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Abstract

We propose a new approach to analyse the effect of diversification on a portfolio of risks. By
means of mixing techniques, we provide an explicit formula for the probability density func-
tion of the portfolio. These techniques allow to compute analytically risk measures as VaR
or TVaR, and consequently the associated diversification benefit. The explicit formulas con-
stitute ideal tools to analyse the properties of risk measures and diversification benefit. We
use standard models, which are popular in the reinsurance industry, Archimedean survival
copulas and heavy tailed marginals. We explore numerically their behavior and compare
them to the aggregation of independent random variables, as well as of linearly dependent
ones. Moreover, the numerical convergence of Monte Carlo simulations of various quantities
is tested against the analytical result. The speed of convergence appears to depend on the
fatness of the tail; the higher the tail index, the faster the convergence.

Keywords: Aggregation of risks; Archimedean copula; Clayton; Diversification (benefit); Gaus-
sian; Gumbel; Heavy tail; Mixing technique; Pareto; Risk measure; TVaR; VaR; Weibull

1 Introduction

Risk and capital considerations are becoming central to the risk management of (re)insurance.
In particular, the advent of Solvency 2 in the European Union is bringing along many new
requirements that push the industry in this direction. For instance, Solvency 2 directive requires
from (re)insurance companies to assess the capital needed to ensure their solvability. It is defined
as the 99.5% quantile of the distribution of the aggregated underwriting and market risks, to
cover the liabilities over one year.

Understanding the diversification benefit is essential to the business model of reinsurance com-
panies. Diversification is at the heart of efficient risk management, capital optimization and
competitive pricing. Internal models are considered as the best solution to monitor the risk
within the (re)insurer portfolio and to provide the regulator with the Solvency Capital Require-
ments (SCR). However, regulators demand a validation of the modeling techniques used. This
involves mathematical and best practice justifications of the choice of each distribution, assump-
tion, parameter estimation, risk aggregation technique. Most models are based on Monte Carlo
(MC) simulations of a large number of dependent risks. The convergence of such models is
hard to prove mathematically and their stability, as a function of the number of simulations,
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is difficult to assess. The analytical approach is a way to measure the performance of the MC
method, and potentially to replace it in some cases. Here, we propose this approach to improve
our understanding and test the validity of model results.

Using standard models of the literature, we provide explicit expressions for the probability
density function of aggregated dependent risks, allowing to compute analytically risk measures
as VaR or TVaR, and consequently the diversification benefit. This can be considered as a
step towards the development of methods for model validation. To achieve this, we use mixing
techniques (see [10, 9]) over risk parameter values. It is a standard tool in credibility theory, but
less explored for actuarial dependent risks modeling. Whereas it has been used in ruin theory
(see [2]), we introduce it for risk measures and diversification benefit. Here, we concentrate on
the numerical analysis in order to test the performance of the MC method and to measure the
impact of the dependence (versus independence), as well as of the model choice (light versus
heavy tails). Special efforts have been put in presenting in a consistent and clear way the mixing
techniques approach. Following a similar path, we can extend the study to more general models
for any tail index independently of the dependence parameter. It is the subject of a forthcoming
paper.

The paper is organized as follows. We describe in Section 2 the framework of constructing
Archimedean copulas using the mixing techniques. In Sections 3 and 4, we present the main
analytical and numerical results for two combinations of dependence structure and marginal
distributions (Pareto-Clayton and Weibull-Gumbel). In Section 5, we discuss the diversification
benefit as a function of the aggregation factor and the risk measures. General conclusions follow.

2 From the mixing techniques to Archimedean copulas

A general method for constructing multivariate Archimedean copulas has been introduced by
Oakes in the bivariate case (see [10]) and extended in the multivariate case by Marshall and Olkin
(see [9]). The idea behind this method is to use the mixing technique over a latent variable as
a tool for dependence modeling. Introducing a latent variable to transform dependent variables
into conditionally independent ones, allows to express the dependence between the variables as
an Archimedean survival copula with parameter the latent variable, and to obtain the marginal
distributions depending on this parameter. Namely, we have

Theorem 2.1. Oakes-Marshall-Olkin1

Let Θ be a positive random variable (rv) with cumulative distribution function (cdf) FΘ and Xk,
k ≥ 1, be random variables (rv) such that

P (X1 > x1, ..., Xn > xn | Θ = θ) =

n∏
k=1

H(xk)
θ (1)

H being a positive function. The dependence model specified by (1) is a variant of the structure
dependence generated by an Archimedean survival copula with generator φ = L−1

Θ , where LΘ

denotes the Laplace transform of FΘ:

P [X1 > x1, . . . , Xn > xn] = LΘ

( n∑
i=1

L−1
Θ

(
F̄ i(xi)

))
(2)

1Note that we choose to denote this result as "the Oakes-Marshall-Olkin Theorem". It has been introduced
and developed by Oakes for the bivariate case (see [10]) and generalized for any n by Marshall & Olkin (see [9]).
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where the marginal distributions Fk of Xk, k = 1, . . . , n, are defined by

F k(x) := 1− Fk(x) = LΘ

(
− lnH(x)

)
(3)

By means of this mixing technique, we can provide an explicit formula for the probability
density function (pdf) of aggregated risks Xi, i = 1, · · · , n, of a dependence model. Finding the
appropriate choice of the function H and the mixing parameter Θ to fit the marginals and the
dependence model is the key step to derive via the Oakes-Marshall-Olkin theorem an explicit
formula for the pdf.

With the explicit pdf fSn of the aggregate risk Sn :=
∑n

i=1Xi, denoted by fn when no possible
confusion, we can derive the formulas for the risk measures and the diversification benefit. Recall
that the diversification performance of a portfolio Sn is measured on the gain of capital when
considering a portfolio instead of a sum of standalone risks. The capital is defined by the
deviation to the expectation, and the diversification benefit ([3]) at a threshold κ (0 < κ < 1),
by

Dκ(Sn) = 1− ρκ(Sn)− E(Sn)∑n
i=1 (ρκ(Xi)− E(Xi))

= 1− ρκ(Sn)− E(Sn)∑n
i=1 ρκ(Xi)− E(Sn)

(4)

where ρκ denotes a risk measure at threshold κ. This indicator helps determining the optimal
portfolio of the company since diversification reduces the risk and thus enhances the perfor-
mance. By making sure that the diversification benefit is maximal, the company obtains the
best performance for the lowest risk. However, it is important to note that Dκ(Sn) is not a
universal measure and depends on the number of risks undertaken and the chosen risk measure.

We will consider two examples of dependent models, presented in Marshall & Olkin ([9]) (and,
since, considered in various papers, as e.g. in [2]), that are useful in reinsurance context. The
first model is with Pareto marginals and a Clayton structure of dependence, which is standard in
reinsurance context as it captures the dependence in the tail. The second one considers Weibull
marginals and a Gumbel copula; it is an interesting alternative since it combines tail dependence
with thin tail distributions.

Throughout the paper, we will assume the same threshold κ for any quantity defined w.r.t. this
threshold, hence we will omit it in the notation of those quantities.

3 Pareto marginals with Clayton survival copula

In this example, we consider a dependent model X = (X1, ..., Xn) with marginals Fi (i =
1, . . . , n) (α, β)-Pareto distributed with α > 1, β > 0, i.e. such that

Fi(x) := 1− Fi(x) =

(
1 +

x

β

)−α
, ∀x > 0 , i = 1, . . . , n. (5)

If β = 1, we simplify the notation writing α-Pareto.
Recall that the quantile q1 of order κ of a (α, β)-Pareto cdf is given by

q1 = V aR(κ) = β
(

(1− κ)−1/α − 1
)

(6)

The dependence structure of the model is chosen as a Clayton survival copula with parameter
θ > 0, defined on [0, 1]n by

Cθ (u1, · · · , un) = ϕ−1
θ

(
n∑
i=1

ϕθ(ui)

)
=

(
n∑
i=1

u−θi − (n− 1)

)−1/θ
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with its generator ϕ given by
ϕθ(t) = t−θ − 1, t ∈ [0; 1]. (7)

3.1 Analytical results

Computing directly the pdf of the aggregate risk Sn associated to our dependent model may
be a difficult task, hence the choice of using the mixing technique to work with conditional
independence. We obtain the following result.

Proposition 3.1. Consider the dependent model X = (X1, ..., Xn) with marginals Fi (i =
1, ..., n) (α, β)-Pareto distributed (see (5)), α > 1, β > 0, and Clayton survival copula with

parameter θ = 1/α > 0 (see(7)). Then the pdf fn of the aggregate risk Sn =
n∑
i=1

Xi is the one of

a compound Gamma distribution (or beta distribution of the second kind with parameters (n, α)
) given, for s > 0, by

fn(s) =
βα

B(α, n)
× sn−1

(β + s)α+n (8)

B denoting the beta function.

The choice θ = 1/α is a constraint of this model. However, it can be generalized to separate the
dependence from the tail index. It is the subject of a forthcoming paper.

Proof. The proof relies mainly on the application of the Oakes-Marshall-Olkin Theorem, which
makes the computations of fn easier.

As given in [9], choosing H(x) = e−x for x > 0, and the latent rv Θ a Gamma Γ(α;β) random
variable (rv) with shape parameter α > 0 and rate parameter β > 0 (or scale parameter 1/β)

with pdf fΘ(x) =
βα

Γ(α)
xα−1e−βx1I(x≥0), allows to check that the model defined by (2) and (3),

which corresponds to our model, satisfies (1) by the Oakes-Marshall-Olkin Theorem.

For more clarity and to be self contained, let us briefly check this statement.

The Laplace transform of Θ being LΘ(t) =

(
1 +

t

β

)−α
, the marginal distribution defined in (3)

satisfies LΘ(− lnH(x)) =

(
1 +

x

β

)−α
with this choice of H. It corresponds on (0,∞) to the

survival cdf of a (α, β)-Pareto defined in (5). Hence we get back the marginal distributions of
our model.

Now, since the generator of the Archimedean survival copula defined in (2), is given by

φ(t) = LΘ(t)−1 = β
(
t−1/α − 1

)
,

we get back the structure of dependence assumed in our model (as the Archimedean generator
is invariant to multiplication of the argument by a positive constant), namely (7) when taking
the parameter θ = 1/α.

4



Since conditioning X by Θ transforms the dependent risks into independent conditional ones,
we write the pdf fn of Sn as

fn(s) =

∫ ∞
0

fSn|Θ (s) fΘ (θ) dθ .

With the choice of H and Θ, our model satisfies (1), hence the conditional rv’s Xi | Θ = θ,
i = 1, · · · , n, are i.i.d. exponentially distributed with parameter θ. We deduce that their

conditional sum Sn =
n∑
i=1

Xi | Θ = θ is Γ(n, θ)-distributed. So we obtain immediately that the

pdf of Sn is the one of a compound Gamma distribution and is given by

fn(s) =
sn−1

Γ(n)

∫ ∞
0

θn e−sθ
βα

Γ(α)
θα−1e−βθdθ =

Γ(α+ n)

Γ(α)Γ(n)
× βα sn−1

(β + s)α+n

hence the result (8).

Having an explicit formula (8) for the pdf fn of the aggregate risk Sn, we can deduce its cdf FSn
integrating fn, and any risk measure based on FSn , as e.g. the two standard risk measures VaR
and TVaR.

The Value-at-Risk of n at threshold κ, denoted qκ,n or qn, is obtained via its definition of quantile
of order κ of FSn , namely

qn = V aRκ(Sn) = F←Sn(κ) (9)

F←Sn denoting the inverse of FSn . Note that using the relation between a beta distribution of
second kind and a beta distribution, it may also be expressed in terms of the quantile of the
beta distribution with the same parameters, B(n, α),

qn =
V aRκ(B(n, α))

1− V aRκ(B(n, α))
.

The TVaR of Sn at threshold κ, defined by

TV aRn = TV aRκ(Sn) = E[Sn | Sn ≥ qn]

(FSn being continuous), can be computed explicitly in terms of qn, as done in the proposition
below.

For completeness, let us compute the TVaR at threshold κ for a (α, β)-Pareto cdf, assuming
α > 1 (for the existence of the TVaR) and β > 0. We obtain

TV aR1 := TV aRκ(X) =
βα

(1− κ)(α− 1)
× α q1 + β

(q1 + β)α
, where q1 is given in (6),

i.e. TV aR1 = β

(
1

(1− 1/α)(1− κ)1/α
− 1

)
. (10)

Theorem 3.1. Considering the dependent Pareto-Clayton model X given in Proposition 3.1,
the TVaR of the aggregate risk Sn =

∑n
i=1Xi at threshold κ, 0 < κ < 1, is given by

TV aRn =
β

(1− κ)B(α, n)
B

((
1 +

qn
β

)−1

;α− 1, n+ 1

)
(11)
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where B(x; a, b) denotes the incomplete Beta function defined by

B(x; a, b) =

∫ x

0
ua−1(1− u)b−1 du.

If the shape parameter α of the Pareto margin is such that α ∈ N\{0, 1}, then TV aRn simplifies
to

TV aRn =
nβ

(1− κ) (α− 1)

1−
α−2∑
j=0

(
n+ α− 1

j

)
pjn(1− pn)n+α−1−j

 , where pn :=

(
1 +

qn
β

)−1

,

(12)

i.e. TV aRn =
nβ

(1− κ) (α− 1)
P[Y > α− 2],

where Y follows a Binomial distribution B(n+ α− 1, pn).

Formulas 11 and (12) also hold for n = 1, giving back (10).

Note that another equivalent way to express the TVaR of Sn is in terms of the hypergeometric
function 2F1 (defined by 2F1(a, b; c; z) =

∑∞
k=0

(a)k(b)k
(c)k

zk

k! where (a)k = Γ(a+k)
Γ(a) ), namely

TV aRn =
βα

(α− 1)(1− κ)B(α, n)
× 1

qα−1
n
× 2F1

(
α+ n, α− 1;α;− β

qn

)
. (13)

Proof of Theorem 3.1
Using the definition of TVaR and Proposition 3.1, we obtain

TV aRn =
1

1− κ

∫ ∞
qn

s fn(s) ds =
β

(1− κ)B(α, n)

∫ ∞
qn
β

sn (1 + s)−α−n ds. (14)

The change of variables u = (1 + s)−1 in (14) gives (11). Now let us assume that α ∈ N\{0, 1}.
We prove (12) by induction on α.
For α = 2, computing (11) provides

TV aRn =
β

(1− κ)B(2, n)
B (pn; 1, n+ 1) =

β n(n+ 1)

1− κ
×1− (1− pn)n+1

n+ 1
=

nβ

1− κ
(
1− (1− pn)n+1

)
,

which corresponds to (12) when replacing α by 2.
Assume now that (12) is satisfied for any 2 ≤ α ≤ k (and for any n ≥ 1). Let us prove that
it holds for α = k + 1. It comes back to prove the induction on the following expression of the
incomplete beta function:

B(pn; k, n+ 1) =
(k − 1)!n!

(n+ k − 1)!
B(pn; 1, n+ k)−

k−1∑
j=1

(k − 1)!n!

(n+ k − j)!j!
pjn(1− pn)n+k−j .

But, since B(pn; 1, n+ k) =
1

n+ k

(
1− (1− pn)n+k

)
,

B(pn; k, n+ 1) =
(k − 1)!n!

(n+ k)!
−
k−1∑
j=0

(k − 1)!n!

(n+ k − j)!j!
pjn(1− pn)n+k−j . (15)
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It is immediate to check that (15) is satisfied for k = 2. Then, assuming that (15) holds for
k ∈ N\{0, 1} (and any n ≥ 1), we check that it remains true for k + 1. An integration by part
gives

B(pn; k + 1, n+ 1) = − 1

n+ 1
pkn(1− pn)n+1 +

k

n+ 1
B(pn; k, n+ 2).

Under the inductive assumption, we can apply (15) to express B(pn; k, n + 2); replacing it in
the previous equation provides that B(pn; k + 1, n+ 1) satisfies (15). Hence the result. �

In the bivariate case (n = 2), the analytical expression (13) can be simplified as follows.

Corollary 3.1. Consider the dependent model X = (X1, X2) with marginals F1, F2 (α, β)-
Pareto distributed, α > 1, β > 0, and Clayton survival copula with parameter θ = 1/α > 0.
Then the TVaR of the aggregate risk S2 = X1 +X2 at threshold κ, 0 < κ < 1, is given by

TV aR2 =
βα

(1− κ) (α− 1)
× α(1 + α) q2

2 + 2β(1 + α) q2 + 2β2

(q2 + β)1+α
. (16)

Proof. Using the definition of TVaR and Proposition 3.1 with n = 2, gives

TV aR2 =
α(1 + α)βα

1− κ

∫ ∞
q2

s2

(β + s)α+2 ds (17)

from which the result follows, via the change of variables u = s/β.

Now we can deduce the main result, namely an explicit formula of the diversification benefit
associated to our model, defined in (4), and denoted byDn when choosing TVaR as risk measure,
and D∗n for VaR.

Corollary 3.2. Consider the dependent Pareto-Clayton model X = (Xi, i ≥ 1) given in Propo-
sition 3.1. Then the diversification benefit of the aggregate risk Sn =

∑n
i=1Xi at threshold κ,

0 < κ < 1, and associated to the risk measure ρ, can be expressed as:

(i) For ρ=VaR:

D∗n = 1− (qn − nE(X))

n (q1 − E(X))
= 1−

1
nβ qn −

1
α−1

(1− κ)−1/α − α
α−1

(18)

q1 being defined in (6) and qn in (9).

(ii) For ρ=TVaR:

Dn = 1−

(α−1)
n(1−κ)B(α,n)B

((
1 + qn

β

)−1
;α− 1, n+ 1

)
− 1

α
(
(1− κ)−1/α − 1

) (19)

which simplifies, for n = 2, to

D2 = 1−
βα−1

2(1−κ) ×
α(1+α) q22+2β(1+α) q2+2β2

(q2+β)1+α
− 1

α
(
(1− κ)−1/α − 1

) . (20)

Proof. (i) It is immediate knowing the fact that for a (α, β)-Pareto distributed variable
E(X) = β

α−1 .
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(ii) Combining (10) with (11) in the definition of Dn gives (19).

For the case n = 2, (20) can be directly deduced from (19). An alternative, with simpler
computation, is to deduce (20) from Corollary 3.1 and the definition (4) of the diversifica-
tion benefit.

3.2 Numerical application and discussion

The main benefit of explicit formulas is to provide exact answers for the risk measures and the
diversification benefit, which are often estimated through Monte Carlo (MC) simulations, which
convergence is not well known. With explicit formulas, it is thus easy to check the quality of the
estimations using MC. Here we study the cases n = 2, 10, 100 as illustrations and for a limited
set of parameters. For the (α, β)-Pareto marginals, we fix β = 1.

With the results (11) (and (12) when α is integer and 6= 0, 1), we check the convergence of the
simulated TVaR, varying the parameter α of the tail index and the aggregation factor n. For the
parameters, we are limited here to one free, as the Clayton survival copula parameter θ relates
directly to the tail index α with α = 1/θ.

First, we explore a case with very heavy tail, α = 1.1, which corresponds to tails seen for
earthquake distributions, and a relatively strong dependence (θ ≈ 0.91). Then we look at the
case α = 2 with moderate heavy tail, followed by that of a moderate tail α = 3, which also means
here a moderate dependence θ = 1/3. We run 10 sets of simulations (changing the seed of the
random generator) for each of these parameters varying the number of simulations per run from
10’000 to 10 million. We report here the average value over the 10 sets of simulations. It is worth
noticing that the standard deviation of those sets decreases, as expected, with the number of
simulations. For the TVaR computed for n = 2, the standard deviation of the 10 sets varies from
32% to 4% for α = 3 and from 57’968% to 247% for α = 1.1 going from 100’000 to 10 millions
simulations (except for n = 100, where we stop at 1 million due to computer limitations). It is a
sign that the convergence is much slower in the case of a fatter tail. Moreover, for extremely fat
tail, it does not converge even for 10 millions simulations. A similar behavior can be observed
for n = 10. Beside the gain in precision, the analytical formula can be numerically evaluated
40 times faster, resp. 580 times faster (for α = 2 and n = 10, resp. n = 100 for 1 million
simulation) than the estimation given by Monte Carlo simulations.

We present in Figure 1 the normalized TVaR, TV aRn/n, for being able to compare the results
for the various n’s. On the figure, we see that:

• The normalized TVAR of Sn, TV aRn/n, decreases as n increases

• The TVaR decreases as α increases

• The rate of convergence of TV aRn/n increases with n

• The heavier the tail, the slower the convergence

• In the case of very heavy tail and strong dependence (α = 1.1 and θ = 0.91), we do not
see any satisfactory convergence, even with 10 million simulations, and for any n

• When α = 2, 3, the convergence is good from 1 million, 100’000 simulations onwards,
respectively.

Looking at Table 1, we note that the convergence of the TVaR of Sn for the Pareto parameter
α = 2 is good, with a relative error going from 0.38% to 0.05% when n goes from 2 to 100, and for
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Figure 1: Convergence of the TVaR of Sn at 99.5% for α = 1.1, 2, 3 from left to right, for an aggregation
factor n = 2, 10, 100 from up to down. The purple plots are for the analytical values and the light green
ones are the average values obtained from the MC simulations. The y-scale gives the normalized TVaR
(TV aRn/n) and is the same for each column.

1 million simulations. Similar relative errors are obtained for α = 3. At 10 million simulations,
for α = 1.1 and n = 10, the TVaR is still underestimated by 25%, which is unacceptable for
an evaluation of the solvency capital. It seems clear that MC will not give satisfactory answers
with reasonable number of simulations. Thus, one might have to resort to explicit formula as
derived in this paper to obtain credible values for the capital. However, increasing the number
of aggregation improves the convergence. Measuring the changes with 1 million simulations, we
see that from n = 2, we have an underestimation of 50% that decreases to 27% for n = 10 and
n = 100.

Let us turn now to the diversification benefit Dκ(Sn) associated with TV aR, denoted by Dn.
We use the results (20) and (19) to compute it explicitly and then check the convergence of
the MC. The same parameter set and the same simulations are used to produce the numbers
displayed in Figure 2. The convergence of the diversification benefit follows a similar pattern as
for the TVaR. Indeed, we see in Figure 2 that:

• The diversification benefit Dn of Sn increases with n

• Dn increases with α

• The rate of convergence of Dn increases with n

• The heavier the tail, the slower the convergence

• In the case of very heavy tail and strong dependence (α = 1.1 and θ = 0.91), we do not
see any satisfactory convergence, even with 10 million simulations, and for any n

• When α = 2, 3, the convergence is good from 1 million, 100’000 simulations onwards,
respectively.
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Figure 2: Convergence of the diversification benefit of Sn (associated with TVaR at 99.5%) for α = 1.1, 2, 3
(from left to right), for an aggregation factor n = 2, 10, 100 (from up to down). The purple lines are for
the analytical values and the light green ones are the average values obtained from the MC simulations. The
y-scale is the same for all the graphs, for fair comparison.

For α = 1.1, the convergence is poor. In this case, we see an overestimation of the diversification
benefit that is above 600% for all aggregation factors including n = 100 (see Table 1). This big
overestimation is less important since we are talking here of very small diversification benefit
of the order of a few percents (3.6% for n = 10, for instance). We see in Figure 2 that the
diversification benefit does not converge in all cases. Obviously, 10 millions simulations are not
enough. The reason is that MC samples the space evenly, when we would need much more
points in the tails to see a good convergence.
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Table 1: Relative errors (when comparing results obtained by MC
and analytical ones) of the TV aRn and the diversification benefit Dn

for Sn, at 99.5% and for various α, as a function of the aggregation
factor n computed with 1 million simulations.

n=2 n=10 n=100

α=3
TV aRn 0.30% 0.14% -0.10%
Dn -1.30% -0.25% 0.15%

α=2
TV aRn 0.38% 0.14% 0.05%
Dn -2.61% -0.44% -0.14%

α=1.1
TV aRn -33.3% -27.3% -26.9%
Dn 1786% 742% 653%

In Table 1, we present the results of a convergence study as a function of the aggregation factor.
The number of simulations is fixed at 1 million and we vary the aggregation factor n. We see a
decreasing estimation error by MC when increasing the aggregation factor, with small errors for
α = 3 and 2 and substantial errors for very fat tails and strong dependence. In the latter, we
also see a systematic underestimation of the TVaR and an overestimation of the diversification
benefit, whatever the aggregation factor. With the thiner tails and lower dependence, MC has
a tendency to overestimate the TVaR and underestimate the diversification benefit except for
n = 100. Note that the error decrease is large between 2 and 10 but much smaller afterwards.

4 Weibull marginals with Gumbel survival copula

We now turn our attention to another type of distribution associated with a different cop-
ula: Weibull marginals with Gumbel dependence. Gumbel dependence is also an Archimedean
survival copula presenting asymmetric dependence with strong tail dependence although less
asymmetric than the Clayton survival copula. The Weibull distribution is also used in insurance
particularly for survival analysis or large claim occurrences, but the tail is usually less heavy
than with certain Pareto distributions. Recall that our goal is to benchmark MC methods with
our analytical expressions.

Consider a dependent model X = (X1, · · · , Xn) with marginals Fi (i = 1, . . . , n), (c, τ)-Weibull
distributed (with c > 0, τ > 0), i.e. such that, for all x ≥ 0,

Fi(x) := 1− Fi(x) = e−cx
τ
. (21)

If c = 1, we simply speak about a τ -Weibull.

11



Recall that the quantile q1 of order κ (0 < κ < 1) of a (c, τ)-Weibull cdf is given by

q1 = V aR(κ) =

(
− ln(1− κ)

c

)1/τ

. (22)

The dependence structure of the model is chosen as the Gumbel suvival copula, with parameter
θ ≥ 1, and generator ϕ defined by

ϕθ(t) = (−ln(t))θ. (23)

4.1 Analytical results

Theorem 4.1. Consider the dependent model X = (X1, ..., Xn) with marginals Fi (i = 1, ..., n)
(c, τ)-Weibull-distributed with c > 0 and τ = 1/2, and Gumbel survival copula with parameter

θ = 1/τ . Then the pdf fn of the aggregate risk Sn =

n∑
i=1

Xi at threshold κ, 0 < κ < 1, n ≥ 1, is

given, for s > 0, by

fn(s) =
c

2
√
π

Γ(n− 1
2)

Γ(n)
s−

1
2 e−c

√
s

1F1

(
1− n, 2− 2n; 2c

√
s
)

(24)

where 1F1 (a, b;x) is the Kummer confluent hypergeometric function defined on R, with real
parameters a, b, by 1F1(a, b; z) =

∑∞
k=0

(a)k
(b)k

zk

k! where (a)k = Γ(a+k)
Γ(a) (see e.g. [5], p. 958).

In particular, for n = 2, (24) simplifies to

f2(s) =
c

4

(
1√
s

+ c

)
e−c
√
s, s > 0. (25)

The proof of this theorem is based on mixing techniques and on the following technical lemma,
which helps obtaining analytical formulas.

Lemma 4.1. For n ≥ 1, we have

∂ ns

(
e−c
√
s
)

=
c (−1)nΓ(n− 1

2)

2
√
π

s
1
2
−n e−c

√
s

1F1

(
1− n, 2− 2n; 2c

√
s
)
.

where ∂s denotes the partial derivative w.r.t. s.

Proof. We proceed by induction.
For n = 1, Lemma 4.1 is well satisfied since ∂s

(
e−c
√
s
)

= − c
2
s−1/2 e−c

√
s, Γ(1/2) =

√
π, and

1F1 (0, 0; z) = 1, for all real z. Suppose now that Lemma 4.1 is true for n ≥ 1 and let us check
it for n+ 1. Under the induction assumption, we have

∂ n+1
s

(
e−c
√
s
)

=
c (−1)nΓ(n− 1

2)

2
√
π

∂s

(
s

1
2
−n e−c

√
s

1F1

(
1− n, 2− 2n; 2c

√
s
))

Let us compute An(s) := ∂s

(
s

1
2
−n e−c

√
s

1F1 (1− n, 2− 2n; 2c
√
s)
)
, using the following proper-

ties of hypergeometric functions (see e.g. [5]):

(i) ∂z (1F1 (a, b; z)) =
a

b
1F1 (a+ 1, b+ 1; z)
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(ii) 1F1 (a, 2a; z) = ez/2 0F1

(
a+

1

2
;
z2

16

)

(iii) 1F1 (a, 2a− 1; z) =
1

4
ez/2

(
4 0F1

(
a− 1

2
;
z2

16

)
+ z

Γ(a− 1
2)

Γ(a+ 1
2)

0F1

(
a+

1

2
,
z2

16

))

(iv) 0F1 (a; z) = e−2
√
z

1F1

(
a− 1

2
, 2a− 1; 4

√
z

)

where 0F1 (a;x) is the confluent hypergeometric function defined by 0F1(a; z) =
∑∞

k=0
1

(a)k
zk

k!

with (a)k = Γ(a+k)
Γ(a) .

We have

An(s) =
1

2
s−ne−c

√
s
[
c 1F1

(
2− n, 3− 2n; 2c

√
s
)
−
(
c+ (2n− 1)s−1/2

)
1F1

(
1− n, 2− 2n; 2c

√
s
)]

=
1

2
(1− 2n) s−n−1/2

0F1

(
1

2
− n;

c2s

4

)
=

1

2
(1− 2n) s−n−1/2 e−c

√
s

1F1

(
−n,−2n; 2c

√
s
)

using (i) in the first equality, then both (ii) and (iii) in the second one, and (iv) in the last one.
We can conclude that Lemma 4.1 is satisfied for n+ 1.

For the proof of Theorem 4.1, we will also need the following relation for n ≥ 0 and a, b ∈ R
(see e.g. [1]), we have

In,b(a) =

∫ ∞
0

xn−1/2e−ax−b/xdx = (−1)n∂ na (I0,b(a)) (26)

with I0,b(a) =

∫ ∞
0

x−1/2e−ax−
b
xdx =

√
π

a
e−2
√
ab

when differentiating In,b(a) with respect to the parameter a.

Proof of Theorem 4.1. As given in [9], it is enough to choose H(x) = e−x (x > 0) and Θ a
Lévy-distributed(0, c2/2) positive rv with c > 0, and pdf fΘ(x) =

c

2
√
πx3

e−
c2
4x , for x ≥ 0, then

to apply the Oakes-Marshall-Olkin theorem.

Computing the Laplace transform of Θ via the change of variables u = θ−1, gives

LΘ(t) =

∫ ∞
0

e−θt fΘ(θ) dθ = I0,t(c
2/4) = e−c

√
t .

So, with this choice ofH, the marginal distribution defined in (3) satisfies LΘ(− lnH(x)) = e−c
√
x.

It corresponds on (0,∞) to the survival cdf of a Weibull (c, 1/2) defined in (21). Hence we get
back the marginal distributions of our model.
Now, since the generator of the Archimedean survival copula defined in (2), is given by

φ(t) = LΘ(t)−1 =
1

c2
(−ln(t))2

we get back the structure of dependence assumed in our model, namely (23) when taking the
parameter θ = 2.
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For the 2nd part of the proof, we can write, as in the proof of Proposition 3.1,

fn(s) =

∫ ∞
0

fSn|Θ (s) fΘ (θ) dθ =
c sn−1

2
√
π Γ(n)

∫ ∞
0

θ(n−1)−1/2 e−sθ−
c2

4θ dθ . (27)

Therefore, using (26) provides

fn(s) =
c sn−1

2
√
π Γ(n)

(−1)n−1√π ∂ n−1
s

(
s−1/2e−c

√
s
)

=
sn−1

Γ(n)
(−1)n∂ ns

(
e−c
√
s
)
.

Applying Lemma 4.1 allows to conclude. �

Let us compute the expressions of the TVaR and the diversification benefit.

Proposition 4.1. Consider the dependent Weibull-Gumbel model X = (Xi, i ≥ 1) given in
Theorem 4.1. Then the TVaR of the aggregate risk Sn =

∑n
i=1Xi at threshold κ, 0 < κ < 1,

can be expressed, for n ≥ 1, as:

TV aRn =
2n e−c

√
qn

(1− κ)c2

(
1 + c q1/2

n +
c2 qn

2
+
c3 q

3/2
n

4
√
π

n∑
k=2

Γ(k − 3
2)

k!
1 F1 (2− k, 4− 2k; 2c

√
qn)

)
(28)

with qn = F←Sn(κ), FSn being defined in (24).

In particular we have, for n = 1,

TV aR1 =
2

c2

(
1− ln(1− κ) +

1

2
(ln(1− κ))2

)
(29)

and, for n = 2,

TV aR2 =
4 e−c

√
q2

(1− κ)c2

(
1 + c q

1/2
2 +

c2q2

2
+
c3q

3/2
2

8

)
. (30)

Proof. By definition of the TVaR, we can write, using the expression (27) for fn,

TV aRn =
1

1− κ

∫ ∞
qn

s fn(s) ds =
c

2
√
π (1− κ) Γ(n)

∫ ∞
0

θ n−3/2 e−
c2

4θ

∫ ∞
qn

sn e−sθ ds dθ.

But we have, by the change of variable t = s θ,∫ ∞
qn

sne−sθ ds =
1

θn+1
Γ (n+ 1; θ qn) =

n! e−θ qn

θn+1

n∑
k=0

(θ qn)k

k!
,

Γ (s; x) denoting the incomplete Gamma function defined by
∫ ∞
x

ts−1e−tdt that can be expressed

as a discrete sum (see [5]).

So we deduce that

TV aRn =
c n

2(1− κ)
√
π

(∫ ∞
0

(1 + θ qn)θ−5/2 e−
c2

4θ
−θ qndθ +

n∑
k=2

qkn
k!
Ik−2,c2/4(qn)

)

=
c n

2(1− κ)
√
π

(
I1,qn(c2/4) + qnI0,qn(c2/4) +

n∑
k=2

qkn
k!
Ik−2,c2/4(qn)

)
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using the definition (26) in the first equation, and the change of variable θ = u−1 to compute
the integral, in the second one.

On one hand, we have I0,qn(c2/4) =
2
√
π

c
e−c
√
qn ; on the other hand, a straightforward com-

putation gives I1,qn(c2/4) =
4
√
π

c3
e−c
√
qn(1 + c

√
qn). Moreover, we can write, using once again

(26),

Ik−2,c2/4(qn) = (−1)k ∂k−2
qn

(
I0,c2/4(qn)

)
= (−1)k

√
π ∂k−2

qn

(
q−1/2
n e−c

√
qn
)

= (−1)k−1 2
√
π

c
∂k−1
qn

(
e−c
√
qn
)
,

from which we deduce, applying Lemma 4.1, that

n∑
k=2

qkn
k!
Ik−2,c2/4(qn) = q3/2

n e−c
√
qn

n∑
k=2

Γ(k − 3
2)

k!
1F1 (2− k, 4− 2k; 2c

√
qn) .

Combining these results provide (28).

Applying (28) with n = 1 provides TV aR1 =
2 e−c

√
q1

(1− κ)c2

(
1 + c q

1/2
1 +

c2q1

2

)
, from which (29)

follows since q1 = (ln(1− κ))2/c2. For n = 2, (30) is a direct application of (28).

Now we can deduce the main result, namely an explicit formula of the diversification benefit
associated to our model for n risks.

Corollary 4.1. Consider the dependent Weibull-Gumbel model X = (Xi, i ≥ 1) given in
Theorem 4.1. Then the diversification benefit of the aggregate risk Sn =

∑n
i=1Xi at threshold κ

(0 < κ < 1), associated with the risk measure ρ, can be expressed as:

(i) For ρ=VaR, D∗n = 1− qn − nE(X)

n q1 − nE(X)
= 1− c2 (qn − 2nc)

n ((ln (1− κ))2 − 2c3)
.

(ii) For ρ=TVaR,

Dn = 1−
e−c
√
qn
(

1 + c q
1/2
n + c2

2 qn + c3

4
√
π
q

3/2
n
∑n
k=2

Γ(k− 3
2 )

k! 1F1

(
2− k, 4− 2k; 2c

√
qn
))
− c3(1− κ)

(1− κ)
(
1− c3 − ln(1− κ) + 1

2 (ln(1− κ))2
)

(31)
which simplifies, for n = 2, to:

D2 = 1−
e−c
√
q2
(

1 + c q
1/2
2 + c2

2 q2 + c3

8 q
3/2
2

)
− c3(1− κ)

(1− κ)
(
1− c3 − ln(1− κ) + 1

2(ln(1− κ))2
) (32)

Proof.

(i) It is immediate knowing that E(X) = cΓ(1+ 1
τ ) = 2c when X is (c, τ)-Weibull distributed.

(ii) Combining (28), (30) respectively, with (29) in the definition of the diversification benefit
(4) gives the results.
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Figure 3: Convergence of the normalized TVaR of Sn, TV aRn/n, at 99.5% for c = 1, τ = 1
2 and θ = 2,

for an aggregation factor n = 2, 10, 100 from left to right. The purple plots are for the analytical values and
the light green ones are the average values obtained from the MC simulations. The y-axis is the same for the
three plots.

4.2 Numerical application and discussion

We use the analytical expressions given in Proposition 4.1 and Theorem 4.1 to compute the
TVaR and the diversification benefit, for various values of the aggregation factor n, namely 2,
10 and 100. Contrary to the Pareto-Clayton case, these expressions were obtained by fixing
most of the parameters of the model, with the Gumbel copula parameter fixed to θ = 2 and
the “τ ” parameters of the Weibull marginals to τ = 1/2. The tail index is thus fixed to α = 2.
Only the scaling parameter c of the Weibull marginals might be modified, but for the sake of
simplicity we fix it to 1.

We compare these values obtained analytically with those obtained via Monte Carlo (MC)
simulation, in order to check the convergence of the MC method. As for the Pareto Clayton
case, we run 10 sets of simulations (changing each time the random seed of the random generator)
for our set of parameters, varying the number of simulations per run from 10’000 to 10 millions
(except for n = 100, where we stop at 1 million due to computer limitations). We report here
the average values of the 10 sets and verify that the standard deviation is decreasing with the
number of simulations, as expected.

We present in Figure 3 the normalized TVaR, TV aRn/n, for the 3 cases n = 2, 10, 100. We see
in this figure that:

• TV aRn/n decreases with n

• TV aRn/n decreases faster between n = 2 to n = 10 (-29%) than between n = 10 to
n = 100 (-12%)

• The rate of convergence is good in all the cases and the deviation reaches less than 1%
already with 100’000 simulations

On the figure, the convergence is very clear. The absolute value of the relative error is less
than 2% for both risk measures and for all n’s. The convergence, reached already with 100’000
simulations, is faster than the one obtained with the Pareto-Clayton model. This is explained by
the fact that, for 0 < τ < 1, the Weibull marginals are moderately heavy tailed and the Gumbel
survival copula has a weaker dependence in the tail compared to the Clayton survival copula;
thus the simulation requires less points to model accurately the behavior in the tails. Increasing
the number of aggregation improves the convergence. Indeed, when measuring the variation with
1 million simulation for the TVaR, we see that for n = 2 we have an underestimation of 0.65%,
which decreases to 0.18% for n = 100. Beside the gain in precision, the analytical formula can
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Figure 4: Convergence of the diversification benefit Dn of Sn (associated with TVaR at 99.5%) for c = 1,
τ = 1

2 and θ = 2, for an aggregation factor n = 2, 10, 100 from left to right. The purple lines are for the
analytical values and the light green ones are the average values obtained from the MC simulations. The
y-axis is the same for the three plots, for fair comparison.

be numerically evaluated 65 times faster, respectively 75 times faster (for n = 10, resp. n = 100
for 1 million simulation), than the estimation given by Monte Carlo (MC) method. Moreover,
MC method cannot be used for higher number of aggregation (i.e n = 10′000) due to lack of
system memory, while it is of course feasible for the analytical formula.

In Figure 4, we present the results for the diversification benefit Dn, when choosing TVaR as
risk measure. Similar comments hold for Dn as for TV aRn/n. The convergence is already very
good for 10′000 simulations. We also observe, as expected, that Dn increases with n.

5 Diversification benefit as a function of the aggregation factor
and the risk measures

In this section, we use the analytical expression of the diversification benefit for the two models,
Pareto-Clayton (see Theorem 3.2) and Weibull-Gumbel (see Theorem 4.1) to examine and com-
pare the behavior of the diversification benefit as a function of the aggregation factor n (from
n = 2 to 10’000) and the risk measures, TVaR and VaR. For fair comparison, we choose the
Pareto-Clayton case with α = 2, since it corresponds to the tail index of the Weibull-Gumbel
model.

To complete the comparison, we add two cases, when having independent Pareto rv’s, to evaluate
the impact of the dependence, and when considering a Gaussian-Gaussian model (Gaussian
marginals and Gaussian correlation) to evaluate the impact of the tail thickness. Let us recall
briefly the evaluation of the diversification benefit in both cases.

Independent Pareto rv’s case with asymptotic threshold (κ↗ 1)

To avoid computations, we are going to look only for approximations when considering extreme
quantiles (i.e. when the threshold κ tends to 1), for which Feller’s result (see [4]) is available. For
sharper and not necessarily asymptotic results, computations could be done using the Normex
method (see [8]).

Feller has shown that the tail distribution of the sum of independent rv’s with regularly varying
RVα tail distribution is asymptotically RVα. Applying this result when considering iid Pareto-
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(α, β) rv’s provides

qn = V aRκ(Sn) = F←Sn(κ) ∼
κ→1

β

((
1− κ
n

)−1/α

− 1

)
(33)

and

TV aRκ(Sn) ∼
κ→1

nβα

(1− κ)(α− 1)
× αqn + β

(qn + β)α
∼
κ→1

β

(
α

α− 1

(
1− κ
n

)−1/α

− 1

)
. (34)

Note that we get back the asymptotic relation TV aRκ/V aRκ → α/(α− 1) as κ→ 1.

Now let us look at the diversification benefit for high threshold κ. When choosing the VaR as
risk measure (q1 satisfying (6)), we have

D∗n(κ) = 1−
qn − nβ

α−1

n
(
q1 − β

α−1

) ∼
κ→1

1−
n

1
α
−1(1− κ)−1/α − 1

n −
1

α−1

(1− κ)−1/α − 1− 1
α−1

(35)

and for the TVaR,

Dn(κ) ∼
κ→1

1−
α
α−1 n

1
α
−1 (1− κ)−1/α − 1

n −
1

α−1

α
α−1 (1− κ)−1/α − 1− 1

α−1

(36)

from which we deduce the asymptotic limit as κ→ 1, which is the same for both risk measures,
as expected:

lim
κ→1

D∗n(κ) = lim
κ→1

Dn(κ) = 1− n−(1−1/α) (37)

which tends to 1 as n→∞.

Note that in the Gaussian case, Dn (or D∗n), converges also to 1 as n → ∞ with a rate of
convergence of n1/2, and not only for high threshold κ.

Multivariate Gaussian distribution

Consider the Gaussian vector (Xi)i=1,··· ,n with expectation vector (µi)i=1,··· ,n, µi = µ, and (non
negative definite) covariance matrix Γ = (γij)1≤i,j≤n such that γii = σ2, ∀i. Then Sn =

∑n
i=1Xi

is normally distributed with mean nµ and variance nσ2 +2
∑

1≤i<j≤n
γij . Hence, with the notation

rij = corr(Xi, Xj) and φ, Φ, for the standard normal probability density function, cumulative
distribution function respectively, we can write

qn = V aRκ(Sn) = nµ+ Φ−1(κ)
√
nσ

√
1 +

2

n

∑
1≤i<j≤n

rij ≤ n
(
µ+ Φ−1(κ)σ

)
= n q1,

whereas, for the TVaR,

TV aRκ(Sn) = nµ+
φ
(
Φ−1(κ)

)
1− κ

√
nσ

√
1 +

2

n

∑
1≤i<j≤n

rij ≤ n

(
µ+

φ
(
Φ−1(κ)

)
1− κ

σ

)
= nTV aRκ(X) .

We deduce that

Dn = D∗n = 1− 1√
n

√
1 +

2

n

∑
1≤i<j≤n

rij (≥ 0) .
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Table 2: Analytical diversification benefit of Sn, Dn and D∗n, at 99.5% as a function of the risk
measures TVaR and VaR, respectively, and of the aggregation factor n. Tail index α = 2, survival
Clayton parameter θ = 1/2, Weibull τ = 1/2, Gumbel parameter θ = 2.

n=2 n=10 n=100 n=1000 n=10’000

Independent Pareto
Dn = D∗n 29.3% 68.4% 90.0% 96.8% 99.0%

Pareto-Clayton
Dn 13.2% 25.5% 28.6% 29.0% 29.0%
D∗n 12.9% 25.2% 28.3% 28.6% 28.7%

Dn/D
∗
n 1.021 1.014 1.012 1.012 1.012

Gaussian-Gaussian
r = 0.42 (Clayton)

Dn = D∗n 15.7% 30.9% 34.7% 35.1% 35.2%

Weibull-Gumbel
Dn 23.1% 47.0% 54.1% 54.8% 54.9%
D∗n 19.6% 40.4% 46.5% 47.2% 47.2%

Dn/D
∗
n 1.179 1.162 1.163 1.163 1.163

Gaussian-Gaussian
r = 0.39 (Gumbel)

Dn = D∗n 16.6% 32.8% 37.1% 37.5% 37.5%

The diversification benefit can tend to any constant between 0 and 1, as n→∞, whenever there
exists a linear dependence between the components. For instance, if rij = r 6= 0, ∀i 6= j, the
diversification benefit reduces to

Dn = D∗n = 1− 1√
n

√
1 + (n− 1) r .

When r = 1 (full comonotonicity), Dn = D∗n = 0, whereas for r = 0 (independent case), we get
back that Dn = D∗n = 1− n−1/2, which is also the limit (as κ→ 1) of the diversification benefit
given in (37) for independent α-Pareto rv’s with α = 2.

Let us compare the diversification benefit as a function of n, for both TVAR and VaR, for high
threshold κ = 99.5%, considering the following cases: (i) independent α-Pareto with α = 2,
(ii) α-Pareto margins and survival Clayton (θ) copula (Pareto-Clayton) with α = 2 = 1/θ, (iii)
Gaussian margins and Gaussian copula (Gaussian-Gaussian) with (linear) correlation r = 0.42
estimated on the previous Pareto-Clayton model, (iv) τ -Weibull margins and Gumbel (θ) copula
(Weibull-Gumbel) with θ = 2 = 1/τ , and (v) Gaussian-Gaussian with correlation r = 0.39
estimated on the Weibull-Gumbel model.

The linear correlation coefficients are estimated from the realization of the simulated model.
We choose the number of simulations for which the Kendall -τ estimate corresponds to the
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Figure 5: Plot of the diversification benefit D∗n (y-axis) as a function of n (x-axis), for V aRκ with
κ = 99.5%. The curves from bottom to up correspond, respectively, to Pareto (α = 2)-Clayton (θ = 1/2),
Gauss-Gauss (Clayton; r = 0.42), Gauss-Gauss (Gumbel; r = 0.39), Weibulll (τ = 1/2)-Gumbel (θ = 2),
independent Pareto and Gauss models (α = 2).

theoretical one. Recall that the theoretical value of τ , as a function of the θ parameter of the
copula, is known for both Clayton, with τ = θ

θ+2 , and Gumbel, with 1− 1
θ . The convergence is

reached with 100’000 simulations.

In Table 2, we present the results obtained on Dn and D∗n using analytical formulas for all of
them, and not simulations. Note that it completes the numerical application for the analytical
diversification benefit done in the previous sections with the TVaR only. Moreover, the functions
D∗n of n are plotted in Figure 5 for the various models.

We show in Table 2 and Figure 5 that:

• The dependence has much impact on the evolution of the diversification benefit with n, as
expected. In the case of dependence, the diversification benefit levels off rapidely, already
at n = 100, while for the independence case, it still increases from n = 100 to n = 10′000

• The evolution of the diversification benefit is similar for the two underlying structures,
increasing and leveling off with n, for both. For example, in the dependent case, from
n = 2 to 10, it increases approximately by a factor 2 (1.9 for Pareto-Clayton and 2.0
for Weibull-Gumbel), regardless of the risk measure used to compute the diversification
benefit

• Although both evolutions are the same from n = 2 to 100, the Pareto-Clayton model
exhibits a stronger tail dependence and a fatter tail than the Weibull-Gumbel one. This
appears through the difference of the diversification benefit between the two models, almost
twice bigger for the second

• We see in the table that the diversification benefit computed with the VaR is always
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lower than the one computed with the TVaR. This is to be expected, since the latter risk
measure takes into account the whole distribution beyond a fixed threshold (for instance
99.5% in this case), whereas the VaR only looks at one point of the distribution. However,
the difference is more pronounced for the Weibull-Gumbel model than the Pareto-Clayton
one, with a ratio of the order of 1.2 instead of 1.01 respectively

• The ratio Dn/D
∗
n stabilizes from n = 10 onwards, with 1.012 for Pareto-Clayton and

1.163 for Weibull-Gumbel. Starting at n = 100, the diversification benefit does not change
anymore

• Comparing the results obtained with the Pareto-Clayton model and the corresponding
Gaussian-Gaussian one, emphasizes that the tail dependence associated with a fat tail
limits the diversification benefit. The diversification benefit limit is 35.2% for the Gaussian
case, while it is only 29% in the Pareto-Clayton case

• The comparison leads to a different result in the Weibull-Gumbel case and the Gaussian
one. Here we see much stronger diversification benefit for the Weibull-Gumbel model
than for the Gaussian-Gaussian one. The intuition to explain this observation being less
obvious than with the previous model, other examples varying the parameters would help
to analyze this effect. Let us just note that the linear correlation implied by θ = 2 is quite
high in this case

• As expected, 100 % diversification benefit is reached in the independent case only.

6 Conclusion

In this paper, we use the mixing techniques to compute explicitly the probability density func-
tion (pdf) of n-aggregated risks for two combinations of dependence structure and marginal
distributions, Pareto-Clayton and Weibull-Gumbel. From this pdf, we have derived the explicit
formulas for the TVaR, the VaR and the diversification benefit. These formulas are then used
to study the convergence of the TVaR and the diversification benefit as a function of the tail
indices. By varying the number of simulations from 10’000 to 10 millions, we find out that for
Pareto-Clayton a minimum of 100’000 simulations is needed to obtain a good convergence for
moderately heavy tails α = 2 to α = 3. For very heavy tails, as e.g. α = 1.1, we do not reach
convergence, even with 10 millions simulations, showing that we must be careful when using MC
method for this kind of distributions. The second case is more limited since the Gumbel copula
parameter is fixed to θ = 2, however we can conclude that the convergence with a Gumbel
copula is faster than with a Clayton survival copula since 100’000 simulations are considered as
sufficient for moderate heavy tail Weibull distribution.

In addition, we study the behavior of the analytical diversification benefit of Sn as a function
of the aggregation factor n. The variation is similar for the two structures. For example, it
increases approximately by a factor 2 from n = 2 to n = 100. The diversification benefit for
large n converges to a lower value for the Pareto-Clayton model than for the Gumbel-Weibull
one, due to the fact that the tails and the dependence in the tail are stronger for the first model.
When comparing it to the one obatined with an elliptical model (Gaussian copula), we observe
two opposite behaviors depending on the considered model. In the Pareto-Clayton case, the
diversification benefit of the Gaussian model converges clearly to a higher value, while we see
the reverse for the Gumbel-Weibull case. It is also interesting to note that in the independent
case, Pareto with α = 2 has an identical behavior as the Gaussian one, despite the fact that
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Pareto has a heavier tail. Moreover, as expected, the diversification benefit computed with the
VaR is lower than the one computed with the TVaR, however this difference stabilizes when
increasing the aggregation factor n.

Bypassing Monte Carlo simulation is a considerable gain in precision and time. Indeed, the
analytical formulas are estimated to be 40 to 500 times faster than MCmethod with the difference
increasing with increasing n’s. Moreover, with the analytical formula we can estimate the TVaR
even for very heavy tail distributions when MC method fails even for 10 millions simulations.
Explicit formulas let us also explore the aggregation behavior of the risk measures and the
diversification benefit. It is a precious tool for validating results of internal models, which are
based on MC simulations. Numerical methods should be used only when no anayltical solutions
are available.
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