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Abstract

Our interest in this paper is to explore limit theorems for various geometric function-
als of excursion sets of isotropic Gaussian random fields. In the past, limit theorems
have been proven for various geometric functionals of excursion sets/sojourn times ( see
[4, 13, 14, 18, 22, 25] for a sample of works in such settings). The most recent addition
being [6] where a central limit theorem (CLT) for Euler-Poincaré characteristic of the
excursions set of a Gaussian random field is proven under appropriate conditions. In
this paper, we obtain a CLT for some global geometric functionals, called the Lipschitz-
Killing curvatures of excursion sets of Gaussian random fields in an appropriate setting.

Keywords: chaos expansion, CLT, excursion sets, Gaussian fields, Lipschitz-Killing
curvatures.
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1 Introduction and main result

There has been recently a surge in interest in understanding the geometry of random sets.
In particular, there have been recent works on limit theorems of geometric functionals of
random sets coming from discrete type models arising from various point processes (see [5],
and references therein), or from models of smooth random fields [6, 14, 16, 17, 22, 25].

The object of this paper is to go further, and provide asymptotic distributions for some
global geometric characteristics of the excursion sets of random fields as the parameter
space is allowed to grow to infinity.

More precisely, let f be a random field defined on Rd, and let T be a d-dimensional box
[−T, T ]d We shall be considering the restriction of f to the subset T , and accordingly define

∗ESSEC Business School, CREAR, Paris, France; E-mail: kratz@essec.edu
†TIFR-Center for Applicable Mathematics (CAM), Bangalore, India; E-mail: sreekar@tifrbng.res.in

1



the excursion set of f over a threshold u, denoted by Au(f ; T ), as

Au(f ; T ) = {x ∈ T : f(x) ≥ u} (1)

Our interest, in this paper, is to study the distributional aspects of Lipschitz-Killing curva-
tures of the sets Au(f ; T ).

The Lipschitz-Killing curvatures (LKCs) of a d-dimensional Whitney stratified manifold1

M are (d + 1) integral geometric functionals {Lk(M)}dk=0, with L0(M) the Euler-Poincaré
characteristic of the set M , and Ld(M) the d-dimensional Hausdorff measure of M . Though,
for k = 1, . . . , d− 1, the Lk(M) do not have such clear interpretation, the scaling property2

of the LKCs can be used to interpret the k-th LKC as a k-dimensional measure. This result
not only underlines the importance of the LKCs, but also characterises them with their
additive and scaling property together with the rigid motion invariance.

One of the most important results in convex geometry is the Hadwiger’s characterisation
theorem, which, in simple terms, states that the LKCs form a basis for all finitely addi-
tive, monotone and rigid motion invariant valuations defined on the the collection of basic
complexes (cf. [1, 10]).

The main result of this paper provides a CLT for LKCs of Au(f ; T ) of Gaussian random
fields:

Theorem 1.1 Let T be as defined above, and f be a mean zero, unit variance, isotropic
Gaussian random field defined on Rd with C3 trajectories. Then, under some standard
regularity assumptions on f as stated in (H1), (H2) and (H3), we have

Lk (Au(f ; T ))− E (Lk (Au(f ; T )))

|T |1/2
→ N(0, σ2

k(u)), as T → Rd,

for k = 0, . . . , d, where by T → Rd, we mean T →∞.

Remark 1.1 We note here that the specific cases corresponding to k = 0 and k = d have
already been dealt with in [6] and [22], respectively.

We shall adopt the now standard approach of projecting Gaussian functionals of interest
onto the Itô-Wiener chaos, then use the Breuer-Major type of theorem to conclude our main
result. This approach has been developed in [14] to obtain CLT for general level functionals
of
(
f, ∂f, ∂2f

)
in dimension 1, then extended to dimension 2 (see [11] for a general review on

the topic). As applications, we got back CLTs for the number of crossings of f , a result first
obtained by Slud with an alternative method (see [23, 24]), for the number of local maxima
([13]), for the sojourn time of f in some interval ([14]), and also for the length of a level
curve of a 2-dimensional Gaussian field ([14]). Note that in these papers, the last step of the
method was to approximate f with an m-dependent process ([4]) in order to conclude to the
CLT. In fact, this step can be removed, and simplifies using what is now called the Stein-
Malliavin method to conclude Breuer-Major types of theorem, as documented in [19]. Based

1For more details on this, and more, we refer the reader to [1].
2For any λ > 0, we have Lk(λM) = λkLk(M), where λM = {λx : x ∈M}.
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on this general approach, CLTs have been proved recently when considering a d-dimensional
Gaussian random field f by Pham [22] for the sojourn time of f , and by Estrade and León
[6] for the Euler-Poincaré characteristic (EPC) of the excursion set of f . Note that EPC
shares strikingly similar integral representation as the number of level crossings in terms
of functional of f , but for dimension d. Largely, the sketch of the proof for CLTs and the
main technical steps remain the same as in [14] when dealing with level functionals of a
d-dimensional Gaussian field f , with d > 2; the difficulty lies in finding a way to avoid
explicit computations. Hence the main and crucial contribution in [6] has been to come up
with a neat trick to circumvent this difficulty, proving that the order of the variance of the
EPC for f restricted to any subspace of T is less than |T |, hence is negligible in the limit
as T grows to Rd.

We are going to build on these works, in order to obtain a CLT not only for EPC but for any
LKC. The difficulty here is to develop similar techniques when working on Au(f ; T ∩ V ∗)
for any k-dimensional affine subspace V of Rd.

The structure of the paper is as follows. Throughout this paper, we work with isotropic
Gaussian random fields. We begin in Section 2 with setting the notation, and the necessary
background for the analysis to follow in later sections. In Section 2.1, we recall the basics
of the expansions of Gaussian functionals using the multiple Wiener-Itô integrals. Next, in
Section 2.2, we define the Lipschitz-Killing curvatures, and also state the Crofton formula
that provides a relationship between various LKCs; it is going to be a crucial element in the
proof of our main result. Section 2.3 is devoted to discuss the integral representation of Euler-
Poincaré characteristic of excursion sets of any random field via the expectation metatheorem.
Finally, precise setup for the problems, and the assumptions, in particular on the covariance
structure of the random field f , is listed in Section 2.4. In Section 3, we develop the proof
of the main result, Theorem 1.1, using the standard sketch given in three main steps. First
we prove that the functional of interest is square-integrable (Section 3.1) and obtain its
Hermite expansion in Section 3.2. Then we prove that the limiting variance is bounded
away from zero and infinity in Section 3.3. Finally, in Section 3.4, we give an extension of
Breuer-Major theorem to affine Grassmannian case to conclude to the Gaussianity of the
limiting distribution.

2 Preliminaries

2.1 Itô-Wiener chaos expansions

Hermite polynomial expansions or Multiple Wiener-Itô Integrals (MWI) are a powerful tool
to approximate and study nonlinear functionals of stationary Gaussian fields (see [6], [11],
or [14] for details).

Formally, let Z be a m-dimensional standard Gaussian random vector, and let L2(Z) be
the set of all real square integrable functionals of Z. In short, giving a Hermite expansion
is a way to approximate elements from L2(Z) by a series of Hermite polynomials. More
precisely, for n ∈ (N ∪ {0})m, define Hn(Z) =

∏m
i=1Hni (Zi), and set Hq as the linear span
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of {Hn(Z) : |n| =
∑m
i=1 ni = q}. Then,

L2(Z) =
⊕
q≥0

Hq (2)

For more details regarding Hermite expansions, and their applications to study functionals
of Gaussian random fields, we refer the reader to [4, 19, 29].

The above can also be written in a more abstract setting of multiple Wiener integrals,
for which let us begin with an orthonormal system {%i}i≥1 of L2(Rm). Writing W for
complex Brownian measure on Rm, let us define ξi =

∫
Rm %i(λ)W (dλ). Clearly, {ξi} form

a sequence of i.i.d. standard normal random variables. Now for a fixed n ∈ (N ∪ {0})q, and
p1, . . . , pq ∈ N define Hn(ξp1 , . . . , ξpq ) =

∏q
i=1Hni(ξpi). Then (see [21])

Hn(ξp1 , . . . , ξpq ) =

∫
Rmq

(
%⊗n1
p1 ⊗ · · · ⊗ %⊗nqpq

)
(λ1, . . . , λq)W (dλ1) · · ·W (dλq)

∆
= Iq

(
%⊗n1
p1 ⊗ · · · ⊗ %⊗nqpq

)
(3)

where Iq denotes multiple Wiener integral. A decomposition, similar to (2), holds true for
all square integrable functionals of W , and is called the Itô-Wiener chaos. We refer the
reader to [21] for complete details.

Remark 2.1 The above Hermite expansion, at the first look, seems to work for single Gaus-
sian element. However, using [19, Proposition 7.2.3] one can obtain similar Hermite expan-
sions for functionals of stationary Gaussian fields.

2.2 Lipschitz Killing curvatures and the Crofton formula

There are a number of ways to define Lipschitz-Killing curvatures, but perhaps the easiest is
via the so-called Weyl’s tube formula (see [9, 28] for the first hand account of this formula).
In order to state the tube formula, let M be an m-dimensional manifold with positive reach
(cf. [1]) embedded in Rn which is endowed with the canonical Riemannian structure on Rn.
Then, writing ‖ · ‖ as the standard Euclidean norm on Rn, the tube of radius ρ around M
is defined as

Tube(M,ρ) =

{
x ∈ Rn : inf

y∈M
‖x− y‖ ≤ ρ

}
. (4)

Then according to Weyl’s tube formula (see [1]), the Lebesgue volume of so constructed
tube, for small enough ρ, is given by

λn(Tube(M,ρ)) =

m∑
j=0

ρn−jωn−jLj(M) , (5)

where ωn−j is the volume of the (n − j)-dimensional unit ball in Rn−j , and Lj(M) is the
j-th LKC of M .
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Although, it may appear from the definition above that the Lj depend on the embedding of
M in Rn, in fact, the Lj(M) are intrinsic, and so are independent of the ambient space.

Apart from their appearance in the tube formula (5), there are, at least, two more ways in
which to define the LKCs (see [1]).

Borrowing the notations from [1], let Graff(d, k) be the affine Grassmannian of all k-
dimensional affine subspaces of Rd, and Gr(d, k) be the set of all k-dimensional linear
subspaces of Rd.

Let M be a compact subset of Rd and V ∗ ∈ Graff(d, k). Then writing

MV ∗ for (M ∩ V ∗),

and setting λdk to be the appropriate, normalised measure on Graff(d, k), and also[
m
n

]
=

ωm
ωn ωm−n

(
m
n

)
,

we have the Crofton formula:∫
Graff(d,k)

Lj(MV ∗) dλ
d
k(V ∗) =

[
d− k + j

j

]
Ld−k+j(M) (6)

whenever M is tame and a Whitney stratified space (cf [1]).

Setting j = 0 in the above equation (6) gives back the Hadwiger formula∫
Graff(d,k)

L0(MV ∗)dλ
d
k(V ∗) = Ld−k(M), (7)

which we shall use to generate all the LKCs given the Euler-Poincaré characteristic of all
the slices MV ∗ .

Another interesting case is when we set j = k in (6); we obtain∫
Graff(d,k)

|MV ∗ | dλdk(V ∗) =

[
d
k

]
Ld(M) (8)

where |MV ∗ | is the k-dimensional Hausdorff measure of the set MV ∗ .

2.3 Euler-Poincaré characteristic and other LKCs of excursion sets

Let T be a compact, tame and Whitney stratified subset of Rd. For any fixed V ∗ ∈
Graff(d, k), set ∂lTV ∗ as the l-dimensional boundary of TV ∗ . Assume f be a smooth Gaussian
random field, then using the standard Morse theory (see [1, Chapter 9]), we can write

L0 (Au(f ; TV ∗)) =

k∑
l=0

∑
J∈∂lTV ∗

φl(J) (9)
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whenever T is tame and a Whitney stratified space (cf. [1]), where,

φl(J) =

l∑
j=0

(−1)j#
{
t ∈ J : f(t) ≥ u, ∇Jf(t) = 0, index(∇2

Jf(t)) = l − j
}
,

with ∇Jf and ∇2
Jf representing restrictions of the usual gradient ∇f and Hessian ∇2f onto

J ∈ ∂lTV ∗ .

Applying Theorem 11.2.3 of [1], the above equation can be rewritten as

φl(J) = (−1)l
∫
TV ∗

δ(∇Jf(t)) 1I{f(t)≥u} det
(
∇2
Jf(t)

)
dt (10)

almost surely and in L2, where δ is the Dirac delta at 0 defined on Rd.

Remark 2.2 (Parametrization of Graff(d, k))
Note that Graff(d, k) can be parametrized as Gr(d, k)×Rd−k. Furthermore, we shall identify
Gr(d, k) with the set of all k × d matrices whose rows are orthonormal vectors in Rd.

Writing V as the matrix whose rows are k-orthonormal vectors spanning the linear space
obtained by the parallel translate of V ∗,

φk(∂kTV ∗) = (−1)k
∫
TV ∗

δ(V∇f(t)) 1I{f(t)≥u} det
(
V∇2f(t)V T

)
dt. (11)

Note: For any V ∗ ∈ Graff(d, k), we shall denote V for the matrix whose rows are k-
orthonormal vectors spanning the linear space obtained by the parallel translate of V ∗, and
we shall use the same V to denote the element in Gr(d, k) that corresponds to the k
dimensional linear space spanned by the rows of the matrix V .

We shall combine equations (7) and (9) to express all other LKCs in terms of the Euler-
Poincaré characteristic of Au(f ; TV ∗). Formally,

Ld−k (Au(f ; T )) =

∫
Graff(d,k)

L0 (Au(f ; TV ∗)) dλdk(V ∗). (12)

2.4 Setup for the problem and assumptions

In this paper, we consider f a mean zero, isotropic, real valued Gaussian random field defined
on Rd with C3 trajectories. The assumption of isotropy means that the covariance of the
Gaussian random field has a special form

E[f(x)f(y)] = r(|x− y|), ∀x, y ∈ Rd

for some function r : R+ → R. Without loss of generality, we shall assume r(0) = 1.
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We denote the partial derivatives of order n of any function g defined on Rd as

g(i1···in)(t) =
∂n

∂ti1 · · · ∂tin
g(t).

We introduce the gradient ∇f(x) and Hessian ∇2f(x)) of f , and recall that due to isotropy
∇f(x) and (f(x),∇2f(x)) are independent for every fixed x (in fact, stationarity suffices
to conclude the same). Thus, the covariance function of (∇f(x), f(x),∇2f(x)) can be ex-
pressed as a block diagonal matrix for each fixed x. We denote the covariance matrix of
(∇f(x), f(x),∇2f(x)) as

Σ =

(
Σ1 0
0 Σ2

)
(13)

where Σ1 and Σ2 are the covariance matrices of ∇f , and (f,∇2f), respectively. Notice that
since (∇f(x), f(x),∇2f(x)) is a (d+ 1 + d(d+ 1)/2) dimensional vector, the corresponding
covariance matrix is a square matrix of order D ×D, where

D = d+ 1 + d(d+ 1)/2. (14)

Simple linear algebraic considerations imply that there exists a D ×D matrix Λ such that
ΛΛT = Σ. Then we define a new field Z = (Z(x), x ∈ Rd) by

Z(x) = Λ−1
(
∇f(x),∇2f(x), f(x)

)
. (15)

Let us denote its covariance function by

γ = (γij(.))1≤i,j≤D with γij(h) = cov (Zi(x), Zj(x+ h)) . (16)

Note here that we have implicitly used the fact that various derivatives of a stationary
Gaussian random field are themselves stationary Gaussian random fields (cf. [1, Chapter
5]).

Note that we can write Z as Z(x) = (Z(1)(x), Z(2)(x)) so that

Z(x) = (Z(1)(x), Z(2)(x)) ∼ N (0, ID), ID being the identity inRD. (17)

We need more assumptions on f to ensure that various LKCs of the excursion set Au(f ; T )
of f over a threshold u, are indeed square integrable, and that they satisfy a CLT as T → Rd.

The required assumptions are rather standard when looking for CLT of non linear functionals
of stationary Gaussian random fields, such as number of crossings [14], curve length [14],
EPC [6], sojourn time [22], etc.

(H1) Geman type condition: We shall assume that the covariance function r ∈ C4(T ), and

that the function
1

‖t‖2
(
∇2r(t)− r(ii)(0)Id

)
defined on Rd, is bounded near t = 0,

where we recall that r(ii)(0) = −var(∇if(x)).

(H1) is simply the higher dimensional analog of Geman’s condition ([7]), which is
needed to prove that the functional of interest is in L2. When d = 1, it is known to
be a necessary and sufficient condition to obtain the L2 convergence of the number of
crossings of any threshold (see [15]).
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Observe that this condition (H1) is satisfied whenever the underlying random field is ‘smooth’
enough, with C3 sample paths3. Hence, for simplicity, we will assume now on that f is C3.

(H2) Arcones type condition: For the covariance function γ(·) of the joint field (Z(x))x∈T ,

we assume that there exists an integrable ψ on Rd satisfying

ψ(t) −→
||t||→+∞

0,

such that
max

1≤i,j≤D
| (γ(x))ij | ≤ Kψ(x), for some K > 0.

This condition is crucial in ensuring the finiteness of the limiting variance of the
considered functionals. As already noted in [14] and [6], it implies in particular the
existence of the spectral density, and that r ∈ Lq(Rd), q ≥ 1.

(H3) The spectral density, denoted h, of the covariance function corresponding to the field(
∇f,∇2f, f

)
satisfies h(0) > 0.

This condition is equivalent to appropriate decay conditions on various (partial) deriva-
tives of the covariance function r (cf. [14]), and will be needed when proving that the
asymptotic variance obtained in the CLT is non 0.

3 Proof of Theorem 1.1

Recall that the key argument in [6] to prove the CLT for the Euler-Poincaré characteristics
of the excursion set is to consider only the highest dimensional term in (9), dropping all
lower dimensional terms, and proving later that the contribution from the lower dimensional
terms is negligible under the volume scaling. We will also use this argument.

Let us begin with

Ld−k (Au(f ; T ))

=

∫
Graff(d,k)

k∑
l=0

(−1)l
∑

J∈∂lTV

∫
J

1I(f(x)≥u) δ(∇Jf(x)) det
(
∇2
Jf(x)

)
dx dλdk(V )

=

k∑
l=0

(−1)l
∫

Graff(d,k)

∑
J∈∂lTV

∫
J

1I(f(x)≥u) δ(∇Jf(x)) det
(
∇2
Jf(x)

)
dx dλdk(V )

=

k∑
l=0

Ld−k,l (Au(f ; T )) (18)

where

Ld−k,l (Au(f ; T )) = (−1)l
∫

Graff(d,k)

∑
J∈∂lTV

∫
J

1I(f(x)≥u) δ(∇Jf(x)) det
(
∇2
Jf(x)

)
dx dλdk(V )

3We refer to [3] for further discussion on connections between analytical assumptions and regularity
conditions for Gaussian random fields

8



We shall consider only Ld−k,k (Au(f ; T )), and prove that, after appropriate normalisation,
it exhibits a central limit theorem. Thereafter, the same arguments can be pieced together
to conclude that, under the same scaling, Ld−k,l (Au(f ; T )) converge to 0 whenever l < k.

As spelt out in the introduction, our proof has three major steps:

1. to prove that the functional of interest is square integrable, and thereby obtain its
Hermite type expansion;

2. to prove that the limiting variance is bounded away from zero and infinity;

3. to use the Stein-Malliavin method for Breuer-Major type functionals to conclude to
the Gaussianity of the limiting distribution.

We shall provide details of the aforementioned steps in the following subsections.

3.1 Square integrability

Let us recall (11), and write

Ld−k,k (Au(f ; T )) =

∫
Graff(d,k)

φk(∂kTV ∗) dλdk(V ∗). (19)

Clearly, by Jensen’s inequality,

E
[
(Ld−k,k (Au(f ; T )))

2
]
≤
∫

Graff(d,k)

E
[
(φk(∂kTV ∗))2

]
dλdk(V ∗). (20)

We shall now focus on obtaining an appropriate upper bound for E
[
(φk(∂kTV ∗))2

]
, which

in turn shall imply the square integrability of Ld−k,k (Au(f ; T )).

Using standard fare, notice that φk(∂kTV ∗) can be bounded above by the cardinality of the
set {t : V∇f = 0} that we denote by Nu(TV ∗). Then, as usual, we compute the second
factorial moment of Nu(T ) and prove that it is finite to conclude the square integrability.
We have, using [1, Corollary 11.5.2], or [3, Theorem 6.2]

E [Nu(TV ∗) (Nu(TV ∗)− 1)] =∫
T 2
V ∗

E
(
|det(V∇2f(t1)V T ) det(V∇2f(t2)V T )|

∣∣V∇f(t1) = V∇f(t2) = 0
)
pV,t1,t2(0, 0) dt1dt2 (21)

where T 2
V ∗ = TV ∗ × TV ∗/{t1 ∈ TV ∗ , t2 ∈ TV ∗ : t1 = t2}, and pV,t1,t2(0, 0) is the joint density
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of (V∇f(t1), V∇f(t2)). Using stationarity, we can reduce the above integral to

E [Nu(TV ∗) (Nu(TV ∗)− 1)] =∫
t1 ∈ TV ∗

s ∈ (TV ∗ − t1)/{0}

E
(
|det(V∇2f(t1)V T ) det(V∇2f(t1 − s)V T )|

∣∣V∇f(t1) = V∇f(t1 − s) = 0
)
pV,t1,t1−s(0, 0) ds dt1

=

∫
t1 ∈ TV ∗

s ∈ (TV ∗ − t1)/{0}

E
(
|det(V∇2f(0)V T ) det(V∇2f(s)V T )|

∣∣V∇f(0) = V∇f(s) = 0
)
pV,0,s(0, 0) ds dt1.

Next, using stationarity and Cauchy-Schwarz inequality gives

E
(
|det(V∇2f(0)V T ) det(V∇2f(s)V T )|

∣∣V∇f(0) = V∇f(s) = 0
)

≤ E
(
|det(V∇2f(0)V T )|2

∣∣V∇f(0) = V∇f(s) = 0
)
.

Invoking similar methods as set forth in [6] we can conclude that there exists a constant C1

(independent of TV ∗) such that

E
(
|det(V∇2f(0)V T )|2

∣∣V∇f(0) = V∇f(s) = 0
)
≤ C1‖s‖2. (22)

Next, notice that
pV,0,s(0, 0) ≤ C2‖s‖−k (23)

where C2 is a constant independent of V .

Combining equations (22) and (23) in the integral in (21) provides

E [Nu(TV ∗) (Nu(TV ∗)− 1)] ≤ C3

∫
t1 ∈ TV ∗

s ∈ (TV ∗ − t1)/{0}

‖s‖2−k ds dt1 (24)

for some constant C3 ∈ (0,∞).

Observe that, using polar decomposition, one can uniformly bound the integral over the set
(TV ∗ − t1)/{0}, and therefore, we have

E [Nu(TV ∗) (Nu(TV ∗)− 1)] ≤ C4|T |2/d |TV ∗ | (25)

for some positive constant C4 independent of the choice of V ∗. Finally, using the standard
Gaussian kinematic fundamental formula (cf.[1]) for the mean of Nu(TV ∗) and the above
computations together with the Crofton formula, we can conclude that

E (Ld−k,k (Au(f ; T )))
2
< C |T |

2+d
d

for some large, but finite and positive constant C.
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3.2 Hermite expansion

Set F (x) = (f1(x), f2(x)) with f1(x) = ∇f(x) and f2(x) =
(
∇2f(x), f(x)

)
.

For x ∈ T , recall (see Section 2.4) that we can factorize Σ as Σ = ΛΛT , such that Λ has a
block diagonal form

Λ =

(
Λ1 0
0 Λ2

)
(26)

where Λ1 is the formal square root of Σ1 and Λ2 is a lower triangular matrix such that
Λ2ΛT2 = Σ2, respectively.

Using equation (11) and standard methods as of [6], we now obtain a Hermite expansion for
φk(∂kTV ∗). Define

GV1 (f1(x)) =δ(V∇f(x)) (27)

GV2,u(f2(x)) =1I(f(x)≥u) det
(
V∇2f(x)V T

)
. (28)

Clearly, for each fixed space point x, the functions G1 and G2 are independent. We shall
obtain Hermite expansions for these two functions separately.

Remark 3.1 Since G1 is not a function, the way of obtaining a Hermite expansion goes
through a limiting process. However, this process of approximation is clearly spelled out in
many of previous works going as far back as [4], and hence we shall omit this step, and skip
to the limit.

Formally, for n ∈ ND, D being defined in (14), set n = (n1, n2) ∈ Nd × ND−d, then the
square integrability implies that we have the following

GV1 (f1(x))×GV2,u(f2(x))

=

∞∑
q=0

∑
n(D):

∑D
i=1 ni=q

c(n, u, V,Λ)Hn1
(Z(1)(x))Hn2

(Z(2)(x)) (29)

where the Hermite coefficients are given by

c(n, u, V,Λ) :=
1

n!

∫
RD

GVu (Λy)

D∏
i=1

Hni(yi)ϕD(y) dy

= c1(n1, V,Λ1)× c2(n2, u, V,Λ2)

writing ϕD for the standard normal density in D-dimensions.

Remark 3.2 It follows from the discussion of [1, Section 5.7], that the distribution of(
V∇f(x), V∇2f(x)V T

)
does not depend on the space point x (due to stationarity) and

the space V (due to isotropy). Therefore, the coefficients c1(n1, V,Λ1) and c2(n2, u, V,Λ2)
do not depend on V , which will help simplifying the proofs.
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Computing c1

Observe that

c1(n1, V,Λ1) =
1

n1!

∫
Rd
GV1 (Λ1y1

)Hn1
(y

1
)ϕk(y

1
) dy

1
.

First, note that the integral is to be interpreted as a limit of integral of an appropriate
approximation of δ. Secondly, by Remark 3.2, we can choose a V which suits our purpose.

In particular, one may define

GV1,ε(Λ1y1
) =

1

(2πε2)k/2
exp

(
− 1

2ε2
yT

1
ΛT1 V

TV Λ1y1

)
,

and thus define c1(n1, V,Λ1) as an L2-limit of

c1(n1, ε, V,Λ1)
∆
=

1

n1!(2πε2)k/2

∫
Rd

exp

(
− 1

2ε2
yT

1
ΛT1 V

TV Λ1y1

)
Hn1

(y
1
)ϕk(y

1
) dy

1
.

Noticing that the variance of ∇if(x) does not depend on the index i due to isotropy, we
conclude that Λ1 =

√
λ Id where λ is the variance of ∇if(x). Therefore,

c1(n1, ε, V,Λ1) =
1

n1!(2πε2)k/2

∫
Rd

exp

(
− 1

2ε2
λ yT

1
V TV y

1

)
Hn1

(y
1
)ϕd(y1

) dy
1
.

Equivalently,

c1(n1, ε, V,Λ1) =
λ−k/2

n1!

∫
Rd

λk/2

εk
ϕk

(
1

ε

√
λV y

1

)
Hn1

(y
1
)ϕd(y1

) dy
1
,

where λk/2

εk
ϕk(
√
λεV y

1
) converges to the desired Dirac delta. As pointed earlier, the above

computation is invariant of the choice of V , so we shall choose V to be the space spanned
by (e1, . . . , ek) where {ei}di=1 is the canonical basis of Rd. Thereafter, taking limit as ε→ 0,
we obtain

c1(n1, V,Λ1) = (2πλ)−k/2
k∏
i=1

Hn1,i
(0)

n1,i!
. (30)

However, in order to obtain estimates for the limiting variance, we shall need bounds on
c1(n1, V,Λ1). Using the usual technique as sketched in [12], we obtain

|c1(n1, ε, V,Λ1)| ≤ λ−k/2

n1!

∫
Rd
ϕk(
√
λ εV y

1
)
∣∣∣Hn1

(y
1
)
∣∣∣ ϕd(y1

) dy
1

≤ Kd
1λ
−k/2√
n1!

∫
Rd
ϕk(
√
λ εV y

1
) dy

1
=
Kd

1λ
−k/2√
n1!

where we have used the following inequality: sup
x

∣∣∣Hl(x)ϕ(x)/
√
l!
∣∣∣ ≤ K1, for some constant

K1 (see [26]).

Next, noticing that ϕk(
√
λ εV y

1
) converges to a Dirac delta on V ⊥ as ε → 0, we can then

write
sup
ε

c21(n1, ε, V,Λ1)n1! ≤ K2d
1 λ−k. (31)

12



Computing c2

The coefficient c2(n2, u, V,Λ2) is the Hermite coefficient of GV2,u◦Λ2 (with GV2,u(f2(x)) defined
in(28)), i.e.

c2(n2, u, V,Λ2) =
1

n2!

∫
RD−d

(
GV2,u ◦ Λ2

)
(y

2
)Hn2

(y
2
)ϕD−d(y2

) dy
2

(32)

or, equivalently,

c2(n2, u, V,Λ2) =
1

n2!
E
[(
GV2,u ◦ Λ2

)
(Z2)×Hn2

(Z2)
]

introducing Z2 as a (D − d)-dimensional standard normal variable.

Next, using Cauchy-Schwarz inequality, we can conclude that

c2(n2, u, V,Λ2) ≤
{
E
[(
GV2,u ◦ Λ2

)
(Z2)

]2}1/2

≤ [P(f(x) > u)]
1/2 {E(det(V∇2f(x)V T )4

}1/4
.

Again using the invariance of c2(n2, u, V,Λ2) with respect to V , we can choose V to be the
line span of (e1, . . . , ek), where {ei}di=1 is the canonical basis of Rd. Writing ∇2f(x)|k×k as
the top left k × k minor of ∇2f(x), we have E(det(V∇2f(x)V T )4 = E(det(∇2f(x)|k×k)4.
Then, using Wick’s formula, we can obtain an upper bound for E(det(V∇2f(x)V T )4.
On the other hand, P(f(x) > u) can be bounded above (and below) by the standard Mill’s
ratio, implying there exists K2,u ∈ (0,∞) such that

c2(n2, u, V,Λ2) ≤ K2,u. (33)

Remark 3.3 Now that we have seen precise expressions for the Hermite coefficients c1(n1, V,Λ1)
and c2(n2, u, V,Λ2), and we understand that these coefficients do not depend on the choice
of V , we shall do away with keeping V in the notation, and instead replace it by k, which is
the dimension of V . In particular, we shall now redefine

c1(n1, k,Λ1)
∆
= c1(n1, V,Λ1),

c2(n2, u, k,Λ2)
∆
= c2(n2, u, V,Λ2),

and
c(n, u, k,Λ)

∆
= c1(n1, k,Λ1)× c2(n2, u, k,Λ2).

With these notations, and armed with the fact that E
[
(φk(∂kTV ∗))2

]
<∞, we can conclude

that the following infinite expansion holds in L2

φk(∂kTV ∗) =

∞∑
q=0

∑
n∈ND;|n|=q

c(n, u, k,Λ)

∫
TV ∗

Hn(Z(x)) dx (34)

∆
=

∞∑
q=0

Jq(φk(∂kTV ∗)), (35)

13



where Jq(φk(∂kTV ∗)) is the projection of φk(∂kTV ∗) onto the q-th chaos. In addition, we
have the following expansion for Ld−k,k (Au(f ; T )).

Proposition 3.1 For f satisfying the assumptions set forth in Section 2.4, the following
expansion holds in L2:

Ld−k,k (Au(f ; T )) =

∞∑
q=0

∑
n∈ND;|n|=q

c(n, u, k,Λ)

∫
Graff(d,k)

∫
TV ∗

Hn(Z(x)) dx dλdk(V ∗). (36)

Proof: First consider the finite sum

L(Q)
d−k,k (Au(f ; T )) =

Q∑
q=0

∑
n∈ND;|n|=q

c(n, u, k,Λ)

∫
Graff(d,k)

∫
TV ∗

Hn(Z(x)) dx dλdk(V ∗). (37)

Also, define φ
(Q)
k (∂kTV ∗) as the projection of φk(∂kTV ∗) onto the firstQ orders of the Hermite

expansion given in (35). Then we can write

L(Q)
d−k,k (Au(f ; T )) =

∫
Graff(d,k)

φ
(Q)
k (∂kTV ∗) dλdk(V ∗).

Writing ‖ · ‖2 for L2 norm, we have:∥∥∥Ld−k,k (Au(f ; T ))− L(Q)
d−k,k (Au(f ; T ))

∥∥∥2

2
=

∥∥∥∥∥
∫

Graff(d,k)

[
φ

(Q)
k (∂kTV ∗)− φk(∂kTV ∗)

]
dλdk(V ∗)

∥∥∥∥∥
2

2

≤
∫

Graff(d,k)

‖φ(Q)
k (∂kTV ∗)− φk(∂kTV ∗)‖22 dλdk(V ∗).

Next, using computations similar to those in Section 3.1, we can conclude that there ex-
ists a finite, positive CT such that ‖φk(∂kTV ∗)‖22 ≤ CT |TV ∗ |. Notice also, via (35), that

‖φ(Q)
k (∂kTV ∗)−φk(∂kTV ∗)‖2 →

Q→∞
0. We can then conclude, via the dominated convergence

theorem, that ∥∥∥Ld−k,k (Au(f ; T ))− L(Q)
d−k,k (Au(f ; T ))

∥∥∥2

2
−→
Q→∞

0

which proves Proposition 3.1. 2

Remark 3.4

(i) Another convenient way of writing Ld−k,k(Au(f ; T )) is to express the above expansion
as

Ld−k,k(Au(f ; T )) =

∞∑
q=0

∫
Graff(d,k)

Jq(φk(∂kTV ∗)) dλdk(V ∗).

(ii) As a consequence of [27, Lemma 3.2], we note that for any V ∗1 , V
∗
2 ∈ Graff(d, k).

E

(∫
TV ∗1

∫
TV ∗2

Hn(Z(x))Hm(Z(y)) dx dy

)
= 0, whenever |n| 6= |m|,

which in turn implies that the expansion in (36) is indeed orthogonal.
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3.3 Variance bounds

Let us define the appropriately normalised quantities of interest

L#
d−k(T ) =

1

|T |1/2
(Ld−k(Au(f ; T ))− E [Ld−k(Au(f ; T ))]) (38)

and

L#
d−k,l(T ) =

1

|T |1/2
(Ld−k,l(Au(f ; T ))− E [Ld−k,l(Au(f ; T ))]) , 1 ≤ l ≤ k. (39)

We want to ensure that the variance of L#
d−k,k(Au(f ; T )) converges to a finite positive

quantity as T → Rd, and that the variance of L#
d−k,k(Au(f ; T )) for each l = 0, . . . , (k − 1)

can be made as small as we wish, by choosing appropriately large set T .

Proposition 3.2 With the above notation, the variance of L#
d−k is given by

var
(
L#
d−k (T )

)
= var

(
L#
d−k,k (T )

)
+ o(1), as T → Rd. (40)

The asymptotic variance of L#
d−k (T ), as T → Rd, is finite, non zero, and can be expressed

as

lim
T→Rd

var
(
L#
d−k,k (T )

)
=

∞∑
q=1

V kq ∈ (0,∞) (41)

where V kq = lim
T→Rd

var

(∫
Graff(d,k)

Jq(φ
#
k (∂kTV ∗)) dλdk(V ∗)

)
, with

φ#
k (∂kTV ∗) =

1

|T |1/2
(φk(∂kTV ∗)− E (φk(∂kTV ∗))).

Using the Hermite expansion of Ld−k,k(Au(f ; T )) and the orthogonality of the chaos ex-
pansion (see Remark 3.4 (ii)), we can formally express the variance of Ld−k,k(Au(f ; T ))
as

var (Ld−k,k(Au(f ; T ))) =

∞∑
q=1

var

 ∑
n∈ND;|n|=q

c(n, u, k,Λ)

∫
Graff(d,k)

∫
TV ∗

Hn(Z(x)) dx dλdk(V ∗)

 =

∞∑
q=1

∑
|n|=|m|=q

n,m∈ND

c(n, u, k,Λ) c(m,u, k,Λ)

∫∫
U∗,V ∗∈Gr(d,k)


∫
TU∗

∫
TV ∗

E
[
Hn(Z(x))Hm(Z(y))

]
dx dy

 dλdk(U∗) dλdk(V ∗).

The sketch and main arguments (e.g. Arcones bound) to prove Proposition 3.2 are given in
[14], with an extra step for the term o(1) which follows from [6]. The main difficulty relies

15



then, once again, in the fact that we do not integrate simply on a d-dimensional box, but
on Grassmanians, which requires tricks to circumvent the difficulty of computations.

Proof of Proposition 3.2. First let us show that var
(
L#
d−k,k (T )

)
< ∞. We have,

using (19), then (35),

var
(
L#
d−k,k (T )

)
=

1

|T |

∫
Graff(d,k)

∫
Graff(d,k)

cov (φk(∂kTV ∗), φk(∂kTU∗)) dλdk(V ∗) dλdk(U∗)

=
1

|T |

∞∑
q=1

∑
|n|=q

∑
|m|=q

c(n, u, k,Λ) c(m,u, k,Λ)A(n,m, u, k, T ) (42)

with

A(n,m, u, k, T ) :=∫
Graff(d,k)

∫
Graff(d,k)

 ∫
x∈∂kTU∗

∫
y∈∂kTV ∗

E
[
Hn (Z(x))Hm (Z(y))

]
Hk(dx)Hk(dy)

 dλdk(U∗) dλdk(V ∗).

Notice that since Z(x) and Z(y), individually, are standard Gaussian vectors, then using
Mehler’s formula (or equivalently, the diagram formula), we have that for |n| = |m| = q,

A(n,m, u, k, T ) =
∑

dij ≥ 0∑
i dij = nj∑
j dij = mi

n!m!

×
∫

U∗∈Graff(d,k)

∫
x∈∂kTU∗

 ∫
V ∗∈Graff(d,k)

∫
w∈∂k(x−TV ∗ )

∏
1≤i,j≤D

γ
dij
ij (w)

dij !
Hk(dw) dλdk(V ∗)

Hk(dx) dλdk(U∗)

≤
∑

dij ≥ 0∑
i dij = nj∑
j dij = mi

n!m!

 ∫
V ∗∈Graff(d,k)

∫
w∈∂k(2TV ∗ )

∏
1≤i,j≤D

|γdijij (w)|
dij !

Hk(dw) dλdk(V ∗)

 ∫
U∗∈Graff(d,k)

∫
x∈∂k(TU∗ )

Hk(dx) dλdk(U∗)

where the inequality comes from the result of the observation that (x− TV ∗) = (x− T )V ∗ .
Before proceeding any further, we may observe the following.

Lemma 3.1 Let θ be a nonnegative real valued, integrable function defined on Rd, then∫
V ∗∈Graff(d,k)

∫
w∈∂k(2T ∗V )

θ(w)Hk(dw) dλdk(V ∗) ≤
[
d
k

] ∫
Rd
θ(z)dz.
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Proof: The double integral in question can be upper bounded by first replacing the integral
over ∂k(2TV ∗) by integral over V ∗. Then, since Graff(d, k) is isometric to Gr(d, k) × Rd−k,
we note that, for any fixed V ∈ Gr(d, k), we have ∪x∈Rd−k(V + x) = Rd. Therefore the
above integral can be bounded above by∫

V ∈Gr(d,k)

(∫
Rd
θ(w) dw

)
dσdk(V )

where σdk is the invariant measure on the Grassmannian Gr(d, k) such that

σdk (Gr(d, k)) =

[
d
k

]
,

which proves the assertion of the lemma. 2

In view of Lemma 3.1, an upper bound for A(n,m, u, k, T ) can be obtained as

A(n,m, u, k, T )

≤
[
d
k

]2∑
dij ≥ 0∑
i dij = nj∑
j dij = mi

n!m!

 ∫
w∈Rd

∏
1≤i,j≤D

∣∣∣γdijij (w)
∣∣∣

dij !
dw

 ∫
x∈T

Hd(dx)

where in the second integral we have used the Crofton formula (8).

Further, under hypothesis (H2), and for |n| = |m| = q, there exists a constant C∗ such that

∑
dij ≥ 0∑
i dij = nj∑
j dij = mi

n!m!
∏

1≤i,j≤D

∣∣∣γdijij (w)
∣∣∣

dij !
≤ C∗ ψq(w).

Therefore we obtain that, for |n| = |m| = q,

A(n,m, u, k, T ) ≤ C∗|T |
[
d
k

]2 ∫
Rd
ψq(w) dw .

Next, we prove that |T |−1A(n,m, u, k, T ) converges as T → Rd, for which we shall check it
is Cauchy in T . For r > 0, writing (1 + r)T to denote the inflated set {x(1 + r) : x ∈ T },
we have∣∣|(1 + r)T |−1A(n,m, u, k, (1 + r)T )− |T |−1A(n,m, u, k, T )

∣∣ ≤
1

|(1 + r)T |
|A(n,m, u, k, (1 + r)T )−A(n,m, u, k, T )|+

∣∣|(1 + r)T |−1|T | − 1
∣∣

|T |
A(n,m, u, k, T )

:= I + II
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Clearly, II converges to zero as T and r increase to infinity. For part I, notice that the
difference |A(n,m, u, k, (1 + r)T )−A(n,m, u, k, T )| can be shown to be of the same order
as

|(1 + r)T \T |
∫

(1+r)T \T
ψq(w)dw .

The coefficient of the integral above, when compared with |(1 + r)T |−1, converges to one.
However, since the domain of the integral escapes to infinity, therefore the integral converges
to zero.

Hence, we can conclude that the sequence |T |−1A(n,m, u, k, T ) is Cauchy in the variable
T , meaning that, for |n| = |m|,

|T |−1A(n,m, u, k, T )→ A(n,m, u, k) as T → Rd (or, equivalently, as T →∞)

where the limit A(n,m, u, k), using the arguments of Lemma 3.1, can be expressed as

A(n,m, u, k) =

[
d
k

]2

n!m!
∑

dij ≥ 0∑
i dij = nj∑
j dij = mi

∫
Rd

Π
1≤i,j≤D

γ
dij
ij (w)

dij !
Hd(dw), (43)

which, in turn implies that, var
(∫

Graff(d,k)
Jq

(
φ#
k (∂kTV ∗)

)
dλdk(V ∗)

)
→ V kq , as T → Rd.

Finiteness of the limiting variance

We shall proceed as usual (see [12] or [14]). Introducing ΠQ

(
L#
d,d−k(Au(f ; T ))

)
as the

projection of L#
d,d−k(Au(f ; T )) onto the first Q chaos, we shall show that

var
(
L#
d,d−k(Au(f ; T ))−ΠQ

(
L#
d,d−k(Au(f ; T ))

))
−→
Q→∞

0, uniformly in T , (44)

and conclude the finiteness of the limiting variance by a simple application of Fatou’s lemma.

Let us begin with observing that Ld,d−k(Au(f ; T )) is an additive set functional. In partic-
ular, the set T can be written, as in [6] as a union of disjoint unit cuboids (w.l.o.g. let T
be integer). Therefore, Ld,d−k(Au(f ; T )) can be written as a sum of a stationary sequence
of random variables where these random variables are an evaluation of Ld,d−k(Au(f ; ·) on
[0, 1)d, and its various integer shifts.

Next invoking stationarity of the field F (and also of Z), we know that the variance of the
sum of a stationary sequence is of the order of the cardinality of the sum if the covariance
decays at an appropriate rate. Using this precise argument, and following the computations
of [6], we can conclude (44). In following the arguments of [6], it is important to note that
our estimates for the coefficients in the Hermite expansion match with those in [6].

Now we shall show that the variance corresponding to lower dimensional faces of TV ∗ , is
indeed o(1) for large T as expressed in Proposition 3.2.
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Recall the decomposition of Ld−k,k from equation (18). Then,

var (Ld−k(Au(f ; T ))) =

k∑
l=0

var (Ld−k,l(Au(f ; T )))+2
∑
l<m

cov (Ld−k,l(Au(f ; T )),Ld−k,m(Au(f ; T ))) .

It suffices to show that var (Ld−k,l(Au(f ; T ))) = o(|T |) for each l = 0, . . . , (k − 1), in order
to conclude the second part of the assertion in equation (40).

Let us define

R(d, k, l, T ) =
1

|T |1/2

∫
Graff(d,k)

|∂lTV ∗ |1/2φ#
l (TV ∗) dλdk(V ∗). (45)

In view of ∂lT =
⋃

V ∗∈Graff(d,k)

∂lTV ∗ , and the above computations leading to A(n,m, u, k),

we note that var(R(d, k, l, T )) can be shown to be O(|∂lT |), or equivalently O(T l) under
the assumption (H2), implying that the lower dimensional faces, asymptotically, do not

contribute to the variance of L#
d−k(Au(f ; T )).

Nondegeneracy of the limit

Finally, it remains to show that lim
T→Rd

var
(
L#
d−k,k(Au(f ; T ))

)
> 0. Using the orthogonality

of chaos, it suffices to show that V k1 > 0.

First, we shall simplify the expression for V k1 (T ) by introducing the canonical basis (ei)1≤i≤D
of RD in (42), and writing

V k1 (T ) =
1

|T |

D∑
i=1

D∑
j=1

c(ei, u, k,Λ) c(ej , u, k,Λ)A(ei, ej , u, k, T ).

Then, writing {ei1}di=1, {ej2}D−dj=1 for canonical basis of dimension d, (D − d) respectively,
and observing that c1(ei1, k,Λ1) = 0 (by (30)), the limiting variance corresponding to the
first chaos, again using equation (30) for precise expression of c1(0, k,Λ1), is given by

V k1 = (2πλ)−k
D∑

i=d+1

D∑
j=d+1

c2(ei2, u, k,Λ) c2(ej2, u, k,Λ)A(ei2, ej2, u, k) (46)

with A(ei2, ej2, u, k) as defined in (43), given by

A(ei2, ej2, u, k) =

[
d
k

]2 ∫
Rd
γei2,ej2(w)Hk(dw),

where γei2,ej2 denotes the covariance function corresponding to the pair of indices which cor-

respond to the position of 1’s in (0, ei2) and (0, ej2), respectively, where 0 is a d-dimensional
row vector of zeros.

As in [6], we have that A(ei2, ej2, u, k) = 0, whenever (i, j) 6= (D,D), thus further simplifying
(46) to

V k1 = c22(eD2, u, k,Λ2)A(eD2, eD2, u, k). (47)

19



We shall estimate separately the two terms appearing above.

Let us begin with c2(eD2, u, k,Λ2), for which we recall (32)

c2(eD2, u, k,Λ2) =

∫
RD−d

(
GV2,u ◦ Λ2

)
(y

2
)HeD2

(y
2
)ϕD−d(y2

)dy
2

=

∫
RD−d−1

ϕD−d−1(y∗
2
)

(∫
R

(
GV2,u ◦ Λ2

)
(y

2
) y2D ϕ(y2D)dy2D

)
dy∗

2
. (48)

Let us consider the lower triangular matrix Λ2 such that its first element (Λ2)11 is 1 (as in

[6]), i.e. of the form Λ2 =

(
L 0
γT l

)
, with U a lower triangular (D− d− 1)× (D− d− 1)

matrix, γT a 1× (D − d− 1) matrix, and l > 0. With the above notation, we can write

GV2,u ◦ Λ2(y
2
) = det(VM(Ly∗

2
)V T ) 1{γ y∗

2
+l y2D≥u} (49)

where M(Ly∗
2
) is the symmetric matrix obtained by appropriately arranging the elements

of the vector Ly∗
2
.

We can certainly think of the map y∗
2
7→ M(Ly∗

2
) as a linear map, therefore, there exists abij

such that

M(Ly∗
2
)ij =

D−d−1∑
b=1

abij y
∗
2,b
.

Again recalling that c2 does not depend on the choice of V , we shall fix the matrix V as
[Ik ; 0], where Ik is k × k identity matrix and 0 is a k × (d− k) matrix of zeros. Then,(

VM(Ly∗
2
)V T

)
=M(Ly∗

2
)|k×k

where the right side is the notation for the top left k × k minor of M(Ly∗
2
).

This latter argument is key, since the next computations will then be similar as those done
in a d-dimensional box ([6]). We now give brief sketch of major steps involved to provide an
overview of the full computation.

det
(
M(Ly∗

2
)|k×k

)
=
∑
σ∈Sk

sgn(σ)

k∏
i=1

[
D−d−1∑
b=1

abiσ(i) y
∗
2,b

]
.

Subsequently, using arguments similar to those in Lemma A.2 of [6] together with isotropy,
we can obtain a Hermite expansion for the determinant as follows

det(VM(Ly∗
2
)V T ) =

∑
n∈ND−d−1:|n|=k

αn(L, V )Hn(y∗
2
). (50)

Combining (48), (49) and (50), and using that yϕ(y) = −ϕ′(y) to compute the integrand on
y2D, we obtain the following (for more details, we refer the reader to the proof of Lemma
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2.2 of [6])

c2(eD2, u, k,Λ2) =
∑

n∈ND−d−1:|n|=k

αn(L, V )

∫
RD−d−1

Hn(y∗
2
)ϕ

(
1

l

(
u− 〈γ, y∗

2
〉
))

ϕD−d−1(y∗
2
) dy∗

2

=
∑

n∈ND−d−1:|n|=k

αn(L, V )(−1)k
∫
RD−d−1

ϕ

(
1

l

(
u− 〈γ, y∗

2
〉
))

ϕ
(n)
D−d−1(y∗

2
) dy∗

2

= l Hk(u)ϕ(u)
∑

n∈ND−d−1:|n|=k

αn(L, V )Hn(γ)

= l Hk(u)ϕ(u) det
(
VM(Lγ)V T

)
.

Since we can writeM(Lγ) = −λIk with λ = −rii(0), then c2(eD2, u, k,Λ2) = l Hk(u)ϕ(u)(−λ)k,
i.e.

c2(eD2, u, k,Λ2) = l Hk(u)ϕ(u)(−λ)k (51)

by way of choosing V = [Ik ; 0].

Moreover, as in [6], we can write∫
w∈RD

γeD2,eD2
(w)Hk(dw) = (2π)d h(0) l−2 (52)

where we recall that h(0) is the spectral density of the field f evaluated at 0.

Finally, putting together the estimates obtained in (51) and (52) in the following

V k1 = (2π)−k l2H2
k(u)ϕ2(u)λk

[
d
k

]2 ∫
w∈RD

γeD2,eD2
(w)Hk(dw),

we obtain

V k1 = (2π)d−kH2
k(u)ϕ2(u)λkh(0)

[
d
k

]2

from which we deduce that V k1 > 0, hence the second part of Proposition 3.2. 2

3.4 Extension of Breuer-Major theorem to affine Grassmannian
case

Here we just give a sketchy recall of the literature on CLTs of Breuer-Major type, that can
be found in [19, 20] .

In 1983, Breuer-Major provided a CLT for a 1-dimensional centered stationary Gaussian
sequence satisfying some condition on its correlation function. This result was first extended
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by Giraitis and Surgailis ([8]) when considering a continuous time setting, then by Arcones
([2]) with a powerful result holding for general d. The proof, in the discrete case, is based
on the method of cumulants and diagram formulae. Estrade and Léon rewrote it explicitly
(see [6], Proposition 2.4) in the continuous case following the Nourdin et al’s proof ([20])
based on Malliavin calculus. To avoid mimicking the proof a second time, we shall point
out the main quantities that deserve some care, due to our general setting. Let us first state
Breuer-Major theorem in this setting.

Proposition 3.3 Let T be a d-dimensional box [−T, T ]d, and let f be a mean zero, unit
variance, isotropic Gaussian random field defined on Rd with C3 trajectories. Under the
assumptions (H1) to (H3), for any positive integer Q, the projection onto the first Q chaos

ΠQ
(
L#
d−k,k(Au(f ; T ))

)
satisfies

ΠQ
(
L#
d−k,k(Au(f ; T ))

)
d−→ N

(
0,

Q∑
q=1

V kq

)
as T → Rd,

where V kq is defined in Proposition 3.2.

Indeed, we have

1

|T |1/2

∫
Graff(d,k)

φk (∂kTV ∗) dλdk(V ∗) =
1

|T |1/2

∫
Graff(d,k)

∫
∂kTV

GV (f1, f2)(x) dx dλdk(V ∗)

=
1∣∣∣∣∣ ∫

Graff(d,k)

∫
∂kTV ∗

dx dλdk(V ∗)

∣∣∣∣∣
1/2

∫
Graff(d,k)

∫
∂kTV ∗

GV (f1, f2)(x) dx dλdk(V ∗).

where f1 = ∇f , f2 = (∇2f, f), and GV (f1, f2) = GV1 (f1)×GV2,u(f2) as defined in (27) and
(28).

Considering the projection onto the first Q chaos, ΠQ
(
L#
d−k,k(Au(f ; T ))

)
, defined in (44),

we can write, as in the proof of Theorem 2.2 in [20] (or in [6]),

ΠQ
(
L#
d−k,k(T )

)
=

Q∑
q=1

Iq(g
T
k,q) (53)

where Iq(f) denotes the multiple Wiener-Itô integral (of order q) of f with respect to W ,
and

gTk,q :=
bkm∣∣∣∣∣ ∫

Graff(d,k)

∫
∂kTV ∗

dx dλdk(V ∗)

∣∣∣∣∣
1/2

∫
Graff(d,k)

∫
∂kTV ∗

∑
m∈{1,2,··· ,D}q

ux,m1
⊗· · ·⊗ux,mq dx dλdk(V ∗)

(54)
where bkm are such that the mapping m → bkm is symmetric on {1, · · · , D}q, and we have

again used isotropy to observe that bkm depends on V ∗ only through its dimension, which
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is k. Moreover, the functions (ux,j)1≤j≤D are orthogonal in L2(Rd) such that for the field
Z(x) defined in (15),

Zj(x) =

∫
Rd
ux,j(w) dW (w)

where W is the complex Brownian measure on Rd.

Note that, in writing (53), we have used the Fubini theorem to interchange the Wiener-Itô
integral and the integral over the space ∪

V ∗∈Graff(d,k)
∂kTV ∗ .

In order to prove the CLT of ΠQ
(
L#
d−k,k(Au(f ; T ))

)
, it is enough to check that, for 1 ≤

p, q ≤ Q, (see [19] or [20], and for the notation, [6])

||δpqV kp −
1

q

〈
DIp(g

T
k,p),DIq(g

T
k,q)
〉
H ||2 → 0 as T → Rd,

where V kq is defined in Proposition 3.2, and D denotes the Malliavin derivative. Standard
analysis as in [20] can be invoked to conclude that it suffices to check that, for p ≤ q,

||1
q

〈
DIp(g

T
k,p),DIq(g

T
k,q)
〉
H ||2 → 0 as T → Rd,

which holds since, on one hand, for the case p = q we have ||gTk,q||2Hq = V kq (T ) which is

shown to converge to V kq in Proposition 3.2. On the other hand, the e-th contraction of gTk,p
satisfies, for e < p,

||gTk,p ⊗
e
gTk,p||2H2(p−e) ≤

Cp ∑
m∈{1,2,··· ,D}p

|bm|2
2

Ψ(k)

with some constant C, and under (H2),

Ψ(k) :=∫
(Graff(d,k))4

∫
∂kTV ∗1

· · ·
∫

∂kTV ∗4

ψe(t1 − t2)ψe(t3 − t4)ψp−e(t1 − t3)ψp−e(t2 − t4)∣∣∣∣∣ ∫
Graff(d,k)

∫
∂kTV ∗

dx dλdk(V ∗)

∣∣∣∣∣
2

4∏
i=1

dti dλ
d
k(V ∗i ).

Like in [6], we note that ψe(t3− t4)ψp−e(t1− t3) ≤ ψp(t3− t4) +ψp(t1− t3), and by Lemma
3.1, we have ∫

Graff(d,k)

∫
∂kTV ∗

ψp(t1 − t3) ds3 <

[
d
k

] ∫
Rd
ψ(z) dz <∞

which matches the estimates of [6], and thus we can follow the rest of the arguments verbatim
to conclude that for some finite, combinatorial constant C(k), we have

Ψ(k) ≤ C(k)

∣∣∣∣∣ ∫
Graff(d,k)

∫
∂kTV ∗

dx dλdk(V ∗)

∣∣∣∣∣∣∣∣∣∣ ∫
Graff(d,k)

∫
∂kTV ∗

dx dλdk(V ∗)

∣∣∣∣∣
2 =

C(k)∣∣∣∣∣ ∫
Graff(d,k)

∫
∂kTV ∗

dx dλdk(V ∗)

∣∣∣∣∣
→ 0 as T → Rd.
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This concludes the proof of Proposition 3.3. 2

Collating Propositions 3.2 and 3.3 leads to the main result, that is the following CLT

Ld−k(Au(f ; T ))− E [Ld−k(Au(f ; T ))]

|T |
−→
T→Rd

N(0, σ2
d−k(u)),

where σ2
d−k(u) is given by

∑
q≥1 V

k
q in (41).

4 Discussion

Extension to general parameter spaces:

Notice that the only place where we required the box type shape of the parameter space is
when we get an upper bound on the limiting variance of L#

d−k(Au(f ; T )). However, this can
be overcome by a limiting procedure.

Let us partition the space Rd into small cuboids of volume δ. We can identify these small
cuboids by the centre of the cuboids. Let CδT be the set of cuboids which completely lie in
the set T , and BδT be the cuboids which have non empty intersection with he set T and the
complement of T .

Denoting Pi,δ for the elements of the partition of Rd into cuboids of volume δ, we have

L#
d,d−k(Au(f ; T )) =

∑
Pi,δ∈CT

L#
d,d−k(Au(f ;Pi,δ)) +

∑
Pi,δ∈BT

L#
d,d−k(Au(f ;Pi,δ))

= L#
d,d−k(Au(f ; T ), 1) + L#

d,d−k(Au(f ; T ), 2).

Notice that using stationarity and the decay of covariance function γ, like in [6], we can
conclude that

var
(
L#
d,d−k(Au(f ; T ), 1)

)
= O(|CδT |),

where |CδT | is the cumulative volume of al cuboids which constitute CδT . Next, observe that
|CδT | → |T | as δ → 0. Implying that the contribution by the boundary terms to the variance
is o(1), and thus can be ignored, which eventually means that the asymptotic Gaussianity
can be proved by following the same methods as sketched out in this paper, when considering
a d-dimensional compact, convex, symmetric4 subset of Rd, as parameter space T .

Joint convergence of the various LKCs:

We note here that using similar ideas, one can prove the multivariate case for different
values of the threshold u. One of the important question to look forward to, is the joint
distribution of various LKCs evaluated at a fixed threshold. Though, the authors believe the
joint convergence can be proven, but getting meaningful estimates on limiting covariances
is likely to be challenging.

Nevertheless, it is worth noticing that the computations done to obtain Theorem 1.1 allow to
get in a straightforward way a multivariate CLT for the EPCs (L0(Au(f ; TUi)), i = 1, · · · , n):

4By a symmetric set, we mean that every chord passing through the origin must be bisected at the origin.
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Corollary 4.1 (CLT for multivariate (L0(Au(f ; TUi)), i = 1, · · · , n))

Under Hypothesis (H1) to (H3), we have, for any Ui ∈ Graff(d, k), i = 1, · · · , n,(
L#

0 (u, T ;Ui), i = 1, · · · , n
)t
→ N (0,Σ0,n(u)) , as T → Rd,

with Σ0,n(u) =
(
σ0,Ui,Uj (u)

)
1≤i,j≤n the limiting covariance matrix, σ0,Ui,Uj (u) being the

limit, as T → Rd, of the following

1

|TUi |1/2|TUj |1/2
∞∑
q=1

∑
|n|=q

∑
|m|=q

c(n, u, k,Λ)c(m,u, k,Λ)

×
∑

dij ≥ 0∑
i dij = nj∑
j dij = mi

n!m!

∫
x∈∂kTUi

∫
w∈∂k(x−TUj )

∏
1≤i,j≤D

γ
dij
ij (w)

dij !
Hk(dw)Hk(dx).

Note that the variances are finite and positive. Moreover, the limiting covariance can be
identified by observing that L0(Au(f ; TU∗) for U∗ ∈ Graff(d, k) such that 0 /∈ U∗, is identical

in distribution to L0(Au(f ; T̃U∗) due to isotropy, where T̃U∗ is the parallel shift of TU∗ such

that 0 ∈ T̃U∗ .

Notice that convergence of finite dimensional vectors like above might help to obtain the
CLT for general LKCs in an alternative way. If we could ensure the tightness, then applying
the Hadwiger formula (7) would allow to conclude the CLT of Lk(Au(f ; T )). Nevertheless,
proving the tightness on such a space is still an open problem.
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