N

N

Stochastic modeling of consumer purchase behavior: 1.
Analytical Results
Albert C. Bemmaor

» To cite this version:

Albert C. Bemmaor. Stochastic modeling of consumer purchase behavior: I. Analytical Results. 1981.
hal-01277068

HAL Id: hal-01277068
https://essec.hal.science/hal-01277068

Preprint submitted on 22 Feb 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://essec.hal.science/hal-01277068
https://hal.archives-ouvertes.fr

ERESSEC

Centre d'Etudes et de Recherche en Sciences Sociales, Economiques et Commerciales

Avenue de la Grande-Ecole - B.P. 105 - 95021 CERGY-PONTOISE CEDEX - France - Tél. (3) 030.40.57 - Télex ESSEC 697789 F

Association régie par la lor de 1901 - I.N.S.E.E, 972951270002 H




Comments welcome
Not to be quoted
without written permission

STOCHASTIC MODELING OF CONSUMER PURCHASE BEHAVIOR:

I. ANALYTICAL RESULTS

Albet C. Bommaon

July 1981

ns

Associate Professor, Ecole Supérieure des Sciences Economiques et
Commerciales, Cergy Pontoise 95021, France.



STOCHASTIC MODELING OF CONSUMER PURCHASE BEHAVIOR:

I. ANALYTICAL RESULTS

This paper develops alternative brand purchase models. These
models are based on distinct assumptions about the product class
purchasing process over a fixed time-period. In each case, the
brand choice process conditioned on a product purchase being made
is assumed to be heterogeneous zero order. New analytical closed-
form results are derived. These results include various market
statistics such as the brand penetration, the mean and variance of
the brand purchase distribution and the aggregate brand purchase
distribution itself. These theoretical expressions are based on the
‘assumption of independence between brand choice probability and mean

product purchase rate across the population.



STOCHASTIC MODELING OF CONSUMER PURCHASE BEHAVIOR:
I. ANALYTICAL RESULTS

Albert C. Bemmaor

Over the past few years, much research has concentrated on the
modeling of consumer purchase timing and brand choice behavior. The
purchase timing process comnsists of the occurrences of product class
purchases over a given time-period whereas the brand choice process
deals with the prediction of choice conditioned on a purchase being
made. Since Herniter's paper (1971), there has been a trend toward
the separate modeling of both processes in a first step, and, in a
second step, the building of a composite model of market behavior which
predicts the aggregate brand purchase distribution over a fixed time-
period (Zufryden 1977, Jeuland, Bass and Wright 1980). Researchers
have altered either the purchase timing model or the brand choice model
(or both) to derive analytically the resulting model of brand purchase.
In every case, the assumption of independence between the brand choice
probabilities and the average purchase rate of the product class has
been made. This issue of independence has been empirically investigated
over several product classes. Shoemaker et al. (1977) analyzed consumer
panel data for three product categories (instant coffee, regular

coffee and paper towels) and found that, in many cases, the hypothesis



of independence was 'a good first approximation’'. In Jeuland, Bass

and Wright's study (1977) the simple correlations between relative
frequencies of choice and mean purchase rate for catsup and cooking

0il were below .10 in absolute value for a total of thirty nine brands
which led them to conclude: "this assumption is justified in the present
case". The purpose of this paper is, firstly, to extend the body of
purchase timing models so that the purchasing of additional product
categories might be modeled, and, secondly, to derive closed-form
expressions for various market statistics such as the brand penetration,
the mean and variance of the number of brand purchases and the brand
purchase distribution over a fixed time-period. This theoretical part
will be followed by an empirical part which will focus on the fit of

the alternative models to consumer panel data. In the first section,
purchase incidence models are studied, These models describe the

empirical distribution of the number of product class purchases over

a given time-interval. The second section deals with the modeling of

the distribution of the number of brand purchases over the same time
period under the assumption of an heterogeneous multinomial distribution
as a model of brand choice. The reason for solely considering this
choice model is three-fold: 1) it has been shown to be fairly consistent
with the evidence (Massy 1966, Dodson 1976, Bemmaor 1978, Jeuland, Bass
and Wright 1980), 2) it fully describes choice behavior over the whole
set of brands within a market, and 3) it leads to closed-form expressions
for the various market statistics. The third section is a discussion

on further analytical developments.



Product class purchase model

The most simple model assumes that times between product class
purchases for an individual consumer are independently distributed
and follow an exponential distribution with mean 1/A. Equivalently, the
number of purchases over a fixed time interval is distributed Poisson
with mean A (Rao 1973, p. 166). Assuming that the parameter A varies
over the population according to a two-parameter gamma distribution,
we find that the number of purchases follows a Negative Binomial
Distribution (NBD) over the population. Ehrenberg (1959) applied this
distribution to a marketing situation. Noting that, for such product
classes as washing-up liquids, razor blades, dentifrice and toilet
soap, comnsumers tend to buy more regularly than Poisson, Chatfield
and Goodhardt (1973) discussed the use of the Condensed-2 Poisson for
which the variability ratio (variance/mean) varies between 1 and 0.5
depending on the individual mean purchase rate. Interpurchase times
are then distributed Erlang-2 (instead of exponential as in the
Poisson process). Letting the mean of the Condensed-2 Poisson
distribution vary over the population according to a gamma distribution,
Chatfield and Goodhardt derived the Condensed-2 Negative Binomial

Distribution as the aggregate distribution of the number of purchases.

The probability density function of the Erlang-n model with scale
parameter A 1is

0 ,
)\ — =)

" ]e At,, A>0, n=1,2,3,..., and t>0Q.
T'(n) :

f(t{n,1) =

Considering an alternative distribution to the Erlang-n model,

Banerjee and Bhattacharyya (1976) suggested the use of the two-
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parameter Inverse Gaussian (IG) distribution whose probability density

function 1is

1
£(clu,8) = (9/2M)° ¢

rof W

exp{-0t (Y=-1/¢)%/2}, y>0, ¢>0 and t>0.

This distribution has an advantage over the Erlang-n distribution in
that it allows for a bivariate compounding over the population. All
of these modeling efforts for interpurchase times might be considered
as special cases of a general class of probability distributions: the
three—-parameter Generalized Inverse Gaussian distribution (GIG). Its
probability density functien is given by (Barndorff-Nielsen,

Blaesild and Halgreen 1978):

n/2
(1/%)

2 Kn[/(ET)]

£(eln,g,1) = ! exp{-% (ct—]+ T}, £>0 (1)

where the variation domain of the parameter (n,z,T) is such that

z>0, 1>0 for n<0, >0, T>0 for n=0 and 20, >0 for n>0 and Kn['] is
the modified Bessel function of the third kind with index n. It can be
shown that the negative exponential function%g(x) and the Erlang-2
distribution with parameter A are equivalent to the GIG (1,0,2)) and to
the GIG (2,0,2)X) respectively. The Inverse Gaussian distribution with

parameter (y,¢) is equivalent to the GIG(l/Z,dé, %) with ¥ = u/dO and

and ¢ = dé (see Appendix A).

Individual consumer purchasing behavior: the Condensed-3 Poisson

distribution

The Erlang-n model is characterized by a coefficient of variation

equal to 1/v/n. To investigate the magnitude of the order n of the Erlang



model, empirical analyses of the relative frequencies of the
coefficients of variation (standard deviation/mean) of interpurchase
times distributions were made. The results showed that for a product

class such as regular coffee, the median was closer to 1/v3 than to 1/v2

(as implied by an Erlang-2 interpurchase time distribution) over the
population. In her doctoral research, Cynthia Fraser found a similar
result for the whole coffee market (instaﬁt coffee plus regular coffee){
These results seem to indicate that the Erlang-3 model would provide a
better description of the distribution of interpurchase times than the
Erlang-2 model. The number of purchases over a fixed time-period are then
distributed as Condensed-3 Poisson instead of Condensed-2 Poisson.

Haight (1967, p. 57) provides the general analytical form for the
Condensed-n (n=1,2,3,4,...) Poisson distribution? For n=3, the distri-

bution function is

- 2 1
PC3(O|A) = Pp<o1x> + 5 Pp(l\k) + oy Pp(zlx)

-

= 1 2 _
Py kM) =3 Po(3k-2{n) + SENCIIINERNC Y (2)
2 1 _
i Pp(3k+1|x) + 3 Pp(3k+2|x), k=1,2,3,...
where
k
P (klk) = e—x &— .
i k!
-3/2X\ v

The mean and variance are A/3 and A/9 + 4/27[1-e cos(T;-A)]

respectively (Appéndix B). The variability ratio goes to~% as A tends

to infinity. The correlation between consecutive purchases is negative

for X positive and attains its maximum in absolute value (p1 ==.,226)

2

when A= 1.276 (Appendix C). By comparison, for the Condensed-2 Poisson



distribution, the maximum correlation (012=—.013) is reached when
A~0.81 (Chatfield and Goodhardt 1973). The correlation between
consecutive purchases increases in magnitude as the order n of the

Erlang model increases. Inventory behavior might be allowed for by

increasing the order. This issue is also evidenced through the study

of the hazard function as expressed by

_ )
1-F(t)

z(t)

where £(t) is the probability density function of t and F(t) is the
cumulative distribution function (Cox and Lewis 1966, p. 135). This function
represents the likelihood of a purchase occurring given that no

purchase has yet occurred. The hazard function for the Erlang-n

distribution with scale parameter © is z(t) = (t/c)n-l/{a(n—l)!

n-1| . 3 '
[ z (t/o)l/(i!)]} (Hastings and Peacock 1974, p.54). For the Inverse Gaussian
50

distribution, it was computed through the use of a numerical integration

subroutine (IMSL 1979b). The hazard functions are shown in Figure 1.A
and 1.B. As time passes, the conditional likelihood of making a purchase

increases monotonically for the Erlang distribution whereas it

decreases after reaching a peak for the Inverse Gaussian dis-
tribution. The rate of increase of the hazard function is lower for the
higher order Erlang model which reflects the strength of the inventory

effect on time to repurchase.

Model of aggregate purchasing behavior: the Condensed-3 Negative

Binomial Distribution

Assume that the mean A/3 of the Condensed-3 Poisson follows a
two-parameter gamma distribution with shape parameter r and scale

parameter ¢ over the population.



dF(%lr,O’) - __r__l—__ >\ r-1 3c
o T'(xr)

It follows that the distribution of A is gamma (r,30), i.e.,

1 xr-l 3¢
(30)" T(r)

dF(glr,G)

]

£(A]r,30) dA

The distribution of the number of purchases (2), unconditioned

on A, is given by

+00

Pay3(O) = fo Pas (OM)E(A]r,30)dA

+00

Poy3(K) = fo PC3(k|k)f(k]r,30)dA, k=1,2,3,...

Replacing PC3(O[A) and PC3(k]X) in (3) by {(2), we obtain

_ 2 !
PCN3(O) = PN(O) *3 PN(I) + §-PN(2>

=1 - 2 -
(k) = 3 P\ (3k=2) + 3 Py (3k=1) + P (3K)

Pons g

(3k+1) + PW(3k+2), k=1,2,3,...
A :

w|—

27
3N

where PN(k) is the NBD(r,30)



R -

N -
P(k) = T (k+r) ( 3a > (1+30) T
i T(r)k! \1+30

This distribution is called the Condensed-3 Negative Binomial

Distribution. Its mean equals one-third the mean of the NBD(r,3c), Or,

r/2

and its variance is or(o+1/3) + 4/27{1-COS(r6>/(l+90+2702) } where

siné=/3/q, cosd=1/q(3/2+1/30) and q=[(3/2+1/30)% + 3/4]1/2 (Appendix
D). The shape of this distribution is compared to that of the
Condensed-2 NBD and of the NBD for various values of r and a fixed
scale parameter O in Fiéure 2. Note that the proportion of non-—

buyers decreases as the order of the Erlang distribution increases.

These distributions become more and more humped with an increase in the

order.

Brand purchase model

The purpose of this section is to derive Fhe brand purchase distri-
bution over a fixed time-period under various assumptions about the
product purchase model. Zufryden (1977) considered the linear
learning model as a brand choice model, conditional upon a product
purchase being made. This model describes choice behavior in a two-—
brand market only. We will consider a multi-brand market and we will
assume that brand choice probabilities vary among COTNSUMErS. The model
is based upon three distinct assumptions: 1) independence between
consecutive choice occasions, 2).consumer's vector of probabilities
of choosing among (N+1) brands [81""’ei""’6N] is constant over time,
and 3) the vector of probabilities varies over the population according

to a Dirichlet distribution whose probability density function is



N ai—l N aN+l—l
£(8,,...,8)) = [T 8,7 /T(a)] (1- ] 8) T(c)
1=} i=1
where [al""’aN+l] is the vector of parameters of the distribution,
N+1
T(-) is the gamma function, ai>O for all 1 and z a.=c. Mosimann (1962)
i=1

studied the properties of this distribution and applied it to biology.
Chatfield and Goodhardt (1975), Bass, Jeuland and Wright (1976) and

Kalwani and Morrison (1977) discussed its use in a brand choice context.

The marginal distribution of each component 6i is a beta distribution

with parameter (ai, bi=c—ai). The compound multinomial distribution gives
the theoretical distribution of the vector of brand purchases over the
population, conditioned on a given number of purchases of the product class.
It is useful to derive the unconditional distribution of the number of
brand purchases over a fixed time-period by making alternative assumptions

about the product purchase distribution for individual consumers. The

following analytical results are based upon the three following

assumptions:

Al. Independence between brand choice probability ei and
average purchase rate of the product class A/n (n=1,2,3,...)
over the population.

A2, ei follows a beta distribution with parameter (ai,bi=c—ai).

A3. The mean of the Condensed-n Poisson(n=1,2,3,...) A/n is distributed
gamma with parameter (r,0). It follows that A is distributed

gamma with. parameter (r,ng).

Poisson assumption for consumer product purchases

Assume that the number of purchases x of Brand 1 over a fixed

number of product purchases k i1s binomial with parameter Gi,



10.
_ k) ,.x k-x
P(x|k,0,) = (X)ei (1-8,) 0<8,<1, x=0,1,2,...,k.

Let P(klk) be the distribution of k with parameter )\ over a given

time-period. The distribution of x, unconditioned omn k, is given by

P(x[8,,0) = I P(x|k,8,) P(k[A). (5)
k=0

If P(k|A\) is a Poisson distribution, P(xlei,K) is Poisson with

parameter Aei (Feller 1968, Eq.2.!11 in Ch.12)

~A8, 08"
P(x|6.,)) = e —_ (6)
o x!
The mean and variance of [6) are both equal to xei. Under the
assumptions Al, A2, and A3, the distribution of x, unconditioned
on ei and A\, is given by (see E.2)
I(e) o* T(x+) T(x+a,) (1)
P(x) = F (x+r,x+a.;x+c;-0)
F(ai) T'(r) x! T'(x+c) 1
(n T'(u) I my-l u-my=l o8
where FD (mo,sl;u;zl) = f W (1-w) (l-zlw) dw

F(mo) F(u—mo) 0

is the integral representation of a Lauricella series with u>u—mo>0

and Iz‘<1 for absolute convergence. For x=0, we find

- w(D o - ,
P(0) = FD (r,ai,c, o) (E.3)



To find the penetration of the brand over T basic time-periods,
we replace ¢ by 0T in (E.3) and compute 1~P(O[T). The mean and variance
of this distribution are rcai/c and rcai/c[g/(c+1)(rbi/c+ai+l)+1]

respectively (see G.3 and G.4).

Condensed-2 Poisson assumption for consumer product purchases

Assume that P(k!k) in {5) is Condensed-2 Poisson as given by

Chatfield and Goodhardt (1973),

P, (Of) .Pp(o]x)+-;-1>p(1|>\) k

0 (7]

1 I _
Poy(k[A) = = Pp(_Zk—.1|x)+PP(2k;x>+7Pp(2k+1M) k=1,2,3

|

with

Pp(kl}\)=:e_ -

The mean and variance of P(xlei,k) are Aei/Z and ei/z[x—ei/z(x—e‘x

sinhA)] respectively (see G.5 and G.6). Note that the conditional

1

distribution of x 1is not Condensed-2 Poisson% With g=(1—ei)2 the

probability that a consumer with parameter Gi and A makes no purchase

is (see F.2)

R(x=0[8,,\)=e “[3Esinh(§)) + cosh(§1) +2¢ | sinh(EV)]-



Under the assumptions Al, A2 and A3, the unconditional probability
of no purchase is given in (F.3). The mean and variance of the brand
purchase distribution over the population are rcai/c and rOai/
c[o/<c+1>(rbi/c+ai+1)+1-(ai+1)/2(c+1)]+1/8ai(ai+1>/c(c+1>[1-(1+4o)‘r]

(see G.7 and G.8).

Condensed-3 Poisson assumption-for eonsumer product purchases

Assume that P(klk) in (5) is Condensed-3 Poisson as shown in (2).
The probabiliry that a consumer with given average product purchase
rate \/3 and brand choice probability Si makes no purchase is presented
in (F.4). The mean and variance of the distribution of this consumer brand

—%x /3

purchases are X@i/3 and Bi/3{26i/3[2/3(1—e cos(jfﬁ))-K]+K}
respectively (see G.9 and G.10). Note again that this distribution is
not Condensed-3 Poisson% Under the assumptions Al, A2 and A3,
the proportion of non-buyers over the population is given
in (F.6). The analytical expression for this proportion is fairly
complex but it is computable through the use of numerical integration
methods. The mean and variance of the brand purchase distribution over

the population are rcai/c and rOai/c[c/(c+l)(rbi/c+ai+l)+l—2/3(ai+1)/

r/2

(c+1)+4/27ai(ai+l)/c(c+l)[1—cos(r6)/(l+90+2702) 1 with sind=v3/2q,

1/2

cosd=1/q(3/2+1/30) and q=1/30(1+90+270%) (see G.11 and G.12).



13.

Discussion

Alternative models of brand purchase over a fixed time-period
have been developped. These models need to be tested and compared
over various sets of empirical data. Part II will deal with this
model testing issue. The purchase incidence models for product class pur-
chases as well as the brand choice model considered here are empirically
based. This approach to modeling consumer purchasing behavior is
complete, although parsimonious. It describes the product purchasing
process and the brand choice process with a reasonable number of
parameters. In total, the aggregate medel for the brand purchase
distribution includes four parameters. The issue of the Dirichlet
estimaticn has been dealt with at length by Bass, Jeuland and Wright
(1976). For the estimation of the NBD, Ehrenberg (1959) advocates the
use of the product class peﬁetration (proportion of buyers who bought
the product class at least once over a fixed time-period) and of the
mean product purch;;e rate over the population. Various extensions of
this modeling effort might be carried out. A particularly useful work
would consist of modeling the whole consumer purchasing behavior by
including store choice as well as product class choice within & similar
framework. This approach seems promising to describe market behavior
under stationary conditions. Other research developments might involve

the inclusion of marketing variables as determinants of brand choice and

product purchase over a fixed time-period. Some recent efforts have

analyzed the effects on brand choice (Jones and Zufryden,ll980). More

extensive work along these lines is currently needed.’
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FOOTNOTES

Private conversation in Cynthia Fraser's office at Columbia
University for which the author is most grateful. Cynthia Fraser

will report her findings in a forthcoming paper.
For n=1, we obtain the common Poisson distribution

The hazard function of the Erlang distribution in Hastings and

Peacock (1974) includes a typographical error.

The analytical expression of the distribution of brand purchases for
a consumer with given parameter Gi and A, P(xlei,A), has not been

derived due to the complexity of the series expansions.

14,
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APPENDIX A

Relationship between the Gamma Distribution

and the Inverse Gaussian Distribution

Consider the probability density functionm (i). It can be shown

that a gamma distribution with parameter (n,T/2) is equivalent to

a GIG (n,0,1).

Proof: We know that Kn(y) N T () Zn—l y_n for y - 0. Therefore

Kn[/(CT)] o T(n)Zn-] (CT)-n/Z. Hence (1) becomes
T
-t

{Tn/[I‘(n)Zﬁ]}tn_1 e 2 which is the gamma distribution with

17.

parameter (n,t/2). The negative exponential function&&(l) is equiva-

lent to the GIG (1,0,2X), the Erlang-2 distribution with parameter X

is equivalent to the GIG (2,0,2X), and so on.
Also, it can be shown that the IG(V,¢) is equivalent to the

2 2

GIG(1/2 do , uz).with Y= u/dO and ¢ = d

o]

Do —

Proof: We know that Kn(y) v (%-ﬂ/y) e Y for y + ». Therefore

-d u
for don large, K 1(dou) v [1/2 n/dou)]2 e 9 Hence (1) becomes

1 3

@ %/2m?% ¢ 2 expt-1/2 a ’ t(u/d_- 1/©)2} which is

- .2
IG(w—u/dO, ¢=d 7).
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APPENDIX B

Variance of the Condensed-3 Poisson Distribution

Consider the Condensed—~3 Poisson distribution (2). The second
moment about the origin for a random variable k which has the

Condensed-3 Poisson distribution is given by

E[k2[A]=+ T k2P (Bk-2)+2 J K2 P (3k-D)+ [ K2 P _(3K)
3p2p P 35, P B p

k=1

+-§ Y k2 P_(3k+1) +% ) kK2 P_(3k+2)
K=y P k=1 P
115 2 11 % :
== = ) (3k=2)2 P_(3k-2) + = & ) (12k=4) P_(3k-2)
3 P 39 P
k=1 k=1
F 2L 7 Ge-D2 e (k1) + 24 ] (6k-1) B (3k=1)
39 D 36 & P
k=1 k=1
s LT emze G + 21 T GkeD2 B (BkeD)
P 39 P
k=1 k=1
P 21T (ereny p ey + L) T (ke2)2 P_(3k+2)
39, ¢ P 39 o)
k=1 k=1
s L L7 (cr2k-s) P (3k+2)
39 k=] P

1 fee] 2 o] [o]
= ) k2P_(k) + —[ Y P (3k-1) + ) P (3k-2)].
Y= P Pl P k=1 °
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Since ) P_(3k-1) + Z P (3k-2) = - ] P_(3k), one has
k=1 P k=1 k=0 P

E(k2|)) =% ) k?-Pp(k) +—§— ‘:l- ) Pp(3k)] .
k=1 k=0

The second moment about the origin of a random variahle which

has the Poisson distribution with parameter X is A+ A%. To compute

=<} © 3k © o« CL))\ co 2>\ k %
Y P_(3k), note that | 5___T.= Z %_ z ) (w ') ]
k=0 P k=0 (3k) : 3 k=0 k=0 k=0 k!

where w =(~1+1v3)/2, i being such that i2=/-1. Hence

= 3k 2 4 - V3
kzo (;\k), =?13_(e>\+e{d)\+ew )\) =_:]é_{e>b+e>\/2[ 5(2)) +151n(/3/\)]}
+ —k/2 [cos(é? &4 = isin(%;;X)]}= -‘,lg-[e/\+2e->\/2 cos(%;k)jy (557)
Therefore
3,
Ek2[A) = %-(A+A2) +-% {1 —‘% [1+2e 2 cos(%;-k)]}.
N
= % (A+A2) + j% [1-e 2 cos(%;-k)]-
Since E(kll) = %, one obtains
-3,
V(k{r) = % + é% [1-e 2 cos(/ SR (B.2)
3
-2
4 2 V3
The variability ratio V(k]k)/E(k|x) § + Ty [1 - e cosGE—A)] goes

1 s e
t04§ as A goes to infinity.
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APPENDIX C

Correlation between Purchases in

Successive Periods for a Condensed-3 Poisson Distribution

Let kl be the number of purchases over Period ! and kz be the

number of purchases over Period 2. We have
Vi ko) = V() + V(k,) + 2 cov (kysky) e

Ky and k2 follow a Condensed—=3 Poisson distribution with parameter ER

Hence

_.3)\
L3 [1=e 2 cos G%? M,

k) = o
Vi) = Vik 5" 77

5)

and the sum (kl+k2) follows a Condensed—3 Poisson distribution with

parameter 2)/3. Hence

=2 b or-eT3A
V(k1+k2) =3 A+ 57 [1~e cos (¥Y3M) 1.
Therefore
23,
_ 2 2 By - e -
cov(kl,kz) = 53 [2 e cos( 5 ) e cos(V3x)- 11-

The correlation between k] and kz, PPY is equal to

3 3
-2 A -3 ,,
0,5 = [2 e 2 cos(%? A) - e S5 cos(V31)=11/1~2e 2 cos(%%—k)+ %A\+ 21.



As X - 0O, - 0, and as A =+ +w -~ 0. For A>0 is

Pi2 » Ppo > Py

negative. Its maximum in absolute value plzz—.226 is attained when

Aa1.276 (IMSL 1979a).

21,
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APPENDIX D

Variance of the Condensed-3 Negative Binomial Distribution

From the conditional mean and variance of k, we derive the

unconditional variance of k (Rao 1973, p. 97)

V(k) = VIE(k[V)] + E[V(k[D)],
A A

where A follows a gamma distribution with shape parameter r and scale

parameter 3¢ over the population. Therefore

Since v (%)

-COS(K;A)]}.

9027 = g%t and E (%) = 5.30r = %%” one has

by A
R
V(k) = o?r + SR 5% E [1-e ) cos(%%%)]. Since f(\| r,0) = ]
(3) ()
A 3 3
- - 2 o~ 2
zF J e = , E [e 2 cos (%;A)] = f e 2 cos(%;%). e——L———
. 0 (30)T T(x)
Ar-l o 30
-2+ 20
1 e V3 -1 Y | I'(r) cos(rs)
=0 cos(ir&) X e dx = = : -
(30) " T(r 0 r 3. Lo 340
(1) (3c0) " T(x) [(2 tagt 4]
cos(rs)
= where sind = ré—,cos@ = l(§-+ —LQ and
(3O)r [(§_+ j_)z L3 r/2 2q q 2 30
2 30 4



Nl

3

1

.l_)+

4

27

{1 -

cos(rs)

(1+90+2702)

r/2

. After some simplifications, we obtain

e

(D.71)

23.
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APPENDIX E

Brand Purchase Distribution when the Purchase Timing Model
is the Negative Binomial Distribution and the Brand Choice Model

is the Beta Binomial Distributiom

Consider the Poisson distribution of x given in (6). Under
the assumptions Al, A2 and A3, the distribution of x, unconditioned

on ei and A, 1is

1 +o -8, (A0)F a, -1 b.-1 -1 —
P(x)= | f e T : HES) . " (1—ei) * ~——L——; A e 9 dxds,
00 x!  T(a)T(b) * r(r)o .
X 1 x+a, -l b.-1 -{x+1)
Lle)g TOxrr) [ e, T (me) T (1+o8)) de, - (E.1)

) T(ai)T(bi) T (r)x! 0

The right-hand side of (E.1) includes the integral representation of a

Lauricella series and can be expressed as

T(e) o [ (x+r) F(x+ai)
P(x) = Fél)(x+r,x+a.;x+c;—0) {
F(ai) T(r) x! T{g+c) *

!
[ISY




25.

where Fél)(',‘;-;') has the following general form (Exton 1976, p. 49)
I m.-1 u-m.—!
F(p)(m 35 3 0e0sS U2 se0e,2 ) = I'(u) f w 9 (1=w) .
D 0’71 p 1 p T(m) F(u-m) O
0 0
-s -5

I _ D
(1 le) .ol (1 zpw) dw

with u>u—mO>O and |zi|<l (i=1,...,p) for absolute convergence. For x=0, (E.Z)

becomes

P(0) = Fél)(r,ai;c;-c). . (E.3)



APPENDIX F

Penetration of a Brand when the Purchase Timing Model is

a Condensed Negative Binomial Distribution and the Brand

Choice Model is a Beta Binomial Distribution

26.

Assume that P(k[k) in (5) is a Condensed-2 Poisson distribution

as given in (7). For x=0, (5) becomes

i
2 %

o~—18

P(x o}ei,x) Pp(0)+2 Pp(l) + (1-6.) PP(Zk 1)

1

) (1—ei>k P, (2K) + %

k

it ~18

k
(1—ei) Pp(2k+l).

1 k=1

1
Let ¢ = (l—ei)z.(Then

e} _ © 2k"‘1

) (1-ei>k P (2k-1) =z e T LD o o7 sinngen)
k=1 P k=1 (2k-1)!

© _ ) - 2k _

L a-ep% e i) = e 7 Ao eoanen-]
k=1 P k=1 (2k)!

(F.1)



27.

and
© Lol 2k+ 1

P (2k+1) = £ e} (E0)
P 1 (2k+1)!

= £71.7* [einh(e)-Al.

[
aa

k

Using these last three expressions, we find

P(x=0lei,x)' = e—Af%ESinh(EA) + cosh(&X) +-% E—I sinh (1) ] (F.2)

Assume that Al, A2 and A3 are met. After a change of variable

1

v o= (I—Qi)2 is made, the unconditioned probability of no purchase is

given by
I'(c) T(2b.=-1) (2b.-1)2b,
= 1
P(X=O) = L (1+20) B {— > Al
F(Di) F(ai+2bi—1) (ai+2bi—1)(a+2bi)
(782 (2b.41, -a,+1, r3a, +2b, +1; -1, ~20
D 1 1 1 i 1424
- Féz)(Zb.+ 1, —a.+1, r ;ai+2b,+l ;= 1, & )]
i i i 1425
(2b.-1)
+ L [Féz) (Zbi’ —ai+],r ;ai+2bi s =1, =20 )
(a.+2b.-1) 1+20
i i
S Féz)(Zb., ~-a.+1, r ;ai+2bi; lln 29 ) ]
. t 1+20
17 (2) IR ) . _, —20
+ > [FD (Zbi 1, ai+1, i ai+2bi 1; -1, )

1+20



2 (0p.-1, —a.+l,r;a, + 2b.~1; -1, 22371} (F.3)
D . * t * 1+20

where Fé2)(.,.,.,;.;.,.) is the integral representation of a Lauricella

saries.

Assume that P(klk) in (5) is a Condensed-3 Poisson distribution

defined in (2). Then (5) becomes

2 1 Lo K _
P(x=0]0,,}) =P (@) +3 2 (1) +§.Pp(2)-+§-kzl(1—ei) B, (3k-2)

K T k
(1-8,)" 2 (3k=1) + I (-8 P, (3K) (F.4)
k=1

]
3

Ne~18

k=1

5 Kk
kzl (1-8.) Pp(3k+2).

Lo} —

e
3

(1-8 )5 P (3k+1) +
Kk t P

Ho~18

1

1

Let &= (I—Si)3. From (B.1), we derive the following expressions

2 "M GEN _mEM/2 V3

(cos(irék) - V3 sin(ii

2

3 EA)) ]

L
3

I ~1 8

k
(I—Gi) Pp(3k—2) =

k=1

“hr BN [ TEA/2 V3

[e (cos(?r EN)  + V3 sin(%;~il))]

Il ~1 8

k 1
1-9. P — = =
(1-0)" 7 (-n=t g e

k=1

kzl(1~ei)k Pp(3k)==e—A {% [ +2e EM2 cos(%? e 1-13,

) (l_ei)k Pp(3k+l) =g e (£ [ -e—gk/z(cos(%? EN)

k=1
- V3 sin(%;-gx))] -EXx}

2 =A

(1—ei)k Pp(3k+2) S N _TEM2 ( /3

3 cos(7f-£A)

W o~18

k=1

2
+ /3 sin(%? el - D) }e
21



29.

Using these five expressions, we find

1 2.2 o
(ei+zbrlrg e+

1 -x

£X
§ e [e

P(x=0i6i,k) =

1

- Y -
- TEM2 2oy et ez 2y

COS(7?

1 =2

/3 TEA/2 sin<%§ 2A) (2-2e + 257 - 57T, (F.5)

e

3

Under the assumptions Al, A2 and A3 and after z change of variable
1

v = (I—Gi)3 is made, the unconditional probability of no purchase

is given by

r(e) P(Bbi—2) _
P(x=0) = (1+30)
r(3bi) r(ai+3bi—2) (ai+3bi~2)(ai+3bi-1)(ai+3bi)(ai+3bi+1)

(3bi~2)(3bi-l)3bi(3bi+1)

r {l

[G((Bbi+2, ai+2, ai-+3bi~+2)) -3 H((Bbi-+2, ai-+3bi-+2))

(3b.-2) (3b.—1) 3b,
45“(@bi+2,ai+nk+zn]+§ 1 i i

(ai+3bi—2)(ai+gbi—1)(ai+3bi)

: ( +3b.
[G((3bi+l, ai+3bi+1)) + Y3 H \(3bi+1, al+3bl+l))

(3b,-2) (3b,-1) (F.6)

-Fé4) ((3b,+1, a,+3b.+1))] -
= * (a.+3b.=2)(a.+3b.~1)
1 1 1 1

[26 ((3b,, a,+3b)) + Fé4)((3bi, 2, +3b.))]

(3b.-2)
+ %-—-—1—————— [G((3b.~1, a,+ 3b,-1)) = ¥3 H ((3b.=1, a, +3b.=1))
(ai+3bi_2) 1 1 1 1 1 1
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-Fél‘) ((3b,=1, a; +3b,-1)] + % [G((3b,~2, a; +3b,-2))

- - ) - -
-vy3 H ((3bi 2, ai+3bi 2)) FD ((3bi 2, a; +3b; )1}

where Féa) ((mo,u)) is a concise fashion of writing

(4) 1 . ¥3 1, ./Y3 1 3g

F -a, -a. POPRTRILINES S 4= S A A R

p  (mgsmaytl, —a;+l, r/2us=5 -1 5= 5 % 155 =5 i35

-1 —/—3-—39—- -1 30 i -/—3—20—-) Gln.,v)] and H[(n.,v)] are
2 1+30’ 2 1+3¢ 2 1+30 " 0’ 0’

short—cut representations of the following integrals

1 n~—1 v-pn.—1! v-n.—!
0 0
G[(no,v)] = r(v) , j’ cos(x8) w (1=w) 0 [1+(-é—+i -‘?—)W]
I'(n.) TI'(v-n,) 0
0 0

1 /A v=ngy- 1 30 /s 39 . SF/2 1 3¢
eg-i 5wl 7 IrG gt sy e
_ ._‘/_3_ o ) ]—r/Z 5

l2 1+30 v W,
and
1 n.—1 v=n~—1
0
H (@, )] = LO7) [ sin(xs) w (1-w)
r@y) T(v-n) 0
v-n -1 v-n -1
ek e i D w1 0 g -1 D w O
-r/2 -r/2
1 3¢ . /3 3¢ r/ 1 30 . /3 3o r
[+ st 7 T30 w] [(+G 135 - 15 130 ¥ dw
1/2

with sind = —{3— w/q, cos§ = (1+3G .2 w)/q and q=[(];ic)2 +(1;§O) W"'WZ]

2

)

30



APPENDIX G

Mean and Variance of the Brand Purchase Distribution

The conditional mean and variance of (6) are

it

E(x[ei,x) A8

AD..

V(x[@i,k) :

Under the assumption Al, the unconditional mean of x is

E(x) = E E [E(x}@'i',k)] = E() E(9)) (G.1)
6. A

1

and the unconditional variance of x is

V(x) = E [V(x[e )] +V [E(x|e,)]

9. 8.
1 1

E {E(V(xlei,k) + VEE(xiei,x)]} + v {E[E(xlei,x)]}

A
ei A Gi,k

2
E [ei E(x) + ei Vi1 + v [ei E(N)]

8. 8.
1 1

E() E(ei) + V()) E(eiz) + E(A)Z V(ei). (G.2)

Assume that A2 and A3 are met. (G.l) becomes

rga

E() c (G.3)

and (G.2) becomes

roa. rb.

S a;+1) +1]. (G.4)

V(=) o c+l c

i

Assume that k follows a Condensed-2 Poisson distribution with

parameter A with the following mean and variance

31.



E(k|A)

i
Dof >

and

V(k|A\)

B>

+ % e—Ksinh X,

Using the same procedure as above, we find the following

conditional mean and variance of x

S5 (G.5)

E(X]Si,X) =

and
8. .
v(xle 0= 5 D= 5 O - & sinhh)]. (G. 6)
1

Note that x does not follow a Condensed-2 Poisson distribution.

Under the assumptions Al, A2 and A3, it can be shown that the

unconditional mean and variance of x are

roa

_ i
E (x) S (G.7)
and rcai 5 rbi a.+l
Vi) = [ [c+1 ( e T3 S 2(c+1):|
(G.§)
a.(a.+1)
1 71 ) 3
+§-m——[] (1+45) "1,
Assume that k follows a Condensed-3 Poisson distribution with
parameter A. The conditional mean of k is A/3 and its conditional
variance is given in (B.Z). The conditional mean and variance
of x are given by
xei
E(x[9,,) =—— (G.9)
i 3
3
e P2 /3
V(x50 === {5~ [§ (1-e cos(=1)) = Al + A}, (G.10)

Note that x does not follow a Condensed-3 Poisson distribution.

32.
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Under the assumptions Al, A2 and A3, the unconditional mean

and variance of x are given by

roa,
E(x) = (G.171)

and

roa. rh. a.+1 a.(a.+1)

2 1 4 TitTi cos(rs)
V(x) === [ (== + 2, +1)+] = £ 2]+ o 2 [~ 1(6.12]
c+1 © i 3 ¢+l 27 c(c+l) <l+9c+27oz)r/z

with siné = 13 cos § = 1 Cé + —LJ and q = o (1+9o+2702)1/2

' 2q° q ‘2 3o 3¢ ’
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