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1. Introduction and motivations

Long memory is commonly observed in economics and finance, dating back at least to Smith

(1938), Cox and Townsend (1947) and Granger (1966), but its origin is unclear as argued by Cox

(2014). Müller and Watson (2008) show that this is probably due to the fact that very large sam-

ples are needed to discriminate between the various models generating strong dependence at low

frequencies. Hence several competing models of long range dependence have been proposed in the

literature. For a covariance stationary process zt, long memory of degree d is often defined, as in

Beran (1994) or Baillie (1996), through the behavior of its spectral density fz (ω) about the origin:

fz (ω) ∼ cfω
−2d, as ω → 0+, for some positive cf . Since Granger and Joyeux (1980), fractional

integration of order d, denoted I(d), has proved the most pervasive example of long memory pro-

cesses in econometrics. When d < 1, the process is mean reverting (in the sense of Campbell and

Mankiw, 1987, that the impulse response function to fundamental innovations converges to zero,

see Cheung and Lai, 1993). Moreover, I(d) processes admit a covariance stationary representation

when d ∈ (−1/2, 1/2), and are non-stationary if d ≥ 1/2. Long range dependence, or long memory,

arises when the degree of fractional integration is positive, d > 0. When d ≥ 1/2, the process is

nonstationary, yet the spectral density characterization can still be used as the limit of the sample

periodogram, see Solo (1992). The prototypical example of an I(d) process is the fractional white

noise zt = (1− L)
−d
εt, where L denotes the lag operator and εt is a white noise sequence. The

class of fractionally integrated processes extends to cases where εt admits a covariance stationary

ARMA representation.

To the best of our knowledge five reasons have been put forward in the literature so far to explain

the presence of long range dependence: (i) aggregation across heterogeneous series, frequencies

or economic agents (Granger 1980, Chambers, 1998, and inter alia Abadir and Talmain, 2002,

Zaffaroni, 2004, Lieberman and Phillips, 2008 and Altissimo, Mojon and Zaffaroni, 2009); (ii)

linear modeling of a nonlinear underlying process (e.g. Davidson and Sibbertsen, 2005, Miller

and Park, 2010); (iii) structural change (Parke, 1999, Diebold and Inoue, 2001, Gouriéroux and

Jasiak, 2001, Perron and Qu, 2007); (iv) learning (bounded rationality) by economic agents in

forward looking models of expectations (Chevillon and Mavroeidis, 2013) and (v) network effects

(Schennach, 2013).

The contribution of this paper is to show that long memory can also be the result of the

marginalization of a large dimensional multivariate system, hence caused by hidden dependence

across variables within a system. More specifically, we provide an asymptotic parametric framework

under which the variables entering an n-dimensional vector autoregressive process of finite order

(here a VAR(1)) can be modelled individually as fractional white noises as n→∞. Long memory

may therefore be a feature of univariate or low dimensional models that vanishes when considering

larger systems. The source of long memory identified here differs distinctly from the five sources
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listed above. In particular, it does not rely on any aggregation mechanism à la Granger (1980).

The intuition behind our theoretical result is the following. We consider a simple VAR(1) model

xt = Anxt−1 + εt, where (An) denotes a sequence of n-dimensional square Toeplitz matrices.1 We

use the final equation representation of this model (as proposed by Zellner and Palm, 1974, 2004)

to derive the spectral density fn,xj (ω) of any of the marginalized processes xjt belonging to xt

(for j = 1, ..., n). To prove that fn,xj (ω) converges to the spectral density of a long memory pro-

cess of order δ ∈ (0, 1), we introduce three high-level assumptions concerning (An). Under these

assumptions, fn,xj (ω) is asymptotically equivalent to the ratio of
∣∣det

(
In−1 −An−1e

−iω)∣∣2 over∣∣det
(
In −Ane

−iω)∣∣2. We parameterize An by defining a scalar sequence (δn) with δn ∈ (0, 1) such

that limn→∞ δn = δ, and a circulant matrix Cn such that det
(
In −Ane

−iω) ∼ det
(
In −Cne

−iω)
as n→∞.Cn is assumed to possess about a fraction bnδnc of unit eigenvalues (b·c denotes the inte-

ger part) and n−bnδnc zero eigenvalues. Hence, as n→∞, det
(
In −Cne

−iω) ∼ (1− e−iω)bnδnc .
We then use the first theorem of Szegö (1915) to prove that under our three high-level assumptions,

fn,xj (ω)→
∣∣1− e−iω∣∣−2δ σ2

εj for ω 6= 0.

We then show that these high level assumptions are satisfied for at least two specific examples

of VAR(1) models. In the first parameterization, An denotes a Toeplitz matrix with diagonal

elements converging to δ = 1/2 as n→∞, and with vanishing off-diagonal elements. Importantly,

the off-diagonal elements decrease at an O
(
n−1

)
rate and the sum of each row equals 1 at all

n. We show that as n → ∞, each series xjt of this system behaves as an ARFIMA(0, 1/2, 0).

In the second example, we consider a similar setting but with limiting value δ ∈ (0, 1) on the

main diagonal of An and with the additional assumption that one innovation (say εjt) dominates

the others in terms of magnitude. In this case, we prove that the dominant series j follows an

ARFIMA(0, δ, 0) for δ ∈ (0, 1). Our results exemplify that vanishing interaction coefficients in a

multivariate system can give rise to long memory in individual series.

The reason why we refer to this phenomena as “hidden cross-section dependence” is twofold.

First, long memory appears through the marginalization mechanism and therefore in the univariate

series or by extension, when estimating the model on a small subpart of a large system. The cross-

section dependence appearing in the large system is therefore hidden in the univariate models.

Second, because the off-diagonal elements of the VAR(1) are so small that, in finite samples, it is

likely to be indistinguishable from a diagonal VAR(1) on the sole basis of the parameter estimates.

The hidden dependencies induce modeling issues that were pointed out, inter alia, in Hendry

(2009).

Our paper sheds some new light on the reasons why asset return variances exhibit long memory

and in particular why the estimated degree of fractional integration of univariate realized variance

1The class of Toeplitz matrices is chosen for the technical reason that we use in our proofs the well-established

First Theorem of Szegö (1915). We show in the section presenting our analytical results how this assumption can

be relaxed.
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series is generally about 0.4 (the so-called golden-rule of realized volatility, see Andersen et al.,

2001 and Lieberman and Phillips, 2008). The presence of long memory in realized variances and

its homogeneity across series is therefore likely due to the marginalization of a large system. We

illustrate this finding by considering the log(MedRV ) of 49 US stocks, where MedRV is a non-

parametric robust to jumps estimator of the integrated variance (computed in our case on 5-minute

returns), recently proposed by Andersen, Dobrev, and Schaumburg (2012).

The rest of this paper is organized as follows. Section 2 provides our main theoretical results.

Section 3 presents some Monte Carlo simulations and compares them with some empirical evidences

on log(MedRV ). Finally, Section 4 concludes. The appendix contains all the proofs.

In the paper, we use the following notation. R and C denote the sets of, respectively, real and

complex scalars, and R∗ = {x ∈ R, x 6= 0} . For any x ∈ R, bxc and dxe denote the floor and ceiling

of x. For z ∈ C, |z| is the modulus of z, z its conjugate, Re (z) and Im (z) its real and imaginary

parts; we often use the notation i =
√
−1. For any sequences an, bn and cn of real-valued scalars

an = O (bn), bn = o (cn) , and an ∼ bn imply, respectively, that as n → ∞, |an/bn| is bounded,

bn/cn → 0, and an/bn → 1. For any complex-valued square matrix A, det (A) is the determinant

of A, tr (A) its trace, Ã its adjugate matrix, A
′

its conjugate transpose and |A| = tr
(
A
′
A
)1/2

its weak norm. For two sequences (An) and (Bn) of square matrices with bounded maximal

eigenvalues, An ∼ Bn means that |An −Bn| → 0 as n→∞. 1{·} is the indicator function which

takes value one if {·} is true and zero otherwise.

2. Theory

In this section, we provide an analytical argument that shows that long memory can arise

through the marginalization of a multivariate process. We first provide a set-up that introduces

high-level assumptions and delineates the analysis that leads to our results. Our theoretical ar-

gument draws upon three existing literatures: those of long memory time series processes, Final

Equation Representations (FER) of Zellner and Palm (1974), and large dimensional Toeplitz ma-

trices (see, e.g., Gray, 2006).

In a second part, the section presents two parametric representations where the high-level

assumptions are satisfied and long memory arises in the marginalized representation.

2.1. Set-up and main results

We first consider a simple model where the n-vector xt = (x1t, ..., xnt)
′

admits a vector autore-

gressive, VAR(1) , representation:

xt = Anxt−1 + εt, t = 1, . . . , T (1a)

εt = (ε1t, ..., εnt)
′ ∼ IID (0,Ωε) , (1b)
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where Ωε is a diagonal matrix with diagonal σ2
ε =

(
σ2
ε1 , ..., σ

2
εn

)
such that σεj 6= 0 for j = 1, ..., n.

Hence shocks εjt and εj′t are independent for j 6= j′, j, j′ = 1, ..., n. Independence is not necessary

for our results and could be relaxed, but it simplifies the exposition. We provide an extension at

the end of the section.

Final equation representations (FER) were studied by Zellner and Palm (1974, 2004) to show

how the elements of vector processes can be marginalized to yield univariate ARMA representa-

tions; see also Cubadda, Hecq and Palm (2009) in the context of factor models and Hecq, Laurent

and Palm (2012) for an application to multivariate volatility processes. The FER of model (1) is

det (Bn(L))xt = B̃n(L) εt, (2)

where Bn (L) = In−AnL, with L the lag operator. If An admits unitary eigenvalues, we implicitly

assume that εt = 0 for t < 0 and x0 = 0.2 Expression (2) shows that element xjt, obtained by

marginalizing the n-dimensional VAR(1), admits a finite ARMA(n, n− 1) representation with a

common AR lag polynomial. Hence, as n → ∞, the univariate process xjt without roots cancel-

lation follows an ARMA(∞,∞). For clarity of the exposition, consider the following trivariate

example:

Example. xt is a trivariate VAR(1) specified as follows:
x1t

x2t

x3t

 =


a b 0

b a b

0 b a



x1t−1

x2t−1

x3t−1

+


ε1t

ε2t

ε2t

 ,

where E [εjtεkt] = 0 for j 6= k. The FER of xt is det (Bn(L))xt = B̃n(L) εt, where

det (Bn(L)) =
1

(a2 − 2b2)
(1− aL)

(
1−

(
a−
√

2b
)
L
)(

1−
(
a+
√

2b
)
L
)
,

B̃n(L) =


(1− aL)

2 − b2L2 bL (1− aL) b2L2

bL (1− aL) (1− aL)
2

bL (1− aL)

b2L2 bL (1− aL) (1− aL)
2 − b2L2

 .
Hence xjt ∼ ARMA (3, 2) for j = 1, 2, 3 when a 6= 0 and b 6= 0, while xjt ∼ ARMA (2, 1) when

a = 0 and b 6= 0 and xjt ∼ AR (1) when a 6= 0 and b = 0.

Denote the jth, 1 ≤ j ≤ n, row of B̃n (L) by B̃n (L)j. such that

B̃n (L)j. =
[
B̃n (L)j1 B̃n (L)j2 ... B̃n (L)jn

]
,

2In our results below, we avoid dwelling on the issue of finite vs. infinite history, in relation to type I and type

II fractional Brownian motions, see Marinucci and Robinson (1999) and Davidson and Hashimzade (2009). Hence,

we implicity consider that the date of interest, t is always larger than n so the spectral density is defined.
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hence xjt admits the ARMA representation

det (Bn (L))xjt = B̃n (L)jεt

=

n∑
k=1

B̃jk (L) εkt.

Therefore, the spectral density fxj of xjt satisfies

fn,xj (ω) =

n∑
k=1

∣∣∣∣∣∣
˜Bn (e−iω)jk

det (Bn (e−iω))

∣∣∣∣∣∣
2

σ2
εk

(3)

∀ω ∈ R such that det
(
Bn

(
e−iω

))
6= 0.

Expression (3) constitutes the basis of our theoretical argument. In the remainder of the

section, we delineate three high-level assumptions which together imply that expression (3) tends,

as n→∞, to the spectral density of a fractional white noise.

The first assumption concerns the summation on the right-hand side of (3) defining the spectral

density of xjt.
3

Assumption B. There exists j ∈ N for which the parameters of the VAR(1) model (1) satisfy

∀ω ∈ R∗, and as n→∞,

(i)
∑n
k=1

∣∣∣∣ ˜Bn(e−iω)jk
det(Bn(e−iω))

∣∣∣∣2 σ2
εk

=

∣∣∣∣ ˜Bn(e−iω)jj
det(Bn(e−iω))

∣∣∣∣2 σ2
εj + o (1) ;

(ii) ˜Bn (e−iω)jj = det
(
Bn−1

(
e−iω

))
+ o (1) where σ2

εj > 0.

Under Assumption B(i) the summation on the right-hand side of (3) reduces to its jth element.

We consider in the following how this can arise for some specific parametric assumptions for the

sequence of matrices An. In Section 2.2.2, we also consider the situation where one innovation εjt

dominates the others in terms of magnitude (i.e., variance). Assumption B(ii) implies in particular

that, for ω 6= 0 and as n→∞,

fn,xj (ω) =

∣∣∣∣∣det
(
In−1 −An−1e

−iω)
det (In −Ane−iω)

∣∣∣∣∣
2

σ2
εj + o (1) . (4)

In (4), the spectral density of one element xjt with a vector of dimension n is asymptotically ex-

pressed as a ratio of two determinants. Our main argument lies in assuming parametric expressions

for An allowing the use of a theorem concerning ratios of determinants. For this reason, we assume

that An can be expressed as functions of a sequence of Toeplitz matrices Tn:

Tn =


t
(n)
0 t

(n)
1 · · · t

(n)
n−1

t
(n)
−1

. . .
. . .

...
...

. . .
. . . t

(n)
1

t
(n)
−(n−1) · · · t

(n)
−1 t

(n)
0

 .

3We denote this assumption by B to emphasize that it concerns the sequence Bn. We follow the same logic for

the next two assumptions.
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We make the following assumption about Tn.

Assumption T.

(i) There exists a bounded function g (·, ·), defined on (0, 1)×{ζ ∈ C, |ζ| ≤ 1} which is continuous

with respect to its first argument and piecewise continuous with respect to its second argument, and

such that ∀ (d, z) ∈ (0, 1)× {ζ ∈ C, |ζ| ≤ 1} ,

1

2π

∫ 2π

0

log
(
1− g

(
d, eiω

)
z
)
dω = −d log (1− z) ;

(ii) ∀d ∈ (0, 1) , td,k = limn→∞
1
n

∑n−1
j=0 g

(
d, ei

2πj
n

)
e−2iπjk/n satisfies

∑∞
k=−∞ |td,k| <∞ so Td,n,

the n-dimensional Toeplitz matrix with entries td,j−i, belongs to the Wiener class;

(iii) There exists a convergent sequence δn ∈ (0, 1)
N → δ as n→∞ such that

t
(n)
k =

1

n

n−1∑
j=0

g
(
δn, e

i 2πjn

)
e−2iπjk/n.

For all d ∈ (0, 1), the partial function gTd (·) = g (d, ·), such that gTd (z) =
∑∞
k=−∞ td,kz

k, is

called the symbol of the matrices (Td,n) . The function ω ∈ R : ω → gTd
(
eiω
)

is generally referred

to as “spectral density” of Td,n but to avoid confusion with the spectral density of the processes

xjt, we do not use this terminology. Yet with a slight abuse of terminology, we refer to gTd
(
eiω
)

as the function ω → g
(
d, eiω

)
. We discuss the details of this assumption in the proof. Notice

though that, under Assumption T, the entries of the sequence (Td,n) do not depend on n; only

the dimension of Td,n does. The identity matrix In is also Toeplitz with symbol gI (·) = 1, hence

for |z| < 1 the matrix In −Tnz is Toeplitz with symbol 1− gTd (·) z.

Assumption T ensures that the First Theorem of Szegö (1915) holds for In −Td,nz. It states

that as n→∞,

det (In−1 −Td,n−1z)

det (In −Td,nz)
→ exp

{
1

2π

∫ 2π

0

log
(
1− gTd

(
eiω
)
z
)
dω

}
. (5)

Under Assumption T(i) the limit above equals (1− z)−d.

We make one last high-level assumption, concerning now the parameters of the VAR(1) and

how they relate to the Toeplitz structure defined above.

Assumption A. There exists a sequence of real matrices (An) such that for ω ∈ R∗ and as

n→∞,
det
(
In−1 −An−1e

−iω)
det (In −Ane−iω)

∼
det
(
In−1 −Tn−1e

−iω)
det (In −Tne−iω)

,

where Tn is defined in Assumption T.

The three high-level assumptions (i.e., Assumptions B, T and A) allow to prove the following

theorem.
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Theorem 1. Let the real vector xt of dimension n be defined by the VAR(1) model (1). Under

Assumptions B, T and A, there exist j ∈ N and δ ∈ (0, 1) such that the spectral density of element

xjt satisfies, for ω ∈ R∗ and as n→∞,

fn,xj (ω)→
∣∣1− e−iω∣∣−2δ σ2

εj .

The convergence is uniform when ω is restricted to closed subsets of R∗.

In Theorem 1, the spectral density of the marginalized univariate process xjt tends to that of

an I(δ) fractional Brownian motion as the dimension of the system n→∞. Hence individual series

may asymptotically (as the cross-section dimension increases) exhibit long memory although the

vector process itself does not. In the theorem, the asymptotic spectral density only depends on

one innovation through its variance σ2
εj , the others do not matter (and we show below an example

where they disappear, i.e., σ2
εk
→ 0 for k 6= j). Hence this is distinctly different from the example

of Granger (1980, Section 4) where long memory arises in a vector process from the aggregation

of moving averages; in fact our Assumption B(i) precludes it.

The set-up above can be generalized easily to transformations An → VnAnV
−1
n , where Vn is

a non-singular n-dimensional matrix. Indeed,

det
(
In −VnAnV

−1
n z

)
= det

[
Vn (In −Anz)V

−1
n

]
= det (In −Anz)

and the adjugate of In −VnAnV
−1
n z is Vn

˜(In −Anz)V
−1
n . Hence Assumptions A and B apply

to VnAnV
−1
n if they hold for An. It follows that expression (1b) can be relaxed to cases where

Ωε is non-diagonal yet positive definite, by choosing for Vn the matrix containing its orthonormal

eigenvectors. Also VnAnV
−1
n is not necessarily Toeplitz so our result is quite general.

In the following subsection, we provide examples of primitive conditions to impose on the

parameters of the VAR(1) model for Theorem 1 to hold.

2.2. Two examples

Here we provide two parametric examples of models satisfying Assumptions B, T and A. The

first example is symmetric in the sense that all processes entering the VAR are defined by the

same dynamics (i.e., the results are invariant by rotations of An). This example stresses the fact

that asymmetry, or heterogeneity, is not necessary for long memory to arise. The second example

presents a heterogenous case where the results are not symmetric for all xjt.

2.2.1. A symmetric example

The sequence of n-dimensional matrices An is defined as

An = T∗n + ηnDn, (6)

where T∗n is specified below; ηn is a real scalar sequence that satisfies ηn = o
(
n−1

)
, and Dn is a

real antisymmetric Toeplitz matrix with absolutely summable entries and zero diagonal elements.
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To define T∗n, we first consider Tn defined as in Assumption T. We choose function g (·, ·) such

that, for ω ≥ 0,

g
(
d, eiω

)
= 1{0≤u<πd} + 1{π( 3

2−d)<u≤
3π
2 }, ω = u mod 2π, (7)

and ω → g
(
d, eiω

)
is even. In the proof of Theorem 1, we show that Tn is asymptotically equivalent

to a circulant matrix Cn defined as

Cn =


c
(n)
0 c

(n)
1 · · · c

(n)
n−1

c
(n)
n−1

. . .
. . .

...
...

. . .
. . . c

(n)
1

c
(n)
1 · · · c

(n)
n−1 c

(n)
0

 ,

where c
(n)
k = t

(n)
−k+t

(n)
n−k for k 6= 0 and c

(n)
0 = t

(n)
0 . Eigenvalues of circulant matrices can be expressed

in terms of the associated symbol evaluated at the Fourier ordinates. Here Cn is chosen so that as

n→∞, c(n)k ∼ tδn,−k+tδn,n−k, which defines a circulant matrix with eigenvalues g
(
δn, e

2iπj/n
)

for

j = 0, ..., n− 1, i.e., with about bnδnc unit eigenvalues (the exact number is nt
(n)
0 ) and n− bnδnc

zero eigenvalues.

Expression (7) defines an even and real-valued function ω → g
(
d, eiω

)
so t

(n)
−k+t

(n)
n−k = t

(n)
k +t

(n)
−k

and the entries c
(n)
k are real. Hence Cn is also asymptotically equivalent to the matrix T∗n ≡

Re (Tn) with entries t
∗(n)
k = Re

(
t
(n)
k

)
. Hence

det
(
In−1 −T∗n−1z

)
det (In −T∗nz)

∼ det (In−1 −Cn−1z)

det (In −Cnz)
. (8)

The matrix T∗n satisfies the following properties:

t
∗(n)
0 = δn +O

(
n−1

)
,

t
∗(n)
k = O

(
n−1

)
, k 6= 0,

where we specify

δn =
1

2
+ o

(
n−2

)
. (9)

As n → ∞, the off-diagonal entries of T∗n individually tend to zero. Yet the convergence is slow

enough to ensure that for all n, T∗n is different enough from a diagonal matrix. Indeed the off-

diagonal elements of each row admit a nonzero sum:

n−1∑
k=1

t∗k (n) = 1− g (δn, 0) = 1− δn +O
(
n−1

)
. (10)

To understand further the behavior of the sequence (T∗n), consider the limiting coefficients t∗d,k =

Re (td,k), where td,k is defined by Assumption T:

t∗d,k = d sinc
πkd

2

[
1{k odd} sin

πk

4
sin

πk
(
1
2 − d

)
2

+ 1{k even} cos
πk

4
cos

πk
(
1
2 − d

)
2

]
, (11)
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where sinc (x) = sin x
x . Hence, as k → ∞, the coefficients t∗d,k decay as k−1 (with a numerator

bounded in absolute value between zero and one), where k measures here a distance between

individual variables in the cross-section dimension.4 As d → 1/2, t∗d,k → 0. The entries t
∗(n)
k

themselves satisfy

t
∗(n)
k = t∗δn,k +O

(
n−1

)
.

Hence as n→∞, since δn → 1/2, t∗δn,k → 0 for k 6= 0, and the off-diagonal elements of T∗n tend to

zero although their sum does not. We verify in the appendix that Assumptions B, T and A hold

for this specific g(., .) function.

Theorem 1 then implies that the spectral density of xjt, for all j ∈ N, is identical to that of a

fractionally integrated process of order 1/2 : as n→∞,

fn,xj (ω)→
∣∣1− e−iω∣∣−1 σ2

εj . (12)

The limiting ARFIMA(0, 1/2, 0) process is often called an 1/f or flicker noise (see Mandelbrot,

1967). Fractional integration arises here in a context where the VAR(1) matrix coefficient An can

be associated with a complex-valued circulant matrix which asymptotically presents about bn/2c

unit eigenvalues and bn/2c zero eigenvalues.

2.2.2. Asymmetric example: one dominant innovation

The results presented above are not limited to the flicker noise ARFIMA(0, 1/2, 0) but can be

extended to any I (δ) , δ ∈ (0, 1) . We now give an example of sequence An satisfying Assumptions

B, T and A, but were long memory does not appear symmetrically for all xjt. Consider the process

where T∗n is defined as previously with δn ≡ δ ∈ (0, 1) and let An = T∗n. Assumptions T and A

and B(ii) are hence satisfied.

Now, assume that the variance of one innovation εjt dominates the others. For this we define

σ2
\εj the vector of variances

(
σ2
εk

)
for k 6= j and assume that σ2

\εj → 0 when n→∞. Assumption

B(i) hence follows. Theorem 1 then implies that, as n→∞ and for ω 6= 0

fn,xj (ω)→ σ2
εj

∣∣1− e−iω∣∣−2δ .
Therefore, when the number of variables n tends to infinity and when one of the innovation

processes dominates all the others, then the spectral density of the dominant process entering xt

tends to that of an I (δ) fractional white noise. Here the off-diagonal elements of An do not tend

to zero asymptotically.

To the best of our knowledge this result is new in the sense that long memory does not arise

from any of the known sources. In particular, despite the multivariate nature of the source of long

4Although they are not comparable, we notice that the rate of decay in k−1 is slower than the time-dimension

k−d−1 decay of the coefficients in the autoregressive representation of an I (d) fractional white noise (see e.g. Baillie,

1996, Table 2).
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memory that we present, it is not aggregation that is at play here since only one innovation εjt

with nonzero variance remains in the system as n → ∞. The mechanism is closer in a sense to

that, which Schennach (2013) delineates, of a single input that transits through a network. If we

interpret our VAR setting as a network, then there are n nodes, i = 1, ..., n in the system which

are in state xit−1 at the end of any period t − 1. At time t, each node i combines xt−1 with an

additional idiosyncratic signal εit to produce xt. Since all the coefficients of An are strictly less

than unity in absolute value, signal transmission from xjt−1 to xit, for i 6= j is attenuated in a

“short memory” manner (to interpret Schennach heuristically, but she defines this precisely). In

this interpretation of the VAR, |i− j| measures the distance between the two nodes i and j and

the system is homogenous since all entries aij = a|i−j|, i.e., they only depend on the distance

between nodes. Contrary to Schennach, the long memory process that results in our context acts

as a form of common element which drives the system when we assume that σ2
\εj → 0, i.e. only

one innovation process remains.

3. Simulation and empirical evidence

In this section, we evaluate our key theoretical results via a Monte Carlo simulation. We also

show that our theoretical framework is able to replicate some stylized facts observed in the variance

of US stock returns.

3.1. Monte Carlo

We provide here simulations that examine the validity of our theoretical asymptotic results

when the dimension of the cross-section and of the sample are finite.

An n-dimensional VAR(1), as defined in Equations (1a)-(1b), is used to generate data for

different choices of T and n. To save space, we only report the results for n = 200 series and

T = 4, 000 observations.

As a benchmark, we consider in our first experiment the case of a diagonal matrix, An = dIn,

where the parameter d is set to 0.499. The first panel of Figure 1 shows the value of the elements of

the first row of An, denoted a
(n)
k (for k = 0, . . . , n−1), i.e., a

(n)
k = 0.499 for k = 0 and 0 otherwise.

In this simple setting, the derived univariate processes have short memory and follow a stationary

AR(1) model with an autoregressive parameter of 0.499 for each series.

Panel 2 of Figure 1 plots the empirical distribution (over 1,000 replications) of the long memory

parameter of series x1t estimated using three popular estimation methods, i.e., the log periodogram

regression (GPH) of Geweke and Porter-Hudak (1983), the Local Whittle Likelihood Estimator

(LWLE) of Robinson (1995), both with bandwidth T/2 and the MLE of an ARFIMA(1, d, 0)

(see Sowell, 1992 and Doornik and Ooms, 2004).5 We deliberately choose a large bandwidth, as

5All estimations are performed in OxMetrics 7.0 (see Doornik, 2013).
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implemented by default in Doornik and Ooms (2004) to reduce the variability of the estimators.

As expected the estimated long memory parameters are concentrated around 0 suggesting that

there is no evidence of long memory in the individual series. This is confirmed by the third panel

of Figure 1 which reports the ACF of x1t for the first replication.

In the next two experiments, we consider a symmetric Toeplitz matrix An = T∗n, under the

assumptions of Section 2.2.1 (i.e., Equation (6) with ηn = 0), where T∗n has symbol gTd . We denote

by d the value taken by δn : we choose two values of d close to 1/2, i.e., respectively d = 0.499 in

Figure 2, and d = 0.45 in Figure 3. The structure of these figures is similar to that of Figure 1

except that now, since d is close to 1/2, i.e., to the nonstationary region of an I (d) process, we follow

the approach of Abadir, Distaso and Giraitis (2007) and apply the three long memory estimators

to (1−L)dx1t (for the values we report, we have added d ex-post to the estimate). The first panel

of these figures emphasizes that the diagonal elements are near d while the off-diagonal elements

are small for d = 0.45 and very small for d = 0.499. Recall from Equation (10) that the sum of

each row of T∗n is 1 by construction and therefore although the off-diagonal elements of An can be

very small when d is close to 1/2, they are nonzero. Unlike in Figure 1, long memory is detected in

x1t, with a Monte Carlo mean (over the 1,000 replications) of 0.444, 0.484 and 0.488 respectively

for the GPH, LWLE and ARFIMA(0, d, 0) methods for d = 0.499 and 0.417, 0.451 and 0.465 for

d = 0.45. The ACF of x1t in the first replication also suggests the presence of long memory. These

figures show that although An is near diagonal, the very small off-diagonal elements play a crucial

role in the apparition of long memory.

Next, we evaluate the robustness of the previous result by using the asymmetric Toeplitz matrix

given in Equation (6), i.e., An = T∗n+ηnDn, with d = 0.499, ηn = 1
n log(n) , and where the elements

of Dn in the upper triangle are drawn independently from a standard normal distribution. Figure

4 suggests that results are qualitatively the same than in the case of the symmetric Toeplitz matrix

in the sense that long memory is detected in x1t with a parameter estimate close to d.

Theorem 1 states that, under Assumptions B, T and A, not only x1t but all variables belonging

to xt should be fractional white noises when n→∞ and d→ 1/2. Our last experiment illustrates

this finding for the case of a symmetric Toeplitz matrix with d = 0.499, as investigated in Figure 2.

Figure 5 plots the empirical distribution of the long memory parameter estimated on all series, i.e.,

on x1t, . . . , x200t, for the three estimation methods. We only report the results for four replications,

each row in the figure corresponding to a replication. Results suggest that the estimated long

memory parameters do not vary much across series and are all concentrated in a region close to

1/2, especially for the LWLE and MLE of the ARFIMA(0, d, 0).

3.2. Empirical illustration

As reported in Lieberman and Phillips (2008) “There is an emerging consensus in empiri-

cal finance that realized volatility series typically display long range dependence with a memory
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Figure 1: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1 + εt, with An = dIn, where

d = 0.499, εt
iid∼ N(0, In), n = 200 and t = 1, . . . , 4000. The panels report respectively, (a) the value of the elements

of the first row of An, denoted a
(n)
k (for k = 0, . . . , n− 1); (b) the empirical distribution, over 1000 replications, of

the estimated long memory parameter of x1t obtained by the GPH, LWLE and ARFIMA(1, d, 0) methods; (c) the

empirical ACF of x1t for the first replication.
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Figure 2: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1 + εt, with An = T∗n, where

T∗n ≡ Re (Tn), Tn has symbol defined by (7), d = 0.499, εt
iid∼ N(0, In), n = 200 and t = 1, . . . , 4000. The panels

report respectively, (a) the value of the elements of the first row of An, denoted a
(n)
k (for k = 0, . . . , n − 1); (b)

the empirical distribution, over 1000 replications, of the estimated long memory parameter of x1t obtained by the

GPH, LWLE and ARFIMA(0, d, 0) methods; (c) the empirical ACF of x1t for the first replication.
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Figure 3: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1 + εt, with An = T∗n, where

T∗n ≡ Re (Tn), Tn has symbol defined by (7), d = 0.45, εt
iid∼ N(0, In), n = 200 and t = 1, . . . , 4000. The panels

report respectively, (a) the value of the elements of the first row of An, denoted a
(n)
k (for k = 0, . . . , n − 1); (b)

the empirical distribution, over 1000 replications, of the estimated long memory parameter of x1t obtained by the

GPH, LWLE and ARFIMA(0, d, 0) methods; (c) the empirical ACF of x1t for the first replication.
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Figure 4: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1 + εt, with An = T∗n + ηnDn,

where T∗n ≡ Re (Tn), Tn has symbol defined by (7), ηn = 1
n log(n)

, Dn is an antisymmetric Toeplitz matrix

with above diagonal elements drawn from a standard normal distribution, d = 0.499, εt
iid∼ N(0, In), n = 200

and t = 1, . . . , 4000. The panels report respectively, (a) the value of the elements of the first row of An, denoted

a
(n)
k (for k = 0, . . . , n − 1); (b) the empirical distribution, over 1000 replications, of the estimated long memory

parameter of x1t obtained by the GPH, LWLE and ARFIMA(0, d, 0) methods; (c) the empirical ACF of x1t for the

first replication.
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Figure 5: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1 + εt, with An = T∗n, where

T∗n ≡ Re (Tn), Tn has symbol defined by (7), d = 0.499, εt
iid∼ N(0, In), n = 200 and t = 1, . . . , 4000. The figure

plots the empirical distribution of the long memory parameter estimated on all series, i.e., on x1t, . . . , x200t, using

GPH, LWLE and ARFIMA(0, d, 0). Each row corresponds to a separate replication.
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parameter d around 0.4 (Andersen et al., 2001; Martens et al., 2004[now 2009]).”

To illustrate this claim and also to provide a first assessment of the plausibility of our expla-

nation for the origin of long memory, we consider a dataset (provided by TickData) consisting

of transaction prices at the 5-minute sampling frequency for 49 large capitalization stocks from

the NYSE, AMEX NASDAQ, covering the period from January 4, 1999 to December 31, 2008

(2,489 trading days).6 The trading session runs from 9:30 EST until 16:00 EST. Using 5-minute

returns, we computed the MedRV estimator of Andersen, Dobrev, and Schaumburg (2012), a

non-parametric robust to jumps estimator of the integrated variance.7

Figure 6 plots the long memory parameter estimated using an ARFIMA model on log(MedRVit)

for i = 1, . . . , 49.8 The estimated long memory parameters fluctuate around 0.45, with a minimum

of about 0.40 and a maximum of about 0.53.

VAR models for the logarithm of realized variances have been used for instance by Anderson and

Vahid (2007). Figure 7 plots some summary statistics on the estimated parameters of a VAR(1)

model estimated on log(MedRVit), by progressively increasing the dimension of the VAR (i.e., by

adding one variable at a time to the system, following the alphabetical order of the tickers).

The solid lines correspond to the average of the diagonal elements (upper panel) and the average

of the absolute value of the off-diagonal elements (lower panel). For instance, the average of the

diagonal elements is about 0.63 for the VAR(1) of dimension 2 (i.e., series AAPL and ABT) and

the absolute value of the off-diagonal element is about 0.2. Figure 7 suggests that the average of

the diagonal elements converges to about 0.4 when the dimension of the system increases while

the off-diagonal elements converge to a very small value. This is in agreement with our theoretical

model for which the diagonal elements correspond roughly to d and the off-diagonal elements are

small.

Figure 7 (dotted lines) also reports similar quantities but for simulated data following a VAR(1)

with a symmetric Toeplitz matrix An = T∗n, where T∗n has symbol gTd given in (7), n = 200 and

d = 0.4. While the true dimension of the system is n = 200, the VAR is estimated on a smaller

system whose dimension progressively increases up to 49 series. A similar pattern is observed

both for real and simulated data. Indeed, the average of the diagonal of the VAR(1) estimated on

simulated data decreases with the size of the system and converges to 0.4 while the average of the

off-diagonal elements converges to a very small value.

6To save space, we do not report company names but only the ticker symbols. There are AAPL, ABT, AXP,

BA, BAC, BMY, BP, C, CAT, CL, CSCO, CVX, DELL, DIS, EK, EXC, F, FDX, GE, GM, HD, HNZ, HON, IBM,

INTC, JNJ, KO, LLY, MCD, MMM, MOT, MRK, MS, MSFT, ORCL, PEP, PFE, PG, QCOM, SLB, T, TWX,

UN, VZ, WFC, WMT, WYE, XOM, XRX.
7If rt,i is the ith 5-minutes return of a day t containing M of such returns, the MedRV of day t is computed as

MedRVt = π
6−4
√
3+π

M
M−2

∑M
i=3med(|rt,i|, |rt,i−1|, |rt,i−2|)2, where med (·) denotes the median.

8Similar to the previous section, the ARFIMA model is estimated on (1−L)1/2 log(MedRVit) and 1/2 is added

ex-post to the estimated value to ensure the estimated d to lie in the covariance stationarity region.
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4. Conclusion

Our paper contributes to the time series literature investigating the mechanisms generating

slowly decaying autocorrelations and low frequency variability, in particular those leading to long

memory processes. We show that an n-dimensional vector autoregressive model of order 1, can

generate long memory in the marginalized univariate series. To achieve this goal, we consider the

final equation representation of this model and obtain the n univariate implied ARMA(n, n − 1)

models. The spectral density of each univariate series is expressed as the sum of n ratios that are

derived from the determinant and the adjugate of the matrix lag polynomial of the VAR. We then

develop three high-level assumptions ensuring the spectral density of each series converges to that

of a long memory process of order δ ∈ (0, 1). We show that these assumptions are satisfied for

two specific examples of an n-dimensional VAR(1) model where either (i) all univariate processes

appear I
(
1
2

)
as n → ∞, or (ii) the spectral density of one univariate process tends to that of an

I (δ) fractional white noise.

We consider the implications of our findings for the variance of asset returns where the so-called

golden-rule of realized variance states that they always exhibit fractional integration of degree close

to 0.4. The assumption of a “quasi-diagonal” multivariate time series model is motivated by the

fact that it is common to see in empirical works parameter values of large dimensional VAR, VEC or

BEKK models such that each series is strongly explained by its own lags and that cross-correlation

or contagion parameters (i.e., off-diagonal elements) are individually small, weakly significant (if

not insignificant) but jointly highly significant.

Our approach is general enough to allow extending it to groups of time series sharing within

each group the properties we study in this paper and where each group is orthogonal to others.

This would be the case in a large dimensional block-diagonal VAR or in a GVAR for instance.

5. Appendix

5.1. Proof of Theorem 1

Together, Assumptions B and A imply that

fn,xj (ω) ∼

∣∣∣∣∣det
(
In−1 −Tn−1e

−iω)
det (In −Tne−iω)

∣∣∣∣∣
2

σ2
εj .

Hence the only element we need to consider is the convergence, as n→∞,

det
(
In−1 −Tn−1e

−iω)
det (In −Tne−iω)

→ (1− z)−δ .

Assumption T(i) states that g ∈ R which implies that td,k =
∫ 2π

0
g
(
d, eiω

)
e−ikωdω = td,−k,

i.e., Td,n is Hermitian. This entails in particular that t
(n)
k + t

(n)
n−k = t

(n)
k + t

(n)
−k ∈ R. Also gTd

being bounded ensures (Td,n) and the associated matrices below are uniformly bounded in strong
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norm. Assumption T(ii) ensures that
∑n−1
k=−(n−1) td,ke

ikω converges uniformly to gTd
(
eiω
)

which

is required for applying Szegö’s theorem. Assumption T(iii) ensures that det (Tn −Tδn,n)→ 0 as

n → ∞ since the determinant is a continuous function of the matrix entries. Tn and Tδn,n are

said to be asymptotically equivalent, which is denoted Tn ∼ Tδn,n (see Gray, 2006, Section 2.3 for

the definition of equivalent matrices).

To any Toeplitz matrix Td,n within the Wiener class, we can associate a Circulant matrix Cd,n

such that Cd,n ∼ Td,n defined as

Cd,n =


c
(n)
d,0 c

(n)
d,1 · · · c

(n)
d,n−1

c
(n)
d,n−1

. . .
. . .

...
...

. . .
. . . c

(n)
d,1

c
(n)
d,1 · · · c

(n)
d,n−1 c

(n)
d,0

 . (13)

The sequence (Cd,n) is not uniquely defined, see Grenander and Szegö (1958, Section 7.6). Gray

(2006, Lemma 4.6) shows in particular that choosing c
(n)
d,k = td,−k + td,n−k yields a matrix which is

asymptotically equivalent to Td,n.

Here we define t
(n)
δ,k = 1

n

∑n−1
j=0 g

(
δ, ei

2πj
n

)
e−2iπjk/n with δ = limn→∞ δn and

c
(n)
δ,k = t

(n)
δ,−k + t

(n)
δ,n−k

c
(n)
k = t

(n)
−k + t

(n)
n−k.

Cδ,n and Cn are therefore circulant matrices with entries c
(n)
δ,k and c

(n)
k . Since t

(n)
k converges

to tδ,k, the matrix Cn is asymptotically equivalent to that with entries tδn,−k + tδn,n−k. Since

asymptotic equivalence is transitive (see Gray, 2006, Theorem 2.1), it follows that Cn ∼ Tδn,n and

Cn ∼ Tn. Hence
det (In−1 − zTn−1)

det (In − zTn)
∼ det (In−1 − zCn−1)

det (In − zCn)
. (14)

The symbol of In − Td,nz is 1 − gTd (·) z for all z ∈ C, |z| < 1. Hence Gray (2006, Lemma 4.6)

implies that:

det (In−1 − zCδ,n−1)

det (In − zCδ,n)
→ exp

{
1

2π

∫ 2π

0

log
(
1− gTδ

(
eiω
)
z
)
dω

}
.

The determinants can be decomposed as

det (In − zCn) = det (In − zCδ,n + z (Cδ,n −Cn))

= det (In − zCδ,n) det
(
In + z (In − zCδ,n)

−1
(Cδ,n −Cn)

)
and

det (In−1 − zCn−1)

det (In − zCn)
=

det (In−1 − zCδ,n−1)

det (In − zCδ,n)

×
det
(
In−1 + z (In−1 − zCδ,n−1)

−1
(Cδ,n−1 −Cn−1)

)
det
(
In + z (In − zCδ,n)

−1
(Cδ,n −Cn)

) ,
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where Cδ,n−1 −Cn−1 → 0 so for |z| < 1,

det
(
In−1 + z (In−1 − zCδ,n−1)

−1
(Cδ,n−1 −Cn−1)

)
→ 1.

Hence for all η > 0, there exists a value N such that for n ≥ N,∣∣∣∣∣∣
det
(
In−1 + z (In−1 − zCδ,n−1)

−1
(Cδ,n−1 −Cn−1)

)
det
(
In + z (In − zCδ,n)

−1
(Cδ,n −Cn)

) −1

∣∣∣∣∣∣ < η

implying that∣∣∣∣det (In−1 − zCn−1)

det (In − zCn)
− det (In−1 − zCδ,n−1)

det (In − zCδ,n)

∣∣∣∣ < ∣∣∣∣det (In−1 − zCδ,n−1)

det (In − zCδ,n)

∣∣∣∣ η.
Since limn→∞

det(In−1−zCδ,n−1)
det(In−zCδ,n) = (1− z)−δ it follows that ∀ε > 0 and z ∈ (0, 1), there exists

η = ε (1− z)δ and N such that for n > N∣∣∣∣det (In−1 − zCn−1)

det (In − zCn)
− det (In−1 − zCδ,n−1)

det (In − zCδ,n)

∣∣∣∣ < ε.

Uniform convergence of det(In−1−zCn−1)
det(In−zCn) to (1− z)−δ also holds on any set (0, z0), where |z0| < 1,

by choosing ∀ε > 0, η = ε (1− z0)
δ

and associated N.

It follows from Equation (14) that

det (In−1 −Tn−1z)

det (In −Tnz)
→ (1− z)−δ ,

with the same uniform convergence property.

5.2. Proofs relative to Section 2.2.1

We collect here the proofs related to Section 2.2.1 that show that Assumptions B, T and A are

satisfied for An = T∗n + ηnDn, where T∗n, ηn and Dn are specified as in Section 2.2.1. We start

by proving the following lemma.

Lemma 1. Under the assumptions of Section 2.2.1, and as n→∞,

L(i) The coefficients of Cn satisfy,

t
∗(n)
0 = 1/2 +O

(
n−1

)
,

t
∗(n)
k = O

(
n−1

)
, 0 < |k| < n.

L(ii) ∀k 6= 0 and t
∗(n)
k 6= 0,

t
∗(n+1)
k −t∗(n)

k

t
∗(n)
k

= O
(
k
n

)
.

L(iii) ∃N such that ∀n ≥ N , sup0≤k≤n t
∗(n)
k < 1.

Proof. We start with the proof of L(i) .

Since g (d, x) = 1{0≤x<πd} + 1{π( 3
2−d)<x≤

3π
2 } for d ∈ (0, 1) and x ∈ [0, 2π], the coefficients of Tn
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satisfy:

t
(n)
−k =

1

n

n−1∑
j=0

1{j<nδn
2 }e

2iπkj/n +
1

n

n−1∑
j=0

1{( 3n
4 −

nδn
2 )<j≤ 3n

4 }e
2iπkj/n

=
1

n

dnδn/2e−1∑
j=0

e2iπkj/n +
1

n

b 3n
4 c∑

j=b 3n
4 −

nδn
2 c+1

e2iπkj/n.

Hence for k = 0,

t
(n)
0 = t

∗(n)
0 =

dnδn/2e+
⌊
3n
4

⌋
−
⌊
3n
4 −

nδn
2

⌋
n

=
1

2
+

(
δn −

1

2

)
+
dnδn/2e − nδn/2 +

⌊
3n
4

⌋
− nδn

2 −
⌊
3n
4 −

nδn
2

⌋
n

=
1

2
+O

(
n−1 + 1/2− δn

)
,

and therefore when n2 (1/2− δn)→ 0, t
∗(n)
0 = 1

2 +O
(
n−1

)
.

Now, when k 6= 0,

t
(n)
−k =

1

n

1− e2iπkdnδn/2e/n + e2iπk(b
3n
4 −

nδn
2 c+1)/n − e2iπk(b

3n
4 c+1)/n

1− e2iπk/n

=
1

n

e
iπk( 2dnδn/2e

n )
2

(
e−

iπk( 2dnδn/2e
n )

2 − e
iπk( 2dnδn/2e

n )
2

)
e
iπk
n

(
e−

iπk
n − e iπkn

)
− 1

n

e2iπk(b
3n
4 c+1)/n

[
1− e−2iπk(

nδn
2 +(b 3n

4 c−nδn2 −b 3n
4 −

nδn
2 c))/n

]
e
iπk
n

(
e−

iπk
n − e iπkn

)
=

1

n

e
iπkδn

2 ( dnδn/2eδnn/2
) sin

{
πkδn
2
dnδn/2e
δnn/2

}
e
iπk
n sin πk

n

+
1

n

e
3iπk

2 (1+ b3n/4c−3n/4+1
3n/4 )e

− iπkδn2

(
1+
b 3n

4 c−nδn2 −b 3n
4
−nδn

2 c
nδn/2

)
sin

{
πkδn
2

(
1 +
b 3n

4 c−nδn2 −b 3n
4 −

nδn
2 c

nδn/2

)}
e
iπk
n sin πk

n

=
e
iπkδn

2 ( dnδn/2eδnn/2
)
(

sin
{
πkδn
2
dnδn/2e
δnn/2

})
ne

iπk
n sin πk

n

+

e
iπk(3−δn)

2 e
3iπk

2
b3n/4c−3n/4+1

3n/4
− iπkδn2

b 3n
4 c−nδn2 −b 3n

4
−nδn

2 c
nδn/2

[
sin

{
πkδn
2

(
1 +
b 3n

4 c−nδn2 −b 3n
4 −

nδn
2 c

nδn/2

)}]
ne

iπk
n sin πk

n

=
sin πkδn

2

ne
iπk
n sin πk

n

e iπkδn2 ( dnδn/2eδnn/2
)

sin
{
πkδn
2
dnδn/2e
δnn/2

}
sin πkδn

2

+ e
iπkδn

2 ( dnδn/2eδnn/2
)

sin
{
πkδn
2
dnδn/2e
δnn/2

}
sin πkδn

2

+e
iπk(3−δn)

2 e
3iπk

2
b3n/4c−3n/4+1

3n/4
− iπkδn2

b 3n
4 c−nδn2 −b 3n

4
−nδn

2 c
nδn/2

sin

{
πkδn
2

(
1 +
b 3n

4 c−nδn2 −b 3n
4 −

nδn
2 c

nδn/2

)}
sin πkδn

2

 .
Using the fact that ei(

3πk
2 −x) = (−1)

k
ei(

πk
2 −x), the previous expression can be rewritten as follows:
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t
(n)
−k =

sin πkδn
2

ne
iπk
n sin πk

n

[
e
iπkδn

2 + (−1)
k
e
iπk(1−δn)

2

]
+ ζk (δn, n)

=
δn
2

sinc
πkδn
2

e
iπk
n sinc

πk
n

[
e
iπkδn

2 + (−1)
k
e
iπk(1−δn)

2

]
+ ζk (δn, n) ,

where

ζk (δn, n) =

(
e
iπkδn

2

(
dnδn/2e−nδn/2

nδn/2

)) sin
{
πkδn

2
dnδn/2e
nδn/2

}
sin πkδn

2

− 1



− e
iπk(1−δn)

2

e
3iπk

2
b3n/4c−3n/4+1

3n/4
− iπkδn

2

b 3n4 c−nδn2 −
⌊
3n
4
−nδn

2

⌋
nδn/2

sin

{
πkδn

2

(
1 +
b 3n4 c−

nδn
2
−
⌊
3n
4
−nδn

2

⌋
nδn/2

)}
sin πkδn

2

− 1

 .

Therefore

t
(n)
−k =

δn
2

sinc
πkδn
2

e
iπk
n sinc

πk
n

e
iπk
4

[
e−

iπk(1/2−δn)
2 + (−1)

k
e
iπk(1/2−δn)

2

]
+ ζk (δn, n)

= δn
sinc

πkδn
2

sinc
πk
n

e
iπ
2 (( 1

2−
2
n )k)

[
1{k odd}e

−iπ2 sin
πk
(
1
2 − δn

)
2

+ 1{k even} cos
πk
(
1
2 − δn

)
2

]
+ ζk (δn, n)

= δne
iπk4 sinc

πkδn
2

[
1{k odd}e

−iπ2 sin
πk
(
1
2 − δn

)
2

+ 1{k even} cos
πk
(
1
2 − δn

)
2

](
e−iπ

k
n

sinc
πk
n

)
+ ζk (δn, n)

= δne
iπk4 sinc

πkδn
2

[
1{k odd}e

−iπ2 sin
πk
(
1
2 − δn

)
2

+ 1{k even} cos
πk
(
1
2 − δn

)
2

]
+ ξk (δn, n) + ζk (δn, n) ,

where

ξk (δn, n) = δne
iπk4 sinc

πkδn
2

[
1{k odd}e

−iπ2 sin
πk
(
1
2 − δn

)
2

+ 1{k even} cos
πk
(
1
2 − δn

)
2

](
e−iπ

k
n

sinc
πk
n

− 1

)
.

It remains to be shown that both ξk (δn, n) and ζk (δn, n) are O
(
n−1

)
. We use the fact that, as x→

0, sinx = x+O
(
x3
)
, sinc x = 1+O

(
x2
)

and, when sin a 6= 0, sin (a+ x) = sin a+x cos a+O
(
x2
)

and sinc (a+ x) = sinc a+O (x) . Hence

ξk (δn, n) =

(
1

2
+O

(
1

2
− δn

))
ei
π(k−2)

4

(
sinc

(
πk

4

)
+O

(
k

(
1

2
− δn

)))
×

[
πk
(
1
2 − δn

)
2

+O

(
k

(
1

2
− δn

)3
)](

1 +O
(
k
n

)
1 +O

(
k
n

) − 1

)

=
1

2
ei
π(k−2)

4 sinc

(
πk

4

)(
1 +O

(
1

2
− δn

))
×

[
πk
(
1
2 − δn

)
2

+O

(
k

(
1

2
− δn

)3
)](

O

(
k

n

))
= O

(
k2

n

(
1

2
− δn

))
= O

(
n

(
1

2
− δn

))
and therefore when n2 (1/2− δn)→ 0, ξk (δn, n) = O

(
n−1

)
while

ζk (δn, n) =
(
1 +O

(
n−1

))( sin πkδn
2 +O

(
n−1

)
sin πkδn

2

− 1

)
− e

iπk(1−δn)
2

([
1 +O

(
n−1

)] sin πkδn
2 +O

(
n−1

)
sin πkδn

2

− 1

)
= O

(
n−1

)
.
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Now

t
∗(n)
−k = Re

(
t
(n)
−k

)
= δn sinc

πkδn
2

[
1{k odd} sin

πk

4
sin

πk
(
1
2 − δn

)
2

+ 1{k even} cos
πk

4
cos

πk
(
1
2 − δn

)
2

]
+O

(
n−1

)
.

Notice that k
(
1
2 − δn

)
= o

(
n−1

)
∀k < n hence for k odd t

∗(n)
−k = O

(
n−1

)
. When k is even, we

need to consider the cases where the exists an odd integer m such that k = 4m or k = 4m + 2.

First if k = 4m then sin πkδn
2 = sin 2πmδn = O

(
m
(
1
2 − δn

))
= o

(
n−1

)
and if k = 4m + 2, then

cos πk4 = cos
(
mπ + π

2

)
= 0. Hence for all k such that 0 < |k| < n

t
∗(n)
−k = O

(
n−1

)
,

which concludes the proof of L(i).

Now we prove L(ii) . We consider t
(n+1)
−k − t(n)−k for k 6= 0 and assume t

(n)
−k 6= 0.

t
(n+1)
−k =

1

n

(
1− 1

n+ 1

)[
1− e2iπk

dnδn/2e
n (1+nd(n+1)δn/2e−(n+1)dnδn/2e

(n+1)dnδn/2e )+

1− e2iπ
k
n (1− 1

(n+1) )

+
e
2iπk
b 3n

4
−nδn

2 c+1

n

(
1+

n(b 3(n+1)
4

− (n+1)δn
2 c+1)−(n+1)(b 3n

4
−nδn

2 c+1)
(n+1)(b 3n

4
−nδn

2 c+1)

)

1− e2iπ
k
n (1− 1

(n+1) )

−e
2iπk
b 3n

4 c+1

n

(
1+

n(b 3(n+1)
4 c+1)−(n+1)(b 3n

4 c+1)
(n+1)(b 3n

4 c+1)

)

1− e2iπ
k
n (1− 1

(n+1) )



=
1

n

(
1 +O

(
n−1

))
[

1− e2iπk
dnδn/2e

n +O(kn−1) + e2iπk
b 3n

4
−nδn

2 c+1

n +O(kn−1) − e2iπk
b 3n

4 c+1

n +O(kn−1)

]
[
1− e2iπ kn+O(kn−2)

]
= t

(n)
−k
(
1 +O

(
kn−1

))
hence for t

(n)
−k 6= 0,

t
∗(n+1)
−k − t∗(n)−k

t
∗(n)
−k

= O

(
k

n

)
.

Now the proof of L(iii) follows from L(i) and the convergence of t
(n)
k : ∀ε > 0, ∃N such that for

n ≥ N

sup
0≤|k|<n

t
(n)
k ≤ 1

2
+ ε.

hence choosing ε = 1/4 is sufficient.

5.2.1. Proof of the validity of Assumption T

Assumptions T(i) and T(iii) follow from the definitions of g and δn. To prove that Assumption

T(ii) holds, we need to show that Td,n belongs to the Wiener class for all d ∈ (0, 1). This follows
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from the fact that the derivative
∂

∂ω
g
(
d, eiω

)
is continuous at ω = 0. Hence, the Fourier series of g

(
d, eiω

)
is absolutely summable at ω = 0 (see

Whittaker, 1930-31), i.e.,

lim
n→∞

n−1∑
k=−(n−1)

∣∣∣c(n)d,k

∣∣∣ <∞.
Hence

∑∞
k=−∞ |td,k| <∞ and

∑∞
k=−∞

∣∣∣t∗d,k∣∣∣ <∞.
5.2.2. Proof of the validity of Assumption B

We let j = 1 without loss of generality. The assumption B(i) is that
∑n
k=1

∣∣∣∣ ˜Bn(e−iω)1k
det(Bn(e−iω))

∣∣∣∣2
amounts to its first element

∣∣∣∣ ˜Bn(e−iω)11
det(Bn(e−iω))

∣∣∣∣2 as n→∞ and B(ii) characterizes ˜Bn (e−iω)11.

We start by showing point B(ii) holds.

Elements B̃n (z)1k, for k = 1, ..., n, of the first row of B̃n (z), satisfy B̃n (z)1k = (−1)
k+1

det (CoBn (z)1k) ,

where CoBn (z)ik is the i, j entry of the matrix of cofactors of Bn (z). We consider first CoBn (z)11
which is

CoBn (z)11 =



1− t∗(n)0 z −
(
t
∗(n)
1 + ηnγ

(n)
23

)
z · · · −

(
t
∗(n)
n−2 + ηnγ

(n)
2n

)
z

−
(
t
∗(n)
1 + ηnγ

(n)
32

)
z 1− t∗(n)0 z

. . .
...

...
. . .

. . . −
(
t
∗(n)
1 + ηnγ

(n)
(n−1)n

)
z

−
(
t
∗(n)
n−2 + ηnγ

(n)
n2

)
z · · · −

(
t
∗(n)
1 + ηnγ

(n)
n(n−1)

)
z 1− t(∗n)0 z


,

where γik denotes the i, j entry of Dn.

Denoting respectively by T
∗(1)
n and D

(1)
n the submatrices of T∗n and Dn of dimension n − 1

obtained by removing their first row and first column, CoBn (z)11 can be written in a matrix form

as

CoBn (z)11 = Bn−1 (z) +
(
T∗n−1 −T∗(1)n + ηn−1Dn−1 − ηnD(1)

n

)
z

and therefore

B̃n (z)11 = det (Bn−1 (z)) det
(
In−1 + [Bn−1 (z)]

−1
(
T∗n−1 −T∗(1)n + ηn−1Dn−1 − ηnD(1)

n

)
z
)
.

Consider first T∗n−1−T
∗(1)
n +ηn−1Dn−1−ηnD(1)

n . Since det (M) ≤
(
n−1tr (M)

)n
for any symmetric

matrix M of dimension n, we can bound

det
(
T∗n−1 −T∗(1)n + ηn−1Dn−1 − ηnD(1)

n

)
as follows

det
(
T∗n−1 −T∗(1)n + ηn−1Dn−1 − ηnD(1)

n

)
= O

([
max

(
t
∗(n+1)
k − t∗(n)k

)
+ ηn−1 max

∣∣∣γ(n−1)ij

∣∣∣+ ηn

∣∣∣max γ
(n)
ij

∣∣∣]n) .
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Lemma L(ii) provides the order of magnitude of the difference t
∗(n−1)
k −t∗(n)k , and we have assumed

ηn max
∣∣∣γ(n)ij

∣∣∣ = o
(
n−1

)
. Hence

det
(
T∗n−1 −T∗(1)n + ηn−1Dn−1 − ηnD(1)

n

)
= O

([
max0≤k<n kt

(n)
k + 1

n

]n)
and by Lemma L(iii), as n→∞ :

det
(
T∗n−1 −T∗(1)n + ηn−1Dn−1 − ηnD(1)

n

)
= O

([
δn +

1

n
+O

(
1

n

)]n)
.

We notice that for d ∈(0, 1) ,
[
d+ 1

n +O
(
1
n

)]n ∼ exp {−n |log d|} as n→∞. Consequently,

B̃n (z)11 = det (Bn−1 (z)) det
(
In−1 +O

(
e−n|log δn| [Bn−1 (z)]

−1
z
))

.

By construction, the determinant of Bn−1 (z)
−1

is equivalent to that of (In−1 −Cn−1z)
−1
. For n

large enough, the latter determinant is finite for all |z| < 1 by Assumption T. Indeed the matrix Cn

is asymptotically equivalent to that with symbol g (δ, ·), whose eigenvalues are g
(
δ, ei

2πk
n

)
∈ [0, 1]

for k = 0, ..., n− 1. Hence ∀z ∈ C, |z| < 1, |det (In−1 −Cn−1z)| > 0 so
∣∣∣det (In−1 −Cn−1z)

−1
∣∣∣ <

∞. Hence ∀ |z| < 1, detBn−1 (z)
−1

is finite and det
(
In−1 +O

(
e−n|log δn| [Bn−1 (z)]

−1
z
))
→ 1.

It follows that

B̃n (z)11 ∼
n→∞

det (Bn−1 (z)) .

This constitutes the first part of the proof.

We now turn to showing point (i). We first show that B̃n (z)1j → 0 ∀j 6= 1 when |z| < 1 as

n → ∞. By symmetry of the system, we can in fact focus the proof on B̃n (z)12. Ignoring ηnDn

which is of lower order, as n→∞ :

B̃n (z)12 ∼ −det




−t∗(n)1 z −t∗(n)1 z · · · −t∗(n)n−2z

−t∗(n)2 z 1− t∗(n)0 z
. . .

...
...

. . .
. . . −t∗(n)1 z

−t∗(n)n−1z −t∗(n)n−3z · · · 1− t∗(n)0 z



 .

The key feature that is shared by all the B̃n (z)1j , for j 6= 1, is that one of their columns (here the

first) contains no element from the diagonal of Bn (L) (where a 1 appears). Hence

B̃n (z)12 ∼ −
(

max
0<k<n

∣∣∣t∗(n)k

∣∣∣ z)det





−t∗(n)
1

max0<k<n

∣∣∣t∗(n)
k

∣∣∣ −t∗(n)2 z · · · −t∗(n)n−2z

−t∗(n)
1

max0<k<n

∣∣∣t∗(n)
k

∣∣∣ 1− t∗(n)0 z
. . .

...

...
...

. . . −t∗(n)1 z

−t∗(n)
n−1

max0<k<n

∣∣∣t∗(n)
k

∣∣∣ −t∗(n)n−3z · · · 1− t∗(n)0 z




.

Without loss of generality, we assume for instance that the maximum is
∣∣∣t∗(n)1

∣∣∣ . We have shown

before that as n→∞,

t
∗(n)
k = O

(
n−1

)
.
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Hence,

B̃n (z)12 ∼ O
( z
n

)
det

 −1 O
(
n−1

)
O (1) Bn−2 (z)

 .

The formula for the determinant of partitioned matrices is

det

 A B

C D

 = det (D) det
(
A−BD−1C

)
,

where in our case the second determinant on the right, i.e., det
(
−1−O

(
n−1

)
Bn−2 (z)

−1
O (1)

)
,

converges to −1 as n→∞ since Bn−2 (z)
−1

is finite for |z| < 1. It follows that

B̃n (z)12 = O
(
n−1 detBn−2 (z)

)
.

Now,

n∑
j=2

∣∣∣∣∣∣ B̃n (z)1j
det (Bn (z))

∣∣∣∣∣∣
2

=

n∑
j=2

O

([
n−1

]2 |det (Bn−2 (z))|2

|det (Bn (z))|2

)

= O

(
n−1
|det (Bn−2 (z))|2

|det (Bn (z))|2

)
.

Hence as n→∞,

n∑
j=1

∣∣∣∣∣∣ B̃n (z)1j
det (Bn (z))

∣∣∣∣∣∣
2

=
σ2
ε

2π

∣∣det
(
Bn−1

(
e−iω

))∣∣2
|det (Bn (e−iω))|2

+O

(
1

n

∣∣det
(
Bn−2

(
e−iω

))∣∣2
|det (Bn (e−iω))|2

)
. (15)

The circulant matrix associated to Bn (z) has symbol 1 − g (δn, ·) z since Dn is antisymmetric.

Hence, as n→∞, under assumption T (using the same argument than to prove Theorem 1),

det (Bn−1 (z))

det (Bn (z))
∼ det (In−1 − zCn−1)

det (In − zCn)
. (16)

The limit (1− z)−1/2 is finite for |z| < 1 so

|det (Bn−2 (z))|2

|det (Bn (z))|2
=
|det (Bn−2 (z))|2

|det (Bn−1 (z))|2
|det (Bn−1 (z))|2

|det (Bn (z))|2
→

(d,n)→(1/2,∞)
|1− z|−2

hence in expression (15) the second term on the right-hand side is O
(
n−1

)
. Then together with

(16), (15) implies that fn,x (ω) converges pointwise to
σ2
ε

2π

(
1− e−iω

)−1
for all ω 6= 0 and uniformly

on sets such that |ω| > ω0 for all ω0 > 0.

5.2.3. Proof of the validity of Assumption A

The assumption follows from Assumption T. By construction, T∗n is real valued and bounded.

By transitivity of asymptotic equivalence (see Gray, 2006, Theorem 2.1),

det
(
In−1 −T∗n−1z

)
det (In −T∗nz)

∼ det (In−1 −Cn−1z)

det (In −Cnz)
∼ det (In−1 −Tn−1z)

det (In −Tnz)
.

Now the circulant associated with ηnDn has zero asymptotic entries so An ∼ Cn and the result

follows.
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