals. Then

(K1)
UeRV, p>-1 « lim —2% _ 150
pr P X—00 fox Uundt -P '
(K2)
UeRV, p<—-1 o« lim-—9% _ 159
prP x=oo [CU()dt P '
. _ xU(x)
(K3) (@) UeRV.,; = Ilim —/———=0.
x—oo [FU(H)dt
b xU(x)

(i) UERV,land[O Uthdt<oo —= }LI&W:O.

Remark 2.1. The converse of (K3), (i), is wrong in general. A counterexample can be given

xU(x
by the Peter and Paul distribution which satisfies lim % =0 but is not RV_;. We
x—oo [P U(t)dt

will come back on that, in more details, in § 2.1.2.

Theorem 2.1 is based on the existence of certain limits. We can extend some of the results
to 4, even when theses limits do not exist, replacing them by more general expressions.
2.1.1 Karamata’s Theorem on .4

Let us introduce the following conditions, in order to state the generalization of the Kara-
mata Theorem to ./:

r 1 - lUudte
€1 YD ¢ 4 with #-indexo, ie. lim o8 (/y (0dr) _log(U) ) _
fp trlunadt X—00 log(x) log(x)
r 1 Cr-lu(ndt
2y YD 4 with 4-index0, i.e. lim og (/. (0dt) logUG)) _,
S trlu(ndt x—00 log(x) log(x)

Theorem 2.2. Generalization of the Karamata Theorem to ./
Let U:R*— R™ be a Lebesgue-summable on finite intervals, and b > 0.Then, for r € R,

10



(K1%)

lim log(J,, "UWdr) _ +r>0
U € M with M -index (—p) such thatp+r>0 < xX—oo log(x) =P
U satisfies (C1r)
(K2*)
. log(f7 " tU)dr)
U € M with 4 -index (—p) such thatp+r <0 <— hmx_,‘oo log(x) =p+r<0
U satisfies (C2r)
(K3*)
. log(fy ' 'UW®dr) _
U € M with M -index (—p) such thatp+r=0 << lim,;—o0 log(x) =p+r=0
U satisfies (C1r)
This theorem provides then a fourth characterization of /.
Note that if r = 1, we can assume b = 0, as in the original Karamata’s Theorem.
Remarks 2.1.
1. Note that (K3*) provides an equivalence, contrary to (K3).
2. Assuming that U satisfies the conditions (C2r) and
o0
f F UMD < oo 21)
1

we can propose the following characterization of U € ./ with # -index (r +1):

1 CrUMmdt
Ue U with #-index(r+1) < lim 08 (/s (nd1) =0.
X—00 log(x)

This is the generalization of (K3) in Theorem 2.1, providing not only a necessary con-
dition but also a sufficient one for U to belong to 4, under the conditions (C2r) and
(21).

2.1.2 [Illustration using Peter and Paul distribution

The Peter and Paul distribution is a typical example of a function which is not RV. It is
defined by (see e.g. [16], [12], [11] or [24])

Fx):=1- Y 2% x>o. (22)

k=1: 2k>x

Proposition 2.2.
The Peter and Paul distribution does not belong to RV, but to ./ with . -index 1.

Let us illustrate the characterization theorems when applied on Peter and Paul distribu-
tion; we do it for instance for Theorems 1.1 and 2.2, proving that this distribution belongs
to M.

11



(i) Application of Theorem 1.1
For x € [2":2"*1) (n = 0), we have, using (22), Flx) = Z 27k = 27" from which

k=n+1

log (l?(x)) log (l?(x))
<- <1, hence lim ——
+1 log(x) x—oo log(x)

orem 1.1 is equivalent to F€ .4 with .4 —index1.
(ii) Application of Theorem 2.2
log (f;l?(t)dt)

Let us prove that lim ——————~==0.
X—00 log(x)

Suppose 2" < x < 2"*! and consider a € N such that a < n. Choose w.l.o.g. b =24
Then the Peter and Paul distribution (22) satisfies

we deduce that = —1, which by The-
n

x_ n-1 p2k+l x_ n-1
f F(ndt= Y F(t)dt+[ F(ndt=Y 27F@F1 254 (x-2"27" = n—a+x27"-1.
b k=a’2* 2" k=a

Hence it comes

log(n—a+x27"-1) - log(flf]?(t)dt) - log(n—a+x27"-1)

(n+1)log(2) - log(x) a nlog(2)
—
log( /i F(ndt)
and, since 1 <27 "x <2, we obtain lim —— = =0.
x—o00 log(x)
Moreover, we have
F(x) — -
log(M)  log[F)  log(fi Fnde)
im —==1+lim —— - lim ————= =
x—oco  log(x) x—oo log(x) x—00 log(x)

Theorem 2.2 allows then to conclude that F € .4 with .4 -index 1.

Note that the original Karamata Theorem (Theorem 2.1) does not allow to prove that the
Peter and Paul distribution is RV or not, since the converse of (i) in (K3) does not hold,
contrary to Theorem 2.2. Indeed, although we can prove that

xF(x) . x27"
im ——— = lim — = 0,
xﬁoofb F(t)ydt *n—on—-a+x27"-1

Theorem 2.1 does not imply that F is RV_.

2.2 Karamata’s Tauberian Theorem

Let us recall the well-known Karamata Tauberian Theorem which deals on Laplace-Stieltjes
(L-S) transforms and RV functions. The L-S transform of a positive, right continuous func-
tion U with support R* and with local bounded variation, is defined by

U(s):= f e XdU(x), s>0. (23)
(0;00)

12



Theorem 2.3. Karamata’s Tauberian Theorem (see [20])
IfU is a non-decreasing right continuous function with support R* and satisfying U(0*) =
0, with finite L-S transform U, then, fora>0,

U€RV, atinfinity < UeRV, at0".

Now we present the main result of this subsection, which extends to .# the Karamata
Tauberian Theorem, under an extra condition.

Theorem 2.4.
Let U be a continuous function with support R* and local bounded variation, satisfying
U(0%) =0. Let g be defined on R* by g(x) = 1/x. Then, for any a > 0,

() Ue.l with M-index(—a) = Uoge .l with U -index (—a).

. Uoge.#l with H-index (—a) . .

() { and An e [0;a) : x~"U(x) concave Ue M with 4-index (-a).

2.3 Results concerning domains of attraction

Von Mises (see [30]) formulated some sufficient conditions to guarantee that the maxi-
mum of a sample of independent and identically distributed (iid) rv’s, when normalized,
converges to a non-degenerate limit distribution belonging to the class of extreme value
distributions. In this subsection we analyze these conditions on ..

Before presenting the well-known von Mises’ conditions, let us recall the theorem of the
three limit types.

Theorem 2.5. (see for instance [14], [15])

Let (X, n € N) be a sequence of iid rv's and M, := max X;. If there exist constants (a,n €
1<is<n

N) and (b, n € N) with a,, >0 and b,, € R such that

p (M"—_b” < x) = F'a,x+by) — G(x) (24)
an n—oo

with G a non degenerate distribution function, then G is one of the three following types:

Gumbel : A(x):=exp{e *}, xeR
Fréchet : ®q(x):=exp{-x"%}, x=0, forsomea>0
Weibull : ¥q(x):=exp{-(-x)"%}, x<0, forsomea<0

The set of distributions F satisfying (24) is called the domain of attraction of G and de-
noted by DA(G).

In what follows, we refer to the domains of attraction related to distributions with support
R* only, so to the Fréchet class and the subset of the Gumbel class, denoted by D A(Ao),
consisting of distributions F € D A(A) with endpoint x* := sup{x : F(x) > 0} = co. Now, let
us recall the von Mises’ conditions.

(vM1) Suppose that F, continuous and differentiable, satisfies F' > 0 for all x > xq, for
. . XF'(x)
some xg > 0. If there exists a > 0, such that lim — =a,then Fe DA(D,).
x—00 F(x)

13



(vM2) Suppose that F with infinite endpoint, is continue and twice differentiable for all
/

F(x
X = xg, with x¢ > 0. If lim L
x—oo | F'(x)

=0, then F € DA(Ax).
(vM2bis) Suppose that F with finite endpoint x*, is continue and twice differentiable for all
!/

F(x
X = Xp, with xy > 0. If lim (x)
x—x | F'(x)

=0, then Fe DA(A)\ DA(Awo)-

It is then straightforward to deduce from the conditions (vM1) and (vM2), the next results.

Proposition 2.3.
Let F be a distribution.

. . . XF'(x) — . .
(i) IfF satisfies lim — =a >0, then F € 4 with #-index1/c.

X—=00  F(x)

— li
.. . . F(x) —
(i) IfF satisfies xll_{lQlQ (m) =0, then F € M.

So the natural question is how to relate .# or .#, to the domains of attraction DA(®,)
and DA(A). To answer it, let us recall three results on those domains of attraction that
will be needed.

Theorem 2.6. (seee.g. [9], Theorem 1.2.1)
Let a > 0. The distribution function F € DA(®.) if and only ifx* =sup{x: F(x) <1} =oc0
and F € RV_g,.

Corollary 2.1. De Haan (1970) (see [7], Corollary 2.5.3)

log (l?(x)) B

IF € DAWco), then lim —-r= = o0

Theorem 2.7. Gnedenko (see [15], Theorem 7)
The distribution function F € DA(A) if and only if there exists a continuous function A
such that A(x) — 0 as x — oo and, for all x e R,

. 1-F(z(1+A(2) x))
lim =

lim —F e, (25)

De Haan ([8]) noticed that Gnedenko did not use the continuity of A to prove this theorem.
These results allow to formulate the next statement.

Theorem 2.8.
(i) Va>0, Fe DA(®,) = F € ./ with /4 -index (-a).
The converse does not hold: {F € DA(®,), a >0} C {F: Fe U,
(i) DA(Aoo) C {F: F€ Moo}

Let us give some examples illustrating the strict subset inclusions.

Example 2.1. To show in (i) that DA(®,) # {F : F € M with 4 -index (—a)}, a > 0, it is
enough to notice that the Peter and Paul distribution does not belong to D A(D,), but that
its associated tail of distribution belongs to /(.

14



Example2.2. Toillustrate (ii), we consider the distribution F defined in a left neighborhood
of oo by
F(x):=1-exp{-|x]log(x)}. (26)

Then it is straightforward to see that F € {F : F € sy}, by Theorem 1.6 and the fact that

x] log(x
LxJ log(x) =o00. We can then check that F ¢ D A(Ax) (see the proofin Appendix B.3).
x—oo log(x)
Remark 2.2. Lemma 2.4.3 in [7] says that if F € DA(A), then there exists a continuous
and increasing distribution function G satisfying

. F)

lim ——=1. 27

X—00 G(x)
Is it possible to extend this result to 4 ? The answer is no. To see that, it is enough to consider
Example 2.2 with F € # \ DA(A) defined in (26) to see that the De Haan's result does not
hold.
Indeed, suppose that for F defined in (26), there exists a continuous and increasing distri-
bution function G satisfying (27), which comes back to suppose that there exits a positive
and continuous function h such that G(x) = 1 —exp (—h(x) log(x)) (x > 0), in particular in
a neighborhood of co. So (27) may be rewritten as

fim 2 _ im exp (= (Lx] — h(x)) log(x)) = Jlim x

X—00 E( x) X~

h()-1xl _ 4

However, since | x| cannot be approximated for any continuous function, the previous limit
does not hold.

3 Conclusion

We introduced a new class of positive functions with support R*, denoted by .#, strictly
larger than the class of RV functions at infinity. We extended to .# some well-known re-
sults given on RV class, which are crucial to study extreme events. These new tools allow
to expand EVT beyond RV. This class satisfies a number of algebraic properties and its
members U can be characterized by a unique real number, called the .4 -index k. Four
characterizations of .# were provided, one of them being the extension to .4 of the well-
known Karamata’s Theorem restricted to RV class. Furthermore, the cases x;; = co and
Ky = —oo were analyzed and their corresponding classes, denoted by %, and .#_, re-
spectively, were identified and studied, as done for .#. The three sets ./, #—oc and #
are disjoint. Tails of distributions not belonging to .4 U ./ ., were proved not to satisfy
Pickands-Balkema-de Haan theorem. Explicit examples of such functions and their gen-
eralization were given.

Extensions to .4 of the Karamata Theorems were discussed in the second part of the pa-
per. Moreover, we proved that the sets of tails of distributions whose distributions belong
to the domains of attraction of Fréchet and Gumbel (with distribution support R*), are
strictly included in .4 and .4 , respectively.

Note that any result obtained here can be applied to functions with finite support, i.e.
finite endpoint x*, by using the change of variable y = 1/(x* — x) for x < x*.

15



After having addressed the probabilistic analysis of .4, we will look at its statistical one.
An interesting question is how to build estimators of the .4 -index, which could be used
on RV since RV € .#. A companion paper addressing this question is in progress.

Finally, we will develop a multivariate version of .4, to represent and describe relations
among random variables: dependence structure, tail dependence, conditional indepen-
dence, and asymptotic independence.

Acknowledgments. M. Cadena acknowledges the support of SWISS LIFE through its ES-
SEC research program on 'Consequences of the population ageing on the insurances loss’.
Partial support from RARE-318984 (an FP7 Marie Curie IRSES Fellowship) is also kindly
acknowledged.
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A Proofs of results given in Section 1

A.1 Proofs of results concerning ./

Proof of Theorem 1.1. The sufficient condition given in Theorem 1.1 comes from Proper-
ties 1.1, (vi). So it remains to prove its necessary condition, namely that

m 08U &)

- 28
x—oo  log(x) pu (28)

for U € .4 with finite py defined in (2).
Let € > 0 and define V by V(x) = 1(p<x<1) + X’ *¢1(4=1). Applying Example 1.1 with a =
pu + € with € > 0 implies that py = py +¢€, hence py > py. Using Properties 1.1, (ii),

U U
provides then that xlim ) =1 )

—oo V(x) x—oo xPUte

=0, so, for n € N*, there exists xg > 1 such for
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U(x) 1

all x = xy, e =T ie. nU(x) < xPU* Applying the logarithm function to this last
X

inequality and dividing it by —log(x), x = xp, gives

_log(n)_log(U(x))>_ e
log(x) log(x) pu—¢

_log(U(x)) -

log(U
= —py —€ and then lim —MZ

log(x) x—oo  log(x)

We consider now the function W(x) = 1g<x<1) + X*V " “1(x>1), with € > 0, and proceed in

log(U
8] < _py +e. Hence, Ve >0,

hence

the same way to obtain that, for any ¢ > 0, lim —
x—oco  log(x)
log(U — log(U
we have —py —€ < lim _—og( () < li _—og( ()
x—oco  log(x) x—oo  log(x)
follows taking € arbitrary. O

< —pu +¢€, from which the result

Now we introduce alemma, on which the proof of Theorem 1.2 will be based.

LemmaA.l. Let U € ./ with associated 4 -index xy defined in (4). Then necessarily xy =
—pu, Where py is defined in (2).

Proof of Lemma A.1. Let U € .# with ./ -index xy given in (4) and py defined in (2). By

Theorem 1.1, we have lim logUx) _
x=o0  log(x)

Hence, for all € > 0 there exists xy > 1 such that, for x = xy, U(x) < xPU™€.
Multiplying this last inequality by x”~!, r € R, and integrating it on [x(;00), we obtain
oo (o.0]
K 'Udx< | xPvte*T"ldx, which is finite if r < —py —e. Taking € | 0 then the

X0 Xo
supremum on r leads to xy = —py. O

Proof of Theorem 1.2.
The necessary condition is proved by LemmaA.1. The sufficient condition follows from
the assumption that py satisfies (2). O

Proof of Theorem 1.3.
e Proofof (i). For U € .4, Theorems 1.1 and 1.2 give that

m - log(U(x)) _

—py =xy with py defined in (2) and xy in (4). (29)
x—oo  log(x)

Introducing a function y such that
lim y(x) =0 (30)
X—00

we can write, for some b > 1, applying the L'Hopital’s rule to the ratio,

bxlog(U(l‘)) dt 1 U
iog t)_hm 0gU) _

xh—l}c}o (y(x) " log(x) ~ x—co  log(x)

—Ky. (31)
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> Suppose ky # 0. Then we deduce from (29) and (31), that

li_{n log(U(xxl)o)g(U(t)) - o2
Ty (x) log(x)+fb tlog(f) dt
log(U (x))

Hence, defining the function ey (x):= ,for x = b, we

y(x) log(x) + [;f loﬁgg]((tt)) di

* Bu()
can express U, for x = b, as U(x) = exp{ ay(x) +ey(x) - dt
b

log(U(x))

where ay(x):=ey(x)y(x)log(x) and Byx):= logT' (33)

It is then straightforward to check that the functions ay, By and ey satisfy
ay(x
the conditions given in Theorem 1.3. Indeed, by (30) and (32), xlim ulx) _

olog(x)

log(Ux)) _ xy =

lim ey (x) y(x) = 0. Using (29), we obtain lim By (x) = lim
X—00 X—00 X—00 log(x)
pu- Finally, by (32), we have xlim eyx)=1.
—00
> Now suppose xy =0.
We want to prove (8) for some functions &, , and € satisfying (7).
. . . . log(xU(x))
Notice that (29) with x; = 0 allows to write that lim ——— =
x—oo  log(x)

So applying Theorem 1.1 to the function V defined by V (x) = xU(x), gives that
V € . with py = —xy = 1. Since xy # 0, we can proceed in the same way as

previously, and obtain a representation for V of the form (8), namely, for d > 1,
Y pv (1)
t

Vx=>d, V(x)= exp{ocv(x) +ey(x) f

d
log(V
conditions of Theorem 1.3 and By = % (see (33)). Hence we have, for
og(x

dt}, where ay, By, €y satisfy the

x=d,

Vix)

U(x) —~ :exp{—log(x)+av(x)+ev(x)

xlog(tU(t))dt}
d tlog(y)
*log(U(1))

4 tlog(t)

exp { ay(x) + (ey(x) —1) log(x) —ey(x) log(d) + ey (x)

ay (x) + (ev(x) — 1) log(x) — ey (x) log(d)
log(x)

U satisfies (8) when setting, for x = d, ay(x) := ay(x) + (ey(x) — 1) log(x) —

ev(x) log(d), By (x) := %

* Proof of (ii). Let U be a positive function with support R*, bounded on finite inter-
vals. Assume that U can be expressed as (8) for some functions «, §, and € satisfying
(7). We are going to check the sufficient condition given in Properties 1.1, (vi), to
prove that U € 4.

log(U(x) _ a(x) Sy BRar
= +e(X)————
log(x) log(x) log(x)

Noticing that xlim = 0, we obtain that
—00

andey :=¢y.

Since and that, via U'Hopital’s rule,

* PO gy
Jo7rar_ POIX_ i B

X—00 log(x) T x—oo 1 X X—00
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then using the limits of a, B, and € allows to conclude.

Proof of Properties 1.1.
* Proofof (i). Let us prove this property by contradiction.
Suppose there exist p and p’, with p’ < p, both satisfying (2), for U € .#. Choosing
e=(p—p")/2in (2) gives

lim v =0 and lim U) = li vl _

7 m 7 y
x—o0 xp't€ x—o00 xP~€  x—o0 xP'*E€

hence the contradiction.
e Proof of (ii). Choosing € = (py — py)/2, we can write

V(x) V) xPv*  V(x) (U(x) )‘1

U(x) xPv*e U(x) xPv+e | xpu—e

from which we deduce (ii).
* Proofof (iii). Let U,V € 4, a> 0, ¢ > 0 and suppose w.L.o.g. that py < py.

Si 0. writi aUx)  a UK . I alUx)+V(x) 0 and

ince py — py > 0, writing ZPvEc = v pu gPuEe gives xl—g}oT =0an
aU(x)+V(x

lim # = oo; thus we conclude that p,y+v =pu V pv.

X—o00 xPv—€

* Proof of (iv). It is straightforward since (2) can be rewritten as

lim /U () =oo and lim VU _

x—oo x~Pu—€ x—o00 x~PUTE -

* Proof of (v). First, let us consider U € .4 with py < —1. Choosing €y = —(py + 1)/2
(> 0) in (2) implies that there exist C > 0 and xp > 1 such that, for x = xp, U(x) <

o
C xPu*e = C xPv=1/2 from which we deduce that f U(x) dx < co. We conclude
Xo

oo
that f U(x) dx < oo because U is bounded on finite intervals.

0
Now suppose that pyy > —1. Choosing €p = (oy + 1)/2 (> 0) in (2) gives that for C >0

oo
there exists xy > 1 such that, for x = xg, U(x) = CxPu=D/2 and so f Ux)dx =
-~ 0
f U(x)dx = oo.
Xo

log (U
* Proof of (vi). Assuming —oo < lim %

(2), which implies that U € ..

1
Consider p = xlim olgL((;c))
—oo  log(x

we can deduce that,

< 0o, we want to prove that U satisfies

well defined under our assumption, and from which

log (U (x)) 3

€
Ve >0,3xy > 1such that, Vx=x3, —=—<
2 log(x)

<
p = .
Therefore we can write that, for x = Xp, ONn one hand,

U(x) {(log(U(x))
< =expq|————
xpPte log(x)

o- e) log(x)} <exp {—g log(x)} e 0
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and on the other hand,

Ulx) {(log(U(x))
=ex —_—
xP—€ log(x)

-p+ e) log(x)} = exp {g log(x)} famdles

hence the result.

Proof of Properties 1.2. Let U, V € 4 with py and py respectively.
* Proof of (i). It is immediate since

log(Ux)V(x)) .. (log(U(x))  log(V(x))
im —=——— = lim +
x—00 log(x) x—oo| log(x) log(x)

=pu*tpv.

* Proof of (ii). First notice that, since U,V € .4, via Theorems 1.1 and 1.2, for € > 0,
there exist xyy > 0, xy > 0, such that, for x = xo = xy Vv xv,

xPUT2 < U(x) < xPU2 and  xPVT2 < V(x) < xPVHE2,

> Assume py < py < —1. Hence, via Properties 1.1, (v), both U and V are inte-
grable on R*. Choose p = py.
Via the change of variable s = x — ¢, we have, V x = 2xy > 0,

UxVx) f U YE=9 dt+f U(t)v(x_t)dt

xp+€

< “vofi-L pv+€/2dt L [Pyefi=2)
- xe/z 0 (1) _; +xpv—pu+e/2 0 (S)( _;) $

max (1, cPVFe/2) rxi2 max (1, cPute/2) rxi2
<S— udt+ ————= Vi(s)ds
xe/2 0 xpv—pU+e/2 0

1 t
since, for0<t < x/2, i.e.0<c<§sl——sl,
X

t pU+€/2
) <max(1,cPUte’?),

t pv+€/2
(1——) <max(1,c’V*'?) and (1——
x x

Hence we obtain, U and V being integrable, and since py — py +€/2 >0,

max(l,CpV"'E/Z) x/2 max(l,CpU+E/2) x/2
lim —f U()dt=0 and lim —f V(s)ds=0,
0 0

xX—00 x€/2 x—oo  xPv—pPu+el2
U= V(x) . ,
from which we deduce that, for any € > 0, J}lm —Qpre = 0. Applying Fatou’s
Lemma, then using that V € .« with py = p, gives, for any e,
UxV(x X— Vix—t
lim — UV, fU(t) U dt>l fU(t) dt> U(t)l (%)dt:
X—00 xP € x—»oo T—o0 x—oo\ xP~€

We can conclude that U * V € 4 with py.v = pv.
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> Assume py < —1 <0 < py. Therefore U is integrable on R*, but not V (Prop-
erties 1.1, (v)). Choose p = py.
Using the change of variable s = x — ¢, we have, V x = 2xy > x¢(> 0),

UxV(x X=%o Vix—t X Vix—t
U=V _ [y )Mm LD,
xp+e X—xo xp+e
X—Xo V(ix-— Xo Uix-s
= Ul(r) ( )dt / V(s )(—st
0
1 X—Xp t pv+€/2 1 Xo s pU+€/2
SXE/ZL U(l’)(l—;) dt+W/(‘) V(S)(l—;) ds.
f pv+el2
Noticing that for 0 < t < x — xp, so (1 — —) <l,andfor0<s<xp<2xp<ux,
X
1 X s py+el2
0<c<-<1-22<1-2<1,50 (1——) ! Smax(l,ch”/z),weobtain
2 X X X
U V(x) 1 X—Xo maX(LCPU+€/2) Xo
? < XE/ZL Uundt+ Wfo V(s)ds.

Since U is integrable, V bounded on finite intervals, and py —py +€/2 > 0, we
have

1 X—Xo max(l,ch+€/2) 0
lim Ut)dt=0 and Ilim ———= V(dt=0.
x—o00 x€ xel2 x—oo  xPv—pu+el2 0
U=xV(x)

Therefore, for any € > 0, we have lim
x—oo xPte€

then using that V € 4 with py = p, gives, for any e,

lim 2F V9 Sy fU(r)V(x dt= lim fU(t) Dt U(t)l (M)dt=oo.

x—oo xP—€ x—»oo X—00 X—00 xP—€

= 0. Applying Fatou’s Lemma,

We can conclude that U * V € 4 with py.y = pv.
> Assume—1< py < py. Then both U and V are not integrable on R* (Proper-
ties 1.1, (v)). Choose p = py + pyv + 1.

X
Let 0 <€ < py + 1. Since V is not integrable on R, we havef V(t)dtx—» 00.
0 —00
So we can apply the L'Hopital’s rule and obtain

“Vnde “vwdr) 1%
lim —fO (z) = lim —UO () ) = lim ) =0
x—oo xPvtlte X—00 (xpv+1+€)' x—oo (py +1+€)xPv+e
“Vnde “vdr) 1%
and lim u = lim M = lim ) =00,

x—oo xPvtl-e X—00 (xpv+1—e)’ x—00 (py +1—€)xPv=E

X
from which we deduce that Wy (x) := f V(t)dt e M with 4 -index py + 1.
0

X
We obtain in the same way that Wy (x) := f U(t)dt e 4 with 4 -index py+1.
0
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We have, via the change of variable s=x -,V x =2xp > 0,

CARAC) f O t)dr+ ) (x D 4t
p+€ x/z +€

£\Pvrer? 1 x/2 s\ Putel2
ST/Z] U(I)(l——) dt+—1/2f V(S)(l——) ds
xPu € 0 X xpvtlte 0 X

Wy (x/2) Wy (x/2)
xPutl+el2 xPv+1l+e/2

< max(l,ch+€/2) ax(l,c‘”’”’z)

and

X
U = Xf(x) f UG )V(x )d U V(x )
xpP=€ x/2

£\Pver2 1 x/2 s\Pu—e/2
ZW]; U([)(l—;) d[+Wj(; V(S)(l—;) ds

_ Wy (x/2) . _ Wy (x/2)
. ov—el2 u oy—€l2
>min (1,cPV ™) e +min (1,cPU7¢?) Py e

dt

1 t
since, for0 <t < x/2, i.e.0<c<£sl——51,
X

t pv+el2
5(1——) Smax(l,cp"”/z)

X

¢ pv—€l2
) X

min (1, ch_E/Z) < (1 -=

¢ pu—€l2 ¢ pu+el2
) s( ) <max(1,cPute’?),

and min(l,c"”‘dz) < (1 —-—

x x
UxV(x UxV(x
Hence, for any 0 <€ < py + 1, we have hm# and lim A:
X—oo  xPte€ x—oo  xP—€

oo. We can conclude that U * V € 4 with py.v =py+pv + 1.
* Proof of (iii). It is straightforward, since we can write, with y = V(x) e
—00

m log(U(V(x))) _ Hm log(U(y)) « lim log(V (x))

00 log(x)  y—c log(y) *—oo log(x) ~pubv:

A.2 Proofs of results concerning ./, and ./ _,

Proof of Theorem 1.4. 1t is enough to prove (12) because by this equivalence and Proper-
ties 1.3,(i), one has

Ue M- = 1/UE My < lim —w:oo < lim _log(ﬂ = —00,
X—00 log(x) x—oo  log(x)
i.e. (13).
log(U) _ _

e LetusprovethatUe 4, — lim
x—oo  log(x)

U
Suppose U € 4. This implies that for all p € R, one has th % =0, i.e. forall
—00
log(U(x)) _

€ > 0 there exists xo > 1 such that, for x = xy, U(x) < ex? which implies los ()
og(x
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1 log (U
08(€) + p, hence lim log (U(x)) < p and the statement follows since the argument
log(x) x—oo log(x)

applies for all p € R.

log(U
* Now let us prove that lim _log(U() -

Ue M.
X—00 log(x) € Moo

We can write, for any p € R, lim —M = xlim (—M
—00

+ p) = 0o, which

X—00 log(x) log(x)
. . . U
implies that U(x) / xP <1and hence lim —— =0.
x—oo xP

Proof of Theorem 1.5.
* Proofof (i)-(a). Suppose U € 4. Then, by definition (10), forany p € R, )}Lnolo xPUx) =
0, which implies that for ¢ > 0, thergo exists xg > 1 such g}at, for all x = xo, U(x) <
cx P, from which we deduce that f X 'Uxdx < cf x"~17P dx which is finite
X

Xo 0
whenever r < p. This result holds also on (1;00) since U is bounded on finite inter-

vals. Thus we conclude that x; = oo, p being any real number.
o0
* Proof of (i)-(b). Note that U is integrable on R* since f x"'U(x)dx < oo, for any

1
r € R, in particular for r = 1. Moreover U is bounded on finite intervals.
For r > 0, we have, via the continuity of U,

o0 o0 X o0 o0
f xr+1dU(x)=(r+1)f f yrdydU(x):(r+1)f y’(f dU(x)) dy
0 o Jo 0 y

which implies, since xlim U(x) =0, that
—00

—f xr+1dU(x):(r+1)f y' Uydy, (34)
0 0

which is positive and finite. Now, for ¢ > 0, we have, integrating by parts and using
again the continuity of U, t"*1U(t) = (r + l)fter(x)dx+ftxr+1dU(x), where
the integrals on the right hand side of the equaloity are finite as (t) — oo and their sum
tends to 0 via (34). This implies that, Vr >0, " T U(¢) — 0.

For r < 0, we have, for ¢ = 1, using the previous result, " *'U() < t?U(t) — 0 as

t — oo. This completes the proof that U € .

* Proof of (ii)-(a). Suppose U € ./ _~. Then, by definition (11), for any p € R, we have
)ClLrgo % = 0o, which implies that for ¢ > 0, there exists xo > 1 such that, for all
X = X9, U(x) = cx”, from which we deduce that, U being bounded on finite intervals,
floo U dx = cfoo x"~1*P dx which is infinite whenever r = —p. The argument

X

applying for any p, we conclude that Ky = —00.
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* Proof of (ii)-(b). Let r = 0. We can write, for s+2<0and t > 1,
¢
0 = —f x*"'d(x"U(x))  (x"U(x)being non-decreasing)
1

t( ot

/1‘ (f d(y5+1) _ t5+1) d(er(x))
X

t y t

f Ak (f d(er(x))) dy - t”lf d(x"U(x))
1 1

1

s+2 _

t
f I Updy - U@ -t (f"'UM-UWM) (U being continue).
1

s+2

t
Hence we obtain, as r — oo, 7" "1U () — oo since f Y 1U(ydy — oo and
1

ts+2
—+t
S+2
s+r+lelR.

$*1 _, 0 (under the assumption s < —2). This implies that U € .#_, since

O

o0
Proof of Remark 1.3-1. Set A= f e “dx=e ! and let us prove that U € /..
1
If r >0, then

e o) 00 n+1/n"
f x"Ux)dx< A+ ) XU dx=A+ ) x"ldx
1

n=1Jn n=1Jn

n+1/n"

00 n+l/n" 1 &
sA+Z[ M ldx=A+— ((n+1/n™" - ndx
n=1Jn |-I’-| n=1
1 > [r1—-1
=A+— ) I N 1 1/n" < oo,
[rl 2= k=0

oo oo
If r =0, then we can write f x"U(x)dx < f xU(x)dx, which is finite using the previ-
1 1

ous result with r = 1.
Now, let us prove U ¢ .4, by contradiction.

log(U
Suppose U € M. Then Theorem 1.4 implies that lim log (U(x) = —oo, which contra-
x—oo  log(x)
1 log(1
dicts lim M= li M:—1>—oo. O
n—oo log(n) n—oo log(n)

Proof of Theorem 1.6.
_logU(x) _

* Proof of (i). Suppose U € .#,. By Theorem 1.4, we have lim oo. It
x—oo  log(x)
log(U
implies that there exists b > 1 such that, for x = b, f(x) := _olg(—((J)c)) > 0. Defining,
og(x

for x = b, a(x) := B(x) log(x), gives (i).

* Proof of (ii). Suppose U € ./ _,. By Properties 1.3, (i), 1/U € .#~. Applying the pre-
vious result to 1/U implies that there exists a positive function a satisfying a(x)/log(x) i
oo such that 1/U(x) = exp{—a(x)}, x = b for some b > 1. Hence we get U(x) =
exp{—a(x)}, x = b, as required.
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* Proof of (iii). Assume that U satisfies, for x = b, U(x) = exp{—a(x)}, for some b > 1

log(U
and a satisfying a(x)/log(x) T, oo A straightforward computation gives )CIerolo - % =
a(x)
im
x—o0 log(x)
We can proceed exactly in the same way when supposing that U satisfies, for x = b,

U(x) = exp{a(x)} for some b > 1 and «a satisfying a(x)/log(x) T OO to conclude
—00

=o0. Hence U € M.

that U € A_ .
O
Proof of Properties 1.3.
Ulx 1/U(x
* Proofof (i). Itis straightforward since, for p € R, lim g =0 < lim 7( ) =
x—oo xP x—oo X P
(0.]

* Proof of (ii)
> Suppose (U, V) € M_o x A with py defined in (2).

Vi) V@ (Ux)\! . V) .
= , we obtain lim —— = 0 since
U(x) xPv*e |\ xpv+e x—o0 UJ(x)

V € U with py satisfying (2) and U satisfies (11) with py =py +e€R.
> Suppose (U, V) € M_oo X Moo-
Vi(x) V(x) (U(x)

Let € > 0. Writing

Let p > 0. We have lim —— = lim
x—oo U(x) x—oo xP

and U satisfies (11).
> Suppose (U, V) € M x M, with pyy defined in (2).
By Properties 1.1, (iv), and Properties 1.3, (i), we have (1/U,1/V) € M x M _.

\% 1/U
The result follows because lim ﬂ = lim J =0.
x—oo J(x) x—o01/V(x)

-1
) = 0 since V satisfies (10)
xP

e The proof of (iii) is immediate.

Proof of Properties 1.4. . Let U, V € .« with ./ -index xy and x v respectively.

* Proofof (i). Itis straightforward as lim w = lim log (U() + log (V(x)) .
x—o00 log(x) x—oo| log(x) log(x)

* Proof of (ii). We distinguish the next three cases.
(@) LetU € My and V € M with py ¢ [—1,0).
Let W(x) = X" (x>1) + Lio<x<1), Withn = =2 if py =20, orn = py — 1 if py < —1. Note

that W e 4 with pyy =n < py.
U(x)

By Properties 1.3, (ii), lim —— =0, so for 0 < § < 1, there exists xp = 1 such that,
X—00 W(x)

forall x = xp, U(x) < 6W (x).

Consider Z defined by Z(x) = U(x)1(9<x<x,) + W (%)1(x>x,), which satisfies Z = U and
Z € M with pz = pw =1 < py. Applying Properties 1.2, (ii), gives Z * V € .4 with
Pz«v =Pz V py = py (note that the restriction on p, corresponds to the condition
given in Properties 1.2, (ii)).

We deduce that, for any x >0, U * V(x) < Z * V(x), and, for e > 0,

U=*V(x) - Z xV(x)

-
xPvte T xPvte€  x—oo

0.
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Moreover, applying Fatou’s Lemma gives

UxV(x)

x—oo xPv—€

1 - —
lim ——— xqoofU(f) Ddt> lim U(t)V( )dt> ) i (V(x )

xpPv—e€

x—00J0 X—00

Therefore, U * V € .4 with ./ -index py.v = pv.
(b) Let (U,V) € Moo X Mso.

log(U
Let p € R. Consider U € .#. We have, applying Theorem 1.4, lim log(U(x) =

=00 log(x)
log(U
—oo. Rewriting this limit as lim M
x=co log(1/x)

there exists xy > 1 such that, for x = xy;, log(U(x)) < clog(1/x), i.e. U(x) < x~¢. On

V € M, we obtain in a similar way that there exists xy > 1 such that, for x = xy,
Vx)<xC.
Using the change of variable s = x — ¢, we have, V x = 2max(xy, xv) >0,

x/2 _ X _
U=xV(x) :f U V(ix t)d“_f U V(ix t)dt
xP 0 xP x/2 xP

1 x/2 f\-c 1 x/2 s\—¢
< fo v(1--) dt+xp+cf0 vioL--) ds

2¢ x/2
f U(t)dt+ f V(s)ds
0

1 t t\—c¢
since, for0<t<x/2,ie0<-<1--—<1, (1——) <2¢,
2 X X

oo, we deduce that, for c = |p|+1 >0,

xp+c

UxV
This implies, via the integrability of U and V, for p € R, xlim U=V = 0. Hence
—00

xP
UxVE My
(c) LetU € M_oo and 'V € M OF M+oo.
We apply Fatou’s Lemma, as in (a), to obtain, for any p € R,

1 _ 1 _
fim V™ h_mf V(t)U(xp t)drzf V(9 lim (U(x t))d -
0 0

X—00 xP =00 X X—00 xP

We conclude that U « V € #_
Proof of (iii). First, note that if V € .#_, then xlim V(x) = co. Hence writing
—00
log(U(V(x)) _log(Uy)) log(V(x))
log(x) log(y) log(x)

, with y = V(x), allows to conclude.

A.3 Proofs of results concerning 0
Let us recall the Pickands-Balkema-de Haan theorem, needed to prove Theorem 1.7.

Theorem A.1. Pickands-Balkema-de Haan theorem (see e.g. Theorem 3.4.5in [11], Pickands-
Balkema-de Haan theorem)

Let G¢ denote the Generalized Pareto Distribution (GPD) defined by

1+&x)7 Y8 EeR,E£0,1+Ex>0
Ge(x) = {ex &=0,xeR.

For¢ € R, the following assertions are equivalent:
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(i) FeDA(exp(=Gy))
(i) There exists a positive function a > 0 such that for 1 +{x >0,

. Fu+xaw)
lim ———

= Ge ().
U—00 F(uw)

Note that Theorem 1.7 refers to distributions F with endpoint x* = sup{x: F(x) < 1} = co.

Proof of Theorem 1.7. Let us prove this theorem by contradiction, assuming that F satis-
fies the Pickands-Balkema-de Haan theorem and that F satisfies u(l_:) < v(F). Note that
x* = oo.
e Assume that F satisfies Theorem A.1, (i), with & = 0 (because x* = o).
Lete > 0. By Theorem A.1, (ii), there exists 1 > 0 such that, for u = yy and x = 0,

f(u+x)
— < 1l+e. (35)
F(u) Ge¢(x/ a(w))

By the definition of upper order, we have that there exists a sequence (x;) ,cN satis-
fying x;,, — oo as n — oo such that

_ log(l?(u+xn)) log(l?(u+xn))
n=lim —~=lim —=
viE) xnlgloo log(u + x;) xnlinoo log(x,)
1og((1 +e)F(u) Gg(xn/a(u)))
< lim by (35)
Xp—00 log(xn)
~ log (F(u)) . log(Ge(xn/a(w))
= lim ——=+ lim
xn—oo log(xy) Xp—00 log(xy,)
B _% limxn—>oo log(llzzgc;n/)u(u)) iff >0
| im0 THEY ifé=0
_ { —3 if&>0
| —co ifé=0.

If £ > 0, we conclude that v(F) < -1/ ¢. A similar procedure provides ,u(l_T) > —1/¢.
Hence we conclude i (F) = v(F) which contradicts u(F) < v(F).
If ¢ = 0, we conclude that —oco < ,u(?) < v(F) < —co. Hence we conclude ,u(f) =
v(F) = —oo which contradicts p(f) <v(F).

» Assuming that F satisfies Theorem A.1,(ii), and following the previous proof (when
assuming (i), we deduce that p(F) = v(F) which contradicts u(F) < v(F).

O
Proof of Example 1.5. Let x € [x,, Xp+1), B = 1. We can write
a(l+p)
log (U log|x 1
o) sl ) a1+ fBn) (36)
log(x) log(x) log(x)
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Since log(x,) <log(x) <log(x,+1) = (1 + a)log(x,), we obtain

a(+p) < bg(ﬂsa(1+ﬁ), if 1+6>0

1+a log(x)
1 1
and a(l+p) = 08(U) < al +'B), if 1+6<0
log(x) l+a
from which we deduce
1
uU) = “i:ﬁ) and v()<a(l+p), if 1+>0
a
1
and ) zal+p) and v(U)< “;Tﬂj) if 1+p<0.
a
log(U
Moreover, taking x = x, in (36) leads to lim M = a(1+ B), which implies
n—oo  log(xy,)

viU)za(l+p), if 1+>0, and ul)<a(l+p), if 1+p<0.

Hence, to conclude, it remains to prove that

a(l+p) al+p) |
pU) = T if 1+>0, and v(U)= T if 1+p<0.

If 1+ B > 0, the function log (U(x)) / log(x) is strictly decreasing continuous on (x; X;+1)
reaching the supremum value a(1 + ) and the infimum value a(1 + 8)/(1 + a). Hence,
a(l+p) < a(l+pB)
l1+a

for 6 > 0 such that

- +0 < a(l + B), there exists x,, < yn < Xp41 sat-
log(U(yn)  a(l+p)

isfying logn) = 1id + 4. Since yj, =2, > (because xj, — 00), then u(U) =
log(U 1
0g(U(yw) = al+p) + 8. Hence, 6 being arbitrary, we can conclude that u(U) <
n—oo ]og(yn) l+a
all+p)
l+a

a(l+p)

If 1+ <0, a similar development to the case 1+ > 0 allows proving v(U) = .

Moreover, in this case, we have that U is a tail of distribution. Let us check that the rv
having a tail of distribution F = U has a finite sth moment whenever 0 < s < —a(1+8)/(1+
a). For s = 0 satisfying this condition, we have

foodeF(x) =Y x,(Ulxy,)-U(xp))
0 n=1

00 [} a(1+p) o) a(l+p)
=) x (xz(_lfrﬂ) - xZ(Hﬁ)) =) x (xn”"‘ —xZ(Hﬂ)) <) xf,+ e < oo,
n=2 n=2 n=2
o0
Notethatifsz—a(1+/3)/(1+a),/ x*dF(x) = co. O
0

Proof of Example 1.6. If a > 0, v(U) = co comes from

T | I log(2
V) = Tim 280D -, logWt)) @ log(2)
x—oo  log(x) xp—oo  log(xp) xn—oo  log(xp)

)

29



and, if @ <0, p(U) = —oo comes from

() = lim CBYED _ oy, logWlan) - axnlog@)
=0 log(x) ~m=co loglxy)  H—oo logla)

Next, let € > 0 be small enough. Then, we have, if @ > 0,

logUx)) _ .. log(U(xn—e)
——— < lim ——
oo log(x) xp—oo  log(x, —¢€)
log (29%-1)  log(2n-1/¢) i 1082
= — m —~ =
xn—00 log(2¥n-1/¢) log(2¥n-1/¢ —¢)  xp—o0log(2%n-1/¢)

p(U) = lim

’

and, if a <0,

V() = im log (U(x)) > lim log (U(x, —¢€))
x—oo log(x) xn—oo  log(x, —¢€)
log(2%%-1) log(2™-1/¢) S (- {C

= = m —,——— =
xn—00 log(2¥n-1/¢) log(2*n-1/¢ —¢)  xp—o0log(2%n-1/¢)

It remains to prove that, if @ > 0, u(U) = ac, and, if @ < 0, v(U) < ac. This follows from the
fact that, for x,, < x < x,,+1,

log(U(x)) o2 log(2) aclog(an) { > ac, ifa>0
log(x)  log(x) log(x) < ac, ifa<o.

Next, if @ < 0, then U is a tail of distribution. Let us check that the rv having a tail of
distribution F = U has a finite sth moment whenever 0 < s < —ac.
Let s > 0 and denote xy = 0. We have

o0 (&) o0 (e 0]
f KdF(x) =Y x5 (Ux)-Ux)) = Y x5 (2051 —20%n) <~ p0/emint < o
0 n=1 n=1

n=1
because s < —ac. If s =0, consider € = —ac/2 (> 0), then the statement follows from
o0 1 o] 1 o]
f dF(x):/ dF(x)+/ dF(x)S/ dF(x)+f x*dF(x) < oo.
0 0 1 0 1
o0
Note that if s = —ac,f x3dF(x) = co. O
0

B Proofs of results given in Section 2

B.1 Section 2.1

Let us introduce the following functions that will be used in the proofs. We define, for
someb>0and reR,

_ | Yy uwdy, x=b , | [y Updy, x=b
Vr(x)—{ 1, 0<x<b ’ Wi (x) = 1, 0<x<b (37

For the main result, we will need the following lemma which is of interest on its own.

LemmaB.1. Let U € ./ with finite 4 -index xy and let b > 0.
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(i) Consider V, defined in (37) withr +1 > «y. Then V, € 4 and its 4 -index kv, satis-
fiesxy, =xy—(r+1).

(ii) Consider W, defined in (37) with r +1 < xy. Then W, € . and its M -index Ky,
satisfieskw, =xy — (r +1).

Proof of Theorem 2.2.

* Proofofthe necessary condition of (K1* ). As an immediate consequence of Lemma B.1, (i),
we have, assuming that p +r > 0:

U € M with 4 -indexxy = —psuchthat(r—-1)+1=r>—-p=xy
X
= V,1(%) :f YU dt € M with M -indexxy,_, =Ky—-r=-p-—r.
b

So, applying Theorems 1.1 and 1.2 to V,_; gives
log(fy ™ 'Udt
i 108Uy WMD) L log (V1 () _
x—00 log(x) x—oo  log(x)

* Proof of the sufficient condition of (Kl *)

Clundte
Using (C1r) and the fact that lim log (/ (Ndt)
e log(x)

—Ky,_, =p+r>0.

= p + r provides

"U(x) —r X =1
log(U(x) _ . log(f;‘;*UJ(ct)dt)”Og(x "Jy 1 U d1)

= log(x) x—00 log(x)
1 T luwdte
:r+lim—0g(f © ) —(p+r)=
X—00 log(x)

from which the statement follows.
e Proof of the necessary condition of (K2*)
From Lemma B.1,(ii), we have, assuming that p + r <0:

U € M with A -indexxy = —psuchthat(r—-1)+1=r<-p=xy

o0
= W,1(x)= f " 1U(z‘)dteJ%\/vlth./%1ndex1<W_ =Ky—-r=—p-—r.
log ([ TU(Ddt)

log(x)
* Proof of the sufficient of (K2*). We proceed as for (Kl*), but using (C2r) instead of

log(U
(C1r), and integrating on [x; 00) (instead of [; x]). We obtain that lim _—Ofo(g(g)) -

So applying Theorems 1.1 and 1.2 to W,_4 glves hm =—Kkw,_,<0.

—p, then the result.
[e.0]
* Proof of the necessary condition of (K3*); case f U dt = co withb> 1.

b
On one hand, assuming U € .# with ./ -index xyy = —p such that p + r = 0, implies,

foranye >0,

U

lim ﬂ =0 and lim v
x—o0 xP+E€ x—oo xP—€

o0 X

On the otherhandf t"LU(t)dt = oo implies hm[ " 'U)dt = co. Hence we
b

= oo0. (38)

can apply the L'Hopital’s rule to the first limit of (38) to get, for any € > 0,

T lude r-1
fm U@ U U U)o 39)

X—00 x€ x—oo ex~l+€ x—ooex~T—1+€  xSoo exPte
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Moreover, we have, for any € > 0,

- lundte

X—00 x€

X
lim [ ¢! U(t)dt) ( lim xe) —coxoco=oo.  (40)
X—00

X—00 b

Defining V,_; as in (37) we deduce from (39) and (40) that V,_; € .4 with .4 -index

log([Ft""lU(tdt
0=p+r,andso, for x = b, lim g(fb () ):p+r:0,
X—00 log(x)

[e.o]
» Proof of the necessary condition of (K3*); casef T lU®dt < oo withb > 1.
b
Suppose U € .# with ./ -index xy = —p. A straightforward computation gives

i log(f, ''UMdr) log(fpy° UML)
xl—rgo log(x) B lim,_ . log(x) B

=p+r.

 Proof of the sufficient condition of (K3*): we proceed as for (K1%).

Proof of Lemma B.1.
* Proof of (i). Let us prove that V;, defined in (37) belongs to .# with .4 -index kv, =
Ky —(r+1).
Choose p = —kxy+r+1>0and 0<e < p. Note that xP* - coas p+e>0.
Combining, for x > 1, under the assumption r + 1 > xy;, and for U € ./,

1 0o
lim V;(x) =f y’U(y)dy+f y'Uydy=oo
X—00 b 1

(Vr (%)) I U(x) { 0 ifé=e¢

and lim oo if5=—c

X—00 (xp+5)’ x—00 (p + &) x~xu+o

provides, applying the LHopital’s rule,

lim = lim o if6=—e

Vi (x) T (Vr(x))l _ 0 if6d=¢
X—00 xP+0  x—00 (xp+5)’ h

which implies that V; € .4 with 4 -indexkxy, = —p =xy — (r +1), as claimed.

* Proof of (ii). First let us check that W, is well-defined. Letd = (ky —r—1)/2 (>0

U
by assumption). We have, for U € ., lim (xi = 0, which implies that for ¢ > 0

x—oo x~Ku 5
U(x)
—Ky+6 —
Hence, since —xy +r+1 <0, one has, V x = xp,

there exists xy = 1 such that for all x = xj,
X

—Ky+r+l

[yrU(y)dyscf y‘KU+5+rdy:cf y— 2z ldy<oo.
X X X

Then, we can conclude, U being bounded on finite intervals, that W, is well-defined.
Now choose p = —ky+r+1<0and0<e<—p. We have xP*¢ — 0 as p+¢ < 0. We
will proceed as in (i). For x > 1, under the assumption r + 1 < xy, for U € .4, we
o0
have lim W, (x) :f y'U(y)dy =0, and
X—00 x
Wr(x)" . U(x) 0 ifd=e
=1 ) .
oo ifd=-¢

hm T = m-——=
xX—00 (xp+6) x—00 (p+6)xK+0
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Hence applying the L'Hopital’s rule gives

W) (Wr(x))’:{o if6=e¢

x—o00 xP+6 s (xp+5)’ oo ifd =—¢,

which implies that W, € . with 4 -indexxw, = -p=xy— (r+1).

B.2 Section 2.2

Proof of Theorem 2.4.
* Proof of (i). Changing the order of integration in (23), using the continuity of U and

the assumption U(0%) = 0, give, for s > 0, U(s) = s[ e **U(x)dx, or, with the
(0;00)

(1
change of variable y = x/s, U(;) = [ e YU(sy)dy. Let U € . with .4 -index
(0;00)

(—a) <0. Let 0 < € < @. We have, via Theorems 1.1 and 1.2, that there exists xg > 1
such that, for x = xg, x* ¢ < U(x) < x**¢.
Hence, for s > 1, we can write

f e’x(xs)“’edxsf e’xU(xs)dxsf e Y (x9)%*dx, so
X

o/s Xo/s Xo/s

fx(’/s e *Uxs)dx+ [y e *x*Cdx fox‘)/s e U(xs)dx+ [y e *x“ dx
<

0 0 l < 0
sa+e s] ™ s—a—¢€ ’

) ) log(T(1/s))
from which we deduce that —a — ¢ < lim ———=
s—00 log(s)

)

< —a +¢€. Then we obtain,

. . . log(Ta/9)
¢ being arbitrary, }H{}o_mg—(s)

rem 1.1, to get Uog € .4 with g(s) = 1/s, (s > 0), and, Theorem 1.2, for the .# -index.
* Proofof (ii). Let 0 < € < a. Since we assumed U(0") = 0, we have, for s > 1,

= —a. The conclusion follows, applying Theo-

e_lU(s)sf e"de(x)sf e‘i‘dU(x)zﬁ(l). (41)
(0;9) (0;00) S

Changing the order of integration in the last integral (on the right hand side of the
previous equation), and using the continuity of U and the fact that U(0*) = 0, gives,
for s >0,

U(l) =f e *U(sx)dx. (42)
S (0;00)

Set I, = f e *x"dx, for n € [0,a) (such that x""U(x) concave, by assumption).
(0;00)

Introducing the function V(x) := I, (sx) " U(sx), which is concave, and the rv Z
having the probability density function defined on R* by e *x" /I, we can write

~X 1]

f e‘xU(sx)dx:s"[ V(x) ¢ dx=s"E[V(Z2) <s"V(E[Z])
(0;00) (0;00) I
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applying Jensen’s inequality. Hence we obtain, using that E[Z] = I,11 /I, and the

n+1
definition of V, f e *U(sx)dx < 77,7— U (sIp+1/1y), from which we deduce, us-
(0;00) ITI"'l
1-a+e
1 (1) L U(slys1/1 _
ing (42), that —— U(—) < nn_a+€ X ( U+1/a77_)€. Therefore, since Uo g € .4
s $ L (sIy+1/In)
In+1—a+e Ulsl I
with g(s) = 1/s and .4 -index (—a), we obtain nn_ME ( 77+1/a'7_)€ SN
I (sIper/Ip)" " 5=

-1
. U
But U o g € /4 with .4 -index (—a) also implies in (41) that esa—+(s) — 0. From

€  s—o0

these last two limits, we obtain that U € .4 with ./ -index (—a).
O

B.3 Section 2.3

Proof of Proposition 2.3.
FI
* Proof of (i). Suppose that F satisfies JClim xl_i( (;C) = a. Applying the L'Hopital’s rule
— / —
F log| F(x) log| F(x) 1 _
gives lim x__(x) = lim —M = lim —(—) = —, hence F € ./, via
X~ F(x) %~ (log(x)) x—co  log(x) a

Theorem 1.1, with .4 -index kg=1/a, via Theorem 1.2.

— I
F
* Proof of (ii). Suppose that F satisfies lim (F/((x))) =0. It implies that, for all € > 0,

X—00 X
F )
F'(x)

there exists xp > 0 such that, for x = x9, —€ < < e. Integrating this inequality

Fl(xo)
F'(x0)

on [xp, x] gives —e(x — xg) < < e(x — xp), from which we deduce

F(x) ~
F'(x

. . F(x)
—€< lim <¢, hence lim
x—o0 xF'(x) x—o0 xF'(x)

=0. Since F'(x) >0 as x — oo,

lim val(x) ~lim (log(ﬁ(x)))’ . _log(?(x)) B 1 B
x=o0 F(x) *~  (log(x))  x~oe  log(x) 0

- - - ’

We conclude that F € .#,, via Theorem 1.4.

Proof of Theorem 2.8.
* LetFe DA(D,), @ > 0. Then Theorem 2.6 and Proposition 2.1 imply thatF € RV_, <
A with A -index kz = —a.
log (l?(x))

e Assume F € DA(Ao). Applying Corollary 2.1 gives lim ——————= = co. Theorem
x—oo  log(x)

1.4 allows to conclude.
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Proof of Example 2.2. Let us check that F ¢ DA(A~). We prove it by contradiction. Sup-
pose that F defined in (26) belongs to DA(A). By applying Theorem 2.7, we conclude
that there exists a function A such that A(x) — 0 as x — co and (25) holds. Introducing the
definition (26) into (25), we can write, for all x € R,

Tim (12(1+ A(2) x)] log (2 (1 + A(2) x)) - 2] log(2)|

= lim ((lz(1+ A(2) 0] - L)) log (2) + (1 + A(2) )] log (1 + AD)x)| =x  (43)

Let us see that the assumption of the existence of such function A leads to a contradiction
when considering some values x.

e Suppose Zlim z A(z) = ¢ > 0. Take x > 0 such that cx/2 = 1 and z large enough such
—00

that z A(z) = ¢/2. On one hand, we have |z (1+ A(z) x)] — |z] > 0since z(1+ A(z) x) =
z+cx/2 z z+1. This implies that lim (lz(1+ A(z) x)] — |z]) log (2) = co. On the other
— 00

hand, we have, taking z large enough to have log (1 +A(2) x) ~ A(z) xand z A(z) < 2c,

lz(1+ A(2) x)] log (1 + A(z) x)
<z(l+A(z2)x) 10g(1+A(z)x) ~z(1+A(2)x)A(z2)x<2c(l+A(2)x)x<o00.

Combining these results and taking z — oo contradict (43).
e Suppose Zlim z A(z) =0. Let x > 0. On one hand, we have that Zlim (le(1+A(2) %) -
— 00 —00

LzJ)log(z) could be 0 or co depending on the behavior of z A(z) as z — co. On the
other hand, we have, taking z large enough such that
log(1+ A(2) x) = A(2) x,
lz(1+ A(2) x)] log (1 + A(2) x)
<z(1+A(@)x)log(1+A(2) x) ~ z(1+ A(2) X) A(g)x — 0 as z— oo.

Combining these results contradicts (43).
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