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ABSTRACT

We analyze risk diversification in a portfolio of heavy-tailed risk factors under the assumption of second
order multivariate regular variation. Asymptotic limits for a measure of diversification benefit are obtained
when considering, for instance, the value-at-risk . The asymptotic limits are computed in a few examples
exhibiting a variety of different assumptions made on marginal or joint distributions. This study ties up
existing related results available in the literature under a broader umbrella.
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1. Introduction

An important issue in risk management is assessing the effects of adding an investment to a portfolio
of risk factors (time series of returns) and understanding how this aggregate risk relates to the
individual risk factors. Broadly studied under the labels of risk concentration or risk diversification,
the past couple of decades have seen tremendous developments in the understanding of this topic.
Our interest is in a portfolio of risk factors that are heavy-tailed, where adequate care is necessary
to study the aggregation of the risk factors; see Dacorogna et al. (2015), Embrechts et al. (2002),
Ibragimov et al. (2011), Puccetti and Riischendorf (2013) for detailed discussions on diversification,
especially under heavy-tailed returns.

In this paper, we consider the particular risk measure value-at-risk. Recall that for a random variable
(risk factor) X with distribution function F', the value-at-risk at level 0 < 8 < 1 is defined as

VaRg(X) :=inf{y e R: P(X <y) > B} = F~(B).

Consider a portfolio of risk factors X = (X7, ..., Xy). We assume for this paper that X1, ..., X are
identically distributed (homogeneous) non-negative random variables with a common continuous
distribution function. The behavior of the sum

Sd:X1+---+Xd

and its value-at risk VaR(Sy) have been studied under various assumptions, either on the marginal
distribution F' (where X; ~ F) or on the dependence structure of X. If X,..., X  are independent
and identically distributed (iid) with a regularly varying tail distribution with tail parameter «,
that is, F = 1 — F € RV_, (see Section 1.1 for details) then it is well-known that VaR(Sy)
is asymptotically sub-additive or super-additive according as @ > 1 or o < 1 (see Degen et al.
(2010), Embrechts et al. (2009)) and an accurate estimation for high threshold has been proposed
in Kratz (2014). Since an assumption of regular variation provides only a first order approximation,
researchers have studied second order behaviors of VaRg(S,) under a second order regular variation
assumption on F; see Degen et al. (2010), Mao and Hu (2013). Furthermore, there has been a
series of studies on the asymptotic behavior of the tail of S; and VaRg(S;) under specific copula
assumptions on the dependence structure of X; see Albrecher et al. (2010), Alink et al. (2004),
Barbe et al. (2006), Kortschak (2012), Sun and Li (2010); or by providing risk bounds under
assumptions on marginal densities, see Peng et al. (2013), Puccetti and Riischendorf (2013).

In this paper we work under the assumption that X = (Xi,...,Xy) is multivariate second order
regularly varying. This assumption encompasses examples of independent, asymptotically indepen-
dent, as well as dependent risk factors and brings together a variety of marginal and dependence
assumptions on the joint distribution of F' under one broad umbrella. The structure of the paper is
as follows. In Section 1.1 we briefly collate notations to be used in the paper. The various notions
of regular variation both first order and second order as well as univariate and multivariate are
described and discussed in Section 1.2. In Section 2 we discuss risk aggregation under multivariate
second order regular variation. The main results of risk diversification for value-at-risk are discussed
in Section 3. Some examples to illustrate our results are given in Section 4. We provide conclusions
and future directions in Section 5. The appendix in Section 6 recalls, for completeness, results from
Resnick (2002) that characterize second order regular variation in terms of vague convergence of
signed measures, and which are used in our results.



1.1. Notations

A brief summary of some notation and concepts used in this paper are provided here. We use bold
letters to denote vectors, with capital letters for random vectors and small letters for non-random
vectors, e.g., ¥y = (y1,y2) € R2. We also define 0 = (0,0) and oo = (00, 00). Vector operations are
always understood component-wise, e.g., for vectors & and y, * < y means x; < y; for all i. For
a constant k € R and a set A C RY, we denote by kA := {kx : € A}. Some additional notation
follows with explanations that are amplified in subsequent sections. Detailed discussions are in the
references.

E* A compactified version of a nice subset of the finite-dimensional Euclidean
space, often denoted E with different subscripts and superscripts, as required.
For example, we often denote E = [0, 00]? \ {0} and Eq = (0, 0o]?.

B(E*) The Borel o-field of the subspace E*.

N The set {x € E : ||z|| = 1}, where || - || denotes the Euclidean norm in R
My (E¥) The class of Radon measures on Borel subsets of E*.

S vague convergence of measures, often on M, (E*); see Resnick (2007).

e The left-continuous inverse of a monotone function f.

For a non-decreasing function f, we have f< (z) = inf{y : f(y) > =}.
For a non-increasing function g, we have ¢ (z) = inf{y : g(y) < z}.

RV, The class of regularly varying functions with index p € R, that is, functions
f Ry — Ry satistying limy_oo f(tz)/f(t) = 2, for > 0; see Bingham et al.
(1989), de Haan (1970), de Haan and Ferreira (2006), Resnick (2008).

1.2. Preliminaries

Regular variation often forms the basis for studying heavy-tailed distributions. In this section we
recall definitions and properties of regular variation and second order regular variation in both
univariate and multivariate case (Bingham et al., 1989, de Haan, 1970, de Haan and Ferreira,
2006, Resnick, 2002, 2008). Definition 1.5 for multivariate second order regular variation forms the
key assumption of our models for this paper. We also define the related concept of hidden regular
variation in Definition 1.6, which may be used to generate models possessing multivariate second
order regular variation as seen in Example 4.3.

Recall that a function f: Ry — Ry is regularly varying (at oo) with parameter p € R if

] — P
lim f(tx)/f(1) = 2
for any x > 0. We write f € RV,.

1.2.1. Regular variation in one-dimension

A large class of heavy-tailed distributions belonging to the maximum domain of attraction of the
Fréchet distribution corresponds to the paradigm of regular variation of the tail of the distribution.
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Definition 1.1 (Regular variation, Bingham et al. (1989)). A random variable X with distribution
function F has regularly varying (right) tail with index o > 0 if F =1 — F € RV_,. Alternatively,
we say that there exists a function b: Ry — Ry with b(t) T oo as t — oo such that

lim tP[X > b(t)z] =z~ (1.1)
t—o0
In terms of vague convergence we can think of convergence in the space (0, 00|, where

PX >t t—ooo

with po(dz) = ax=tdx. We write F € RV_, or, by abuse of notation, X € RV_,.

fa(+)

A consequence of the definition is that b € RV, and a natural choice is b(t) = (1/F)“ (). For
example, Pareto, Fréchet, Stable or Burr distribution with parameter a have RV _,, tail distributions
(see e.g. Embrechts et al. (1997)).

Furthermore, often some distributions with regularly varying tails have a second order property that
is not captured by the scaling in the definition of regular variation. The Pareto-Lomax distribution
is one such example, analyzed below. The following definition provides one approach to studying
such distributions.

Definition 1.2 (Second order regular variation; de Haan and Resnick (1993), Resnick (2002),83).
A random wvariable X with distribution function F such that F € RV_, with a > 0, possesses
second order regular variation with parameter p < 0 if there ewist functions b(-) € RVy/, and
A(t) e 0 that is ultimately of constant sign, |A(-)| € RV, with p <0 and ¢ # 0 such that

tE(b(t)z) — 27 _axP—1
— T =
A(b(t)) t—00 P
The right hand side of (1.2) is interpreted as H(x) = clog(x) when p = 0. We write F €

2RV _ap(b, A, H) or, by abuse of notation, X € 2RV_, ,(b, A, H). The arguments in the brack-
ets are often dropped for simplicity.

L H(z). (1.2)

Remark 1.3. An equivalent representation of second order regular variation is the following:
F € 2RV _, ,(A, H) if there exists an ultimately positive or negative function A with A(t) I 0
— 00

such that
F(tw) Jp— p 1
: F(t) _ —aT" — .
P Sy T R e )

for some constant ¢ # 0 and parameters a > 0,p € R. The parameters o, p of course remain the
same in both definitions. With a choice of b(t) = (1/F)H (t), the functions A and H also coincide.

Example 1.1. Consider the Pareto-Lomax distribution function for o > 0 given by F(z) =
(1+z)~% x> 0. Choosing b(t) = (1/F)*(t) =t/* —1 and A(t) = (1 + )", we obtain

i tF(b(t)x) —a~* I t(1+ (Ve —Da)~> — =@
oo A(b(H))  toeo (1+1t)-"

Hence F € 2RV _o —1(b, A, H).

= —az *x' —1) = H(x).



1.2.2. Regular variation in multiple dimensions

Multivariate regular variation facilitates the study of jointly heavy-tailed random variables and is a
natural extension to Definition 1.1. The following definitions explain multivariate regular variation
as well as second order regular variation for joint tail distributions of random variables. The notion
of vague convergence of measures is used for convergence of measures on the non-negative Euclidean
orthant Ri and its subsets; see Resnick (2007) for further details.

Definition 1.4 (Multivariate regular variation, Resnick (2007)). Suppose X = (X1,...,Xq) is a
random vector in a cone [0,00)%. Then X is multivariate reqularly varying with limit measure v, if
there exist b(t) 1 0o and a Radon measure v # 0 such that, on E = [0,00]¢ \ {0},

tP<b§) € ) T v(-) on Mi(E). (1.3)

We write X € MRV _,(b).

It is easy to check that v(-) is homogeneous in the sense that, for a > 0 and relatively compact
A CE,

v(cA) =c “v(A), ¢>0. (1.4)
We can also check that b(:) € RV /q-

Definition 1.5 (Second order multivariate regular variation, Resnick (2002)). Suppose X €
MRV_,(b) and there ezists A(t) I 0 that is ultimately of constant sign with |A(-)| € RV,, p <0,
—00

such that

tP (% S [O,w]c> - ([0, z]%)

A1) S H@) (1.5)

locally uniformly in € € (0,00]% \ {oo}, where H(x) is a function that is non-zero and finite.
Then X is second order regqularly varying with parameters o« > 0 and p < 0. We write X €
2MRYV_q p(b, A, v, H); some or all of the parameters may be omitted according to the context.

Observe that putting d = 1 in Definitions 1.4 and 1.5 gives us back the univariate versions Defi-
nitions 1.1 and 1.2 . In order to use (1.5) in terms of vague convergence of signed measures, we
impose further conditions on the distribution F' of X as aptly noted in (Resnick, 2002, Section 4).
Appropriate conditions, used in this paper to obtain the results, are described in Assumptions 1
and 2 in the Appendix (Section 6).

The connection between second order regular variation and hidden regular variation has been
discussed in detail in Resnick (2002). Recall that a d-dimensional non-negative random vector
X € MRV_,(b,v) possesses asymptotic independence if v((0,00]?) = 0, meaning that, the limit
measure v concentrates only on the coordinate axes. In the presence of such a phenomenon of
asymptotic independence, hidden reqular variation, as described below, is sometimes observed.
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Definition 1.6. A random vector X € R% has hidden regular variation if X € MRV_,(b) and
there exist a function by and a limit measure vg # 0 on Eq = (0, 00]?, such that tlim b(t)/bo(t) = o0
—00

and for A € B(Ey),

) X
Many models with hidden regular variation also happen to exhibit second order regular variation;
specifically we can look at additive models and mixture models; for further details see Das and
Resnick (2015), Weller and Cooley (2014). Example 4.3 in Section 4 is created in this way.

2. Aggregation under multivariate second order regular variation

In order to aggregate multiple risks factors (with the same marginal distribution or at least equiv-
alent tail order), multivariate regular variation helps in providing justification for sub- or super-
additivity; see Degen and Embrechts (2011), Embrechts et al. (2009). We observe here that further
structure and intuition can be provided by assuming second order regular variation. The key idea
in this section is to relate second order regular variation of the multivariate kind with the same of
the univariate kind. This eventually helps us in evaluating risk measures for sums of homogeneous
random factors with different dependence structures.

Aggregation of risk under multivariate regular variation is relatively straightforward to check. For
example, assuming that X € MRV_,(b) with identical marginals X; ~ F', then, using the defini-
tion, we can check that, if Sy := Zgzl X; ~ Fg, for d > 2, then Fs, € RV_, with the same function
b(-) as in the Definition 1.4. Moreover, b(-) need not be asymptotically equivalent to (1/Fg,) (-).
The following proposition extends this implication to the case where X possesses second order
regular variation.

Proposition 2.1. Assume X € 2MRV_, ,(b, A,v, H) with functions b(t) T oo and A(t) — 0,
as t — oo, so that Condition (1.5) holds in terms of vague convergence of signed measures, under
either Assumption 1 or Assumption 2 (see Appendiz). Then

Sa € 2RV _q p(ba, Ag, Hy), where

ba(t) = (v(Ta))/*b(t),
Ag(t) = A((w(Ta)) Vo w), ) (2.1)
Hy(x) = x(x(v(Tg)V/Tq) = caw =L with  cq = $x(2(v(Ta)) /T ),

where x is defined as x([0,x]|°) = H(x), and
Fd::{zeRi:zl+22+...+zd>1}. (2.2)

By construction we have Ay(bg(t) = A(b(t)). We also extend the notation for I'y in (2.2) defined
for d > 2 to the case where d =1 as

Ty :={z€RL: 2 >1}.



Remark 2.2.

(i) Assuming X € 2MRV_q (b, A,v, H) along with either Assumption 1 or Assumption 2,
implies that x(kT'g) # 0 for some k > 0 and hence the constant cq is non-zero. Nevertheless,
we can construct examples where cq = 0, yet X € 2MRYV_q ,(b, A, v, H) holds; see Example
2.2. Both Assumptions 1 and 2 require that the marginal distributions are identical, which
is violated in Example 2.2.

(i) Note that although X € MRV _, does mean that at least one of the marginal distributions
18 RV _q, such an implication is not necessarily true for a 2MRYV condition. Assuming X €
2MRV_q,, does not necessarily imply that one of the components is 2RV. For instance, if
the components of X are all iid F that is Pareto(a)-type 1, meaning F(z) =1 —a2" %z > 1
and o > 0, then X € 2MRV_,, although none of the margins are 2RV .

(iii) The reverse implication of Proposition 2.1, properly worded, would say that, if any convex
combination of X is 2RV then X € 2MRV. We conjecture that such a result would require
further conditions on the random variables to hold. See Basrak et al. (2002) for the condi-
tions that allows this to happen for regularly varying random vectors (not necessarily 2RV
or 2MRYV), and also Boman and Lindskog (2009), Hult and Lindskog (2006) for further

investigation.
Proof of Proposition 2.1. Since X € 2MRV_, ,(b, A, v, H) and either Assumption 1 or As-
sumption 2 holds (this also ensures identical marginals), we have
uti 5 Xi, on [,
where, for t > 0, u;", u; , x*, x~ are positive Radon measures with y; = u;r —py and x = xT—x",

x : A — R for a Borel subset A C [0,00)%\ {0} defined by x([0,]°) = H(x) and yu; defined in
(6.7). Hence we have

tP (25 € Aa) — v(Ag) ) N
A(b(1)) e X(Aa) (2.3)
for any relatively compact Ay C E. Define by(t) = (V(Fd))l/o‘b(t). Then, for > 0,
i = £ l/a 1/& o —a
tP (bd(t) > x) =tP <b(t) € z(v(Tq)) Pd> v (x(u(rd)) rd) —

using (1.4). Now, let A4(t) = A((v(T'y))~1/*t) for t > 0. Then by applying (2.3), we get for z > 0,
tP (%(dt) > :c) —ae P (% € x(y(rd))l/ard) — u(z(w(T)YoTy)
Aq(ba(t)) B A(b(t))
= pe(x(v(Ta))/*Ta) — x(z(¥(la))"/*Tq).

pe(Aa) =

Defining Hy(x) := x(z(v(Tg))"/*Ty), we know that Hy is not identically zero by the assumption
X(kI'q) # 0 for some k > 0. Hence using Remark 1.3 and Theorem 2.3.9 in de Haan and Ferreira
(2006), we can represent Hy as follows: for z > 0,

af—1 20 N 20
Hy(z) = cqz — where cg = 220\ (2(Ty)Y°Ty) (— p Hd(2)>.

21 21
Hence Sq € 2RV _q (b4, Aq, Hg), as claimed. d
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2.1. Examples of different degeneracies under second order regular variation

In this section we provide examples of a couple of degeneracies that come up while trying to connect
second order regular variation in the multivariate and the univariate case. Suppose X1, Xo,..., X,

n
are iid 2RV _4 . Then using (Mao and Hu, 2013, Theorem 3.1, 3.2), we know that the sum ) X; €
i=1
2RV _4,p. But can we say X € 2MRV? This may not always be true as we see in the following

example.

Ezxample 2.1. Suppose X1, Xo are iid random variables with distribution function F' such that

— 1
Fla) = 5o o(1+a%), 21,

where a > 0,p < 0. This family of distributions belongs to the Hall-Welsh class of heavy-tailed
distributions. For any a > 0 and p < 0, it is immediate that X; € 2RV_, ,(b, A) where b(t) = t}/*
and A(t) = tP. Take a set of the form [0, (x1, z2)]¢ for 1 > 0,29 > 0 and observe that

tP %E[O,(xl,m)]c %1 i+i =: ([0, (1, 22)]°).
( )z g)

t—00 :n‘f‘ :L‘g‘
At the second level

1P (% € 0, (an,m2)l) — 3 (G + %)

/o
CtP(Xy >t ery) + tP(Xo > %) — t (X > Y%y, Xy > Y/ %mg) — 27 /2 — 35, /2
N tela
1 ot —a+ t—1-pla —a,.— / / *
:§($1 Py @) — L Yoy (14t 2) (1 4+t Y2h) = H* (z1,22,t). (say) (2.4)

Now, we have

L@ 4 250P) if p+a >0,
. * _ 1/,.—2 —2 1, —a, — :
Jim H* (21, 22,1) = 4 5(27™ + 257%) — g1 %2, ifp+a =0,
—0 if p+a<0.

We can check that no other choice of A(-) (up to equivalent tail behavior) would provide a finite
limit for (2.4) as t — oco. Hence we have X € 2MRV_, , iff a + p > 0. Thus for any choice of p
such that o+ p < 0, X1 € 2RV_, p, but X is not 2MRV.

In the next example, we have independent (but not identically distributed) random variables X1, X,
where the marginal distributions are both 2RV _, ,, and the joint distribution is also 2MRYV, yet,
we cannot use Proposition 2.1.

Ezxzample 2.2. Let X = (X1,X2) = B(Z1,0) + (1 — B)(0, Z2), where B ~ Bernoulli(1/2) and
independent of Z1, Zo, which are independent random variables with distribution functions F1, F5
respectively, such that, for x > 1,

1 —
Fi(x) = 5&7_2(1 +27Y) and Fy(z) =221 -zt + —z7?).
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Note that we created a random vector whose realizations are all on the two axes (there is no interior
point). We can check that both X1, Xy € 2RV _o_1(b, A) where b(t) = t'/? and A(t) = t~!. Take a
set of the form [0, (z1,z2)]¢ for z; > 0,22 > 0 and observe that, as t — oo,

X c 1 1 .
tP (,51/2 € [0, (z1, 72)] ) e i + 57 = ([0, (21, 22)]°).
At the second level,
tP (i € [0, (21 xz)]c) - (L n L)
$1/2 ) ) 422 22 1 - 3 .
—1/2 1 2 R (27° — 237°) = H(z1,22) = x([(0,0), (z1, 22)]).

Since the random vectors lie only on the axes, we have P (X; + X2 > z) =P (X € [0, (z,z)]¢), and
we can check that for any = > 0,

X1+X:
P(Feams) - F(NEca) - F(HODEal)-d

- - - LT 0= x(aly).

t—1/2 +—1/2 t—1/2 t—00 4

Hence we can conclude that c¢; = 0 (as defined in (2.1)). Thus Proposition 2.1 cannot be used.

3. Diversification index
3.1. Risk measures and diversification

In risk management, evaluating diversification benefits properly is key for both insurance and
investments. Indices have been introduced to quantify and compare the diversification of portfolios,
such as the closely related notions of diversification benefit defined by Biirgi et al. (2008) as

0P
Z?:l p(X5)

and the associated diversification index defined by Tasche (2008) as,

d
Dy(xX) = A2z X) (3.1)
> i1 P(Xi)

for d risks (X;,4 = 1,--- ,d), p denoting the associated risk measure. This index D,(X) is also
referred to as a measure of risk concentration by some authors. Neither index is a so-called universal
risk measure and they depend on the choice of the associated risk measure p and on the number d
of the underlying risks in the portfolio (see e.g. Emmer et al. (2015)). As indicated earlier, in this
paper we restrict to the popular risk measure value-at-risk (VaR) as the choice for p and obtain
asymptotic results for the diversification index. For notational convenience, we define the associated
quantity Q1-5(X) for 0 < 8 < 1 for a random variable X with disribution F* as

;o with p(-) := p() — E(),

Q1 3(X)=VaRg(X):=F (1-p)=inf{z e R:P(X >2z) <1- 3},

The diversification index associated with VaR under different assumptions on the marginal distri-
butions and dependence structure, as well as its asymptotic limits can be found in the literature
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(see e.g. Biirgi et al. (2008), Dacorogna et al. (2015), Degen et al. (2010), Embrechts et al. (1997).
We denote the diversification index Dvar, as Dg to emphasize the role of § in the calculation of
the index. The following result was obtained under the assumption of independence and identical
distribution of the marginal X;’s.

Lemma 3.1 (cf. Example 3.1, Embrechts et al. (2009)). Assume X1,...,X,, are iid with distri-
bution function F where F € RV_, with o > 0. Let Sg := Zle X;. Then
VaR3(Sa) _ Qy(Sa) — /a1

lim Dg(X) = lim —— 28—y 0224

=1 = 3.2
BT1 811 d VaRg(Xﬂ 740 d QV(XI) ( )

The rate of convergence for the limit in (3.2) can be obtained by using an additional assumption of
second order regular variation; see Albrecher et al. (2010), Degen et al. (2010), Mao and Hu (2013),
Omey and Willekens (1986). Some studies relax the condition of independence of marginals and
obtain limits as in (3.2) as well as rates of convergence; for instance Hua and Joe (2011) work under
a scale-mixture dependence with second order regularly varying marginal distributions, Kortschak
(2012) works under an assumption of asymptotic independence, and Tong et al. (2012) assume an
Archimedean copula as the dependence structure. In this paper, we consider an alternative approach
assuming that the random vector is multivariate regularly varying (MRV) as well as it possesses
second order regular variation (2MRYV) in order to obtain the rate of convergence. To the best of
our knowledge, this approach has not been looked at and forms a broad class containing examples
with regularly varying margins (both possessing 2RV and not possessing 2RV) as well as different
families of dependence structures.

3.2. Main Result

The following result provides the rate of convergence for the diversification index D,(X) when
taking VaR as a risk measure for a random vector X = (Xi,...,X,) that exhibits second order
regular variation. Note that even if X € 2MMRV, the marginal random variables X; need not
to be 2RV. We assume that the marginals are identically distributed although not necessarily
independent.

Theorem 3.2. Let X € 2MRV_, ,(b, A,v, H) with functions b(t) 1 oo and A(t) — 0, ast — oo.
d
Assume either Assumption 1 or Assumption 2 holds. From Proposition 2.1, we have Sq = > X; €

=1
2RV _a,p(ba, Ag, Hg) with by, Aq and Hy as defined in (2.1). Then, for d > 2,
1 T 1/
lim Dg(X) = lim dV“Rﬁ(Sd) i D) g here K= L (V( d)>
ER! BT | VaRp(X;) 70 dQy(X1) d \v(I')

with Ty defined in (2.2), for any d > 1. Moreover, if
X2 (Ta)/*Ta)| < o0, ¥d > 1, and |x(2(v(T'a))"/*Ta)| # [x2w(T1)/T1)|, ¥d > 2, (3.3)

then we have, for any x > 0,

Q'yw (Sd) _ Kd

Diye(X) - Kqg . dQ.0q) M4 K

1m — lim _ - Ja .
w0 AGA/) e AGA/) ap =), (34)
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for a constant C # 0 that is identified, for d > 2, as

C - Cq — C1 if X1 ~ 2RV
| ca(#£0) otherwise

with cq and c1 defined in (2.1).

Remark 3.3.

(i) Note that if |x(2(r(I'4))Y/*T4)| = oo, the question about the limiting rate of convergence
above remains open.

(ii) Even if ¢y # 0 and ¢; # 0, it is possible that C' = ¢4 — ¢; = 0; we have not found any example
of this type.

In order to prove Theorem 3.2, we need the following result that is a direct application of a lemma
from Vervaat (see Vervaat (1971)).

Lemma 3.4. For any positive random variable X € 2RV _, ,(b, A), we have

1 _ 1/
wp Qe T e ey s
WA et @ U=

with 0 < ¢1 < oo defined in (2.1).

Example 3.1. The following example is an application of Lemma 3.4. Suppose X ~ F, where
_ 1 -

Flx)=1-F(z) = §(x_o‘ +272%). Hence, for 0 <p <1, F (p) = 2Y/o(,/T+8p — 1)1/,
With b(t) = F* (1/t) we have, for x> 0,

2
FO(0)) = § % (,/ + % - 1) ot % (,/1 + % - 1) s | = g <1 + %(x—a 14 o(t_1)> s

Moreover, taking A(t) =t=*, we have A(b(t)) = 2 [1— 2 + o(1/t)], from which we deduce that

. tE(b(t)z) — 27
e A(b(t)

=z Yz~ %—-1)=: H(zx).

Hence, X € 2RV _o,—a(b, A, H) with ¢ = —« as defined in (1.2). Applying Lemma 3.4, we have

_1 _ 1/
g A G) = 071 e
6T AW(L/Y) a |

which can also be directly verified. Note that Qv z(X) = VaR1_,(X) = b(1/(yz)).

Proof of Lemma 3.4. The proof is an application of Vervaat’s Lemma that we recall here for
the sake of completeness.
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Vervaat’s Lemma (see Vervaat (1971)). Suppose y is a continuous function on [0, 00) and {z¢(x) }+>0
is a family of non-negative, non-increasing functions. Also assume that the function g has a negative
continuous derivative. Let §(t) — 0 with 6(t) > 0 eventually and

z(r) — g(x)

lim 5 =y(x)

t—ro0
locally uniformly on (0,00). Then, locally uniformly on (g(0), g(c0)),

i 2 (%) — 9 (@)
t—00 (5(t)

=— () (@) ylg™(x)).

Let v = 1/t, so that v | 0 as t — oco. Applying Vervaat’s Lemma with z(z) = tP[X > xb(t)] =
tEx(zb(t)), g(x) = 27, §(t) = A(b(t)) and y(x) = Hi(x) given in (2.1), we obtain:

@) gt (@) . wpFx@/) et s Que(X) — e
lim = lim = lim 7
e 4(t) t—00 A(b(t)) 740 A/
hence the result given in Lemma 3.4. =

Proof of Theorem 3.2. Since X € 2MRV_q,p(b, A,v, H), and X;’s are identically distributed,
if X; ~ F then FF € RV_,. Proposition 2.1 (with the same notations) provides that Sy is

tP|[S bg(t)x] —x™
2RV_q p(ba, Ag, Hg) such that, for z > 0, [Sa > ba(t)2] — @

— Hy(x). Applying Lemma 3.4
t—o00

Aa(ba(t))
for Sy gives then
1 _ 1/
. bd(l/'Y)Q’yx(Sd) v Cd -1/, —p/a * .
lim = —=x P —1)=: Hj(x), with0 < ¢4 < o0. 3.5
710 Aa(ba(1/7)) ap ( ) () I (3:5)

First of all, since F € RV_,, introducing the notation b; when looking at any X;, we can write

lim D (X)

i VARs(Sa) . @Qy(Sa) _ 1 @y(Sa) bi(1/7) ba(l/y) _ 1 (V(Fd))
Bt B VaRg(X;) 0 dQy(X) Ao d ba(1/7) " Qy(X1) bi(l/y) d

d \v(Ty)
Now, to assess the second order property, observe that for any = > 0,

Qya(Sa)
Dl—'ya;(X) —Kd . dQ~z(X) —Kd (s B N
A6aA)) - Ay @ - @)

where ;
() = K, 11) [653(11(/43) - x_l/a}
Qyz(X1)  A(B(1/7))
and
m . o]
II(z,y) ={ Baxg zy > Gpamy — X1~ 2RV

0 otherwise .

1/a
— K,



13
tP (X1 > bi(t)z) — o™ |
H = @
A1 (b1 (1) oo Hi@) =z
P2 and Hi(2) = x(2(v(T'1))/2T). Moreover by () = (v(T1))Y/2b(t), A1 (t) = A((v(T'1)) Y1),
and, by construction,

Indeed, if X7 is 2RV, then we have with ¢ =

A(b(t)) = Aq(ba(t)) = Ax(bi(2))- (3.6)
Note that we also used the fact that d Kg = by(t)/b1(t) (for any ¢t > 0), when writing the expression
Qya(Sa)
Dine(X) = Ka _ dg,00) — Ka

of the ratio =0 qm) — AGQ))

Now, we obtain via (3.5), that

lim I (z, :K-xl/a-H*x:Kﬁx—P/a_l‘
i (5,7) = K21 H0) = Ky 2 a0 = 1)

Similarly, when X7 is 2RV, applying Lemma 3.4 for X; gives

1 _ 1/
. iy @re(X1) — _a

o Vo(pPlY 1) = H¥(z), with0 < ¢ < o0.
T A L )= Hi(@) !

from which we deduce that

lim [7 — Ky oV Hi(2) = Ky (el — 1),
lim (z,7)=Kq-z 1 (z) dap(w )

Hence (3.4) holds and the theorem is proved. O

In the subsequent section we provide examples for both cases where C' = ¢4 and when C' = ¢4 — ¢1.
Note that proportional growth rate of Di_(X) can be deduced immediately from Theeorem 3.2
providing the following corollary.

Corollary 3.5. Under the conditions of Theorem 3.2, we have, for any x > 0,y > 0,

Dinp(X)—Di_o(X) a7 P/*—1
70 D1y (X) = D1 (X)  y=P/o—1

Under the assumption that we can statistically estimate Dg at moderately high values of 3, Corol-
lary 3.5 may provide a way to extrapolate values of Dg to extreme levels of 3. For instance, let
X € 2MRV_,,, and suppose our data allows us to compute estimates of the diversification index
for VaR at 90% and 95% which is given by Dg.go(X) and Dggs(X), then for any p > 0.95 (with
0 < p < 1), we can use Corollary 3.5 to estimate D,(X) as

()"
Dyp(X) = Dogo(X) + (((;.;)p/o‘—l [Do.%(X) — Dogo(X)] .
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4. Examples

In this section we apply Theorem 3.2 in different examples possessing 2MRYV to compute the
asymptotic limit for the diversification index Dg; our examples are carried out in dimension d = 2
for convenience.

In both Examples 4.1 and 4.2, the dependence structure is given by a survival Clayton copula
that exhibits asymptotic dependence, hence the conditions of Assumption 1 hold. Example 4.1
additionally possesses 2RV across the marginal distributions, whereas Example 4.2 does not. In
Example 4.3, we discuss a general class of distributions possessing hidden regular variation that
exhibits asymptotic independence and Assumption 2 is satisfied.

Example 4.1 (Pareto-Lomax marginal distribution with survival Clayton copula).

Suppose X = (X1, X3) ~ F with identical («, 1)-Pareto-Lomax marginal distributions, with o > 1,
s.t.

Fi(z)=Fa(x)=(1+2z)"%, Va>0,
and that the dependence structure of X is given by a survival Clayton copula on [0,1]?, with
parameter 6 > 0:

PIX1 > x1, Xa > @] = |(Fi(21))" + (Fa(2))’ - 1] o [(1 +a1) + (14 22) — 1 o

(4.1)

It has been already shown in Example 1.1 that X; € 2RV_, _1(b, A1, H) with
b(t) =tY* =1, A1(t) = (t+ 1), H(z) = —az™ %z~ — 1), and ¢ = ¢; = o. Applying Lemma 3.4
provides

VaRi_pe(X1) _ —1/a Qe p-1/a
lim —/22 1 — lim /WYL =V
740 /e 740 e '

Now we verify that X is 2MRYV and identify the right parameters. We have

~1/0

tP <X e ([0, 21] x [o,xg})C) o AT ey - (x;w n x§‘9> = v (([0,21] % [0,22])°). (4.2)

b(t)

Choosing A(t) = —(t + 1)~ ™™D e have

tP (5 € ([0,1] x [0,22))°) = ([0, 1] x [0, 22])%)

tllglo A00) = H(z1,%2), with
é(w?g—l—mgg)_l_% if <1/«
a {(xl + CCQ)i(OLJrl) (k1422 —1) — xl_(a+1)(x1 -1)— mz_(a+1)(ﬂf2 - 1)} if 6=1/a

H(xy,x9) :=
—1=5 1..a0— ab—
a [(m?e +x3f)® [x19 Yoy = 1) + 259 (g — 1)]

7x1—(a+1)(x1 -1 - x;(aﬂ)(azg - 1)} it 0>1/«
(4.3)
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from which we deduce that

b(t) =t/ —1

A(t) —_ —(t + 1)—min(a€,l)
v defined in (4.2)

H defined in (4.3).

X € 2MRV_q_1(b, A, v, H) with (4.4)

For the next steps, we compute the density function f of the distribution function F', as well as the
density function A of the limit measure v, aand obtain:

_1l_o9
Fla1,2) = (1 +0) (1 + 21)%01 (1 + 25)20 ((1 +21)° + (1 + 22)° — 1) ’ (4.5)
and
_%_2
My, z9) = (1 + 0) 25071 25071 <x?9 + :):‘2)‘9> . (4.6)

We check that Assumption 1 holds. This boils down to verifying conditions (6.4)-(6.6).
We do this for the case af = 1, the alternative case (o) # 1) is analogous but is skipped for this

part. Hence (4.5) and (4.6) simplify to
flan,x) =ala+ 1)1 +z1 +22)" @2 and  Azp,20) = oo+ 1)(21 + 22) @2 (A7)

We have, for any x € E,

f(tx) _ - 2+«
t2F (1) Mw) = Aw)t™ <a o+ 3:2) oo

Therefore, (6.4) holds and from the form of tf;(%fz 5 A(z), it is clearly bounded if A\(x) is, which is

true for € N. Thus uniform convergence also holds. Conditions (6.5) and (6.6) can also be checked
in the exact same way.

Now, since the conditions are satisfied, applying Proposition 2.1 gives us:
Sy =X1+Xo € 2RV _o _1(b2, A2)

with bo(t) = (v(T'2))Y*b(t) and As(t) = A((v(T'3))~/*t). Using Definition 1.2 of 2RV with (2.1),
we may then conclude that

tP[S2/b2(t> > x] e - . )
Aa(ba(t)) e Hy(z) = coz (1 — 27 })

where ¢y = 291 Hy(2) = 201y (2(v(Iy))/2Ty).

The result on risk concentration follows by applying Theorem 3.2 (see (3.4)). For any
z >0,
Di_(X)-Ky 1

im =—(cp—c e — .
o a1/l R, 9
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Ay and by being defined in Step 4. We have seen in Step 1 that ¢; = a. The quantities Ko =

2 \v(ly1)
and 6. We show this in the next step.

1/a
1 (”(F2)> and ¢y can be computed with varying degrees of effort depending on the values of «

’STEP 6(A): af = 1‘ First compute v(I'2), using (4.7), as

v(ly) = /1“ Az, x9) dzy drg = a(a + 1)/F (1 + xg)_(OH'Q) dzidzy = a+1.
2 2

Differentiating H given in (4.3) w.r.t. the 2 variables, we obtain the density h given by
Wz, x) := o?(a + 1) (z1 + 22) ") —a(a+ 1) (a + 2)(z1 + 29) @+, (4.9)
and can compute x(-), setting k = 2 (v(I'y))/* = 2(1 + a)"/?, as

o+ 2
kDo) = h(zy, zo)dzydry = a2 @ [1— — 2= |
X( 2) /m1+z2>k (xl $2) L1dX2 a |: 2(a+1)1+1/a:|

1 F l/Oé
We deduce that co = « (2 —(a+2) (a+ 1)_(1+é)>. Moreover we have Ko = 3 <V( )> =
1
5(1 + @)/, hence (4.8) becomes, for any z > 0,

ile—Wx(X)_KQZE at2 1o (/e _
it As(b2(1/7)) 2[a+1 (1) ]( 1).

Now noting that As(ba(1/7)) = —vY*, we have via (3.4),

a+2
a+1

lim

1 VaRl,W(Sz)
70 yl/e

o al/a = |(a 1/a
VaRy_a(Xy) ) } [< 1

} (z'/* —1).

’STEP 6(B): ab #1 ‘ First we compute v(I'g) using (4.6):

_1_o
v(T9) = /F Mz, z2) dzy dze = (1 4 6) /F 2§01 501 (wffa + x%g) * 7 dwy day.
2 2

This quantity can be easily numerically evaluated for specific values of o and 6, for instance using
Mathematica. Next we compute x (kI'z) from which we can deduce ¢y = 2°t1x(2(v(T'z))Y/Iy).
For instance, considering the case af < 1 in (4.3), and differentiating H w.r.t. the 2 variables, we
obtain the density h given by

—3-1/0
h(w1,22) == 02(0 + 1)(2 + 1/0) 7200~ 1-eg00-1 (1 + (22 /xl)a‘}) , (4.10)

from which we deduce, with the change of variables (u,v) = (z1, z2/x1), and denoting k =
2 (v(T2)",
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X(kFQ) = / h(:nl,xg) dl‘ld.fvz
r1+z2>k
=a?(0+1)(2+1/6) / / u(l+v)>k) U alf+)=1yab=1(q 4 29)=3=1/6 4y du.

This quantity can also similarly be numerically evaluated. Hence we are able to compute co, Ko, As
and by, and impute them into (4.8) to obtain an exact result.

Example 4.2 (Pareto-Type 1 marginal distribution with survival Clayton copula).

Here we consider the same structure of dependence as in Example 4.1, i.e. a survival Clayton copula
with parameter 8 > 0, but assume that the marginal distributions are Pareto-Type 1 marginal
distributions with parameter o > 1, such that Fy(z) = Fa(z) = 2~ for x > 1, to illustrate
the situation where the X;’s are not 2RV. For computational simplicity let § = 1/a, so that, for
z1 > 0,22 > 0,

P[Xl > xq, X9 > xg] = (.7}1 + 9 — 1)—04. (4.11)

First we verify that X is 2MRYV and identify the right parameters and functions. Choos-

ing b(t) = (1/F1)* (t) = t'/* and using (4.11), we observe that, for z; > 0,23 > 0, and for ¢ large
enough such that z;t"/* > 1 (i = 1,2),

tP (b)((t) e ([0, z1] x [O,wz])c> = Y - (xl + T2 - t_l/a)_a

— g = (14 22)” " = v (([0,21] x [0, 29])¢)(4.12)

t—o00

We can also find the density function for the measure v at 1 > 0,29 > 0, namely

62

_ —(a+2)
02,0 ala+ 1)(z1 + x2) ,

Mz, z2) =

v (([0, 1] x [0, 22])%)

from which we deduce, for any k£ > 0,

v(kI'1) = v (([0,k] x [0,00))°) = k™% and wv(kI'2) = / Az, z2) dzidery = (o + 1)k~

r1+a2>k
(4.13)

To check that X is 2MRYV, choosing A(t) = —t~ !, we observe that for z; > 0,29 > 0,

tIP’(% € ([0,21] x [O,xz])c> — v (([0,21] x [0, 22])%) (21 + 22)" @D = H(z1,22)
= oz + 22 = 42, 12).

(4.14)

lim

% A(b(t))

Thus we have X € 2MRV_, _1(b, A,v, H) where b(t) = tt/e A(t) = =t~ and v, H are as defined
in (4.12) and (4.14) respectively. We write x(([0, z1] %[0, x2])¢) = H(z1, z2), which can be considered
as a signed measure with density given by

h(z1,z2) = ala+ 1) (a+ 2)(x1 + 332)_(O‘+3), x1 > 0,29 > 0.
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Then we can compute y(kI's) as

X(kFQ) = // h(l‘l,l‘Q) dxld:cg == a(oz + Q)k_(a+1). (4.15)
r1tx2>k

We check that Assumption 1 holds, so that we can use Theorem 3.2. This boils down to
verifying conditions (6.4)-(6.6). Observe that the distribution function F' has a density function f
defined, for z1 > 0,22 > 0, by

f(x1,m2) = ala+ 1) (z1 4+ x9 — 1)7(@F2), (4.16)

Therefore, for any @ € E, we obtain
f(tx) (as2) [ 1 }(a+2)
== A = +1 + @ ] — ——— -1
() ala )(z1 + x2) Y

= a(a+1)(a+2)(@ +22) " 1ot - 0.

Hence (6.4) holds and from the form of t_’;%f)(t) —A(x), clearly it is bounded if A(z) is; which is true

for & € N}. Thus uniform convergence also holds. Conditions (6.5) and (6.6) can also be checked in
the exact same way.

Applying Proposition 2.1 provides

So=X1+ Xy € QRV_Q,_l(bQ, AQ)

where by(t) = (v(T'2))Y°b(t) = (a + 1)Y/*t/* and Ax(t) = A((v(T9)) Y t) = —(a + 1)/t~ We
also have from (2.1),

lim tP[Sy/bo(t) > x] — ¢
t—00 As(ba(t))

=cor (1 — 27 1) = Hy(w), (4.17)

ala+2)
(o + 1)+

The result on risk concentration follows by applying Theorem 3.2. For any x > 0,

where, via (4.13) and (4.15), ¢ = 2T\ (2(v(T'9))Y/°T5) =

. Dy (X)) — Ky Ky, 4
lim 7 = ey —2(zV* — 1),
A e Y

2 \v(T'1)
Therefore we can rewrite (using the definitions of Ag,be, co, K3), and noting that As(be(1/v)) =
_~l/a
A

. . 1 (v(T2) /o _ 1 1/a
where Ao, by, co are as defined in the previous Step 3, and Ko = = = 51+ a)/e

li 1 VaRl_W(SQ)

o+ 2
m —_—
0 ,71/04 VaRl—'yx(Xl)

1/a
a+1<w D-

-1 +a)1/a} =
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Example 4.3 (Example with Hidden Regular Variation).

We consider a simple example of a mixture model possessing hidden regular variation (Das and
Resnick, 2015, Section 3.1); many similar examples can be easily constructed. Let X = (X1, X3)
be defined as

X =B1Y +(1-B1)(V,V), with Y = By(&,0)+ (1 - B2)(0,&2) (4.18)

where By, By, &1,&2,V are independent, By, By are Bernoulli variables with P[B; = 1] = P[B; =
0] = 1/2,i = 1,2; &,& are identical Pareto (Type-1) variables with parameter o > 0, whereas V'
is a Pareto (Type-1) variable with parameter 2. Here Y concentrates on the axes and provides
the top level regular variation, whereas (V, V') is the source of hidden regular variation (and also
second order regular variation) for X. Note that for z; > 1,29 > 1,

P(X € ((0,m1] x [0,22])) = (o7 +25°) + 3 (min(ar, 22)) "

— 1 1
Moreover, X1, Xy ~ F and, for z > 1, F(z) = mea + 536720‘.

This is an example exhibiting asymptotic independence, hence we need to verify that Assumption
2 holds to apply Theorem 3.2.

[STEP 1:|Forlarge t, with b(t) = F* (1/t) = 4Y/%(\/1+ 32/t—1)" 1/ = (ﬁ)l/a (1-%+ 0(1/t))_1/a,

m(bft) € ([0, 1] x [0, 23] )
= (1= 2ot o (1= S ot1/n) o+ (120 4 o(1/n)) tminten, )

— 7%+, % = v(([0,21] x [0, xg}) ).

t—o00

Hence the first condition in Assumption 2 is satisfied. This also means that v does not have a
density and the measure concentrates on the two axes, hence we can write

V(Do) = v((z1,22) € [0,00)% iy + 20> 1) =172 4172 =2,
Marginally we observe that
8 8 16 o 8 ol —a
tP(X1 > b(t)x) = (1—t—|—0(1/t)> x~ (1—+0(1/t)> Y=z —l—;x (27 = 1)+o(1/t).

Choosing A(t) = 2t~%, we obtain

. tP(Xy/b(t) > x) —aT o arP =1
tliglo AGD) =z Yz —1)=qax ,
where p = —a and ¢; = —a. Both margins are identical, therefore the second condition in Assump-

tion 2 also holds and we can infer convergence of signed measures for 2MRV.
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Now, for the same choice of functions b and A, we can write, for 1 > 0,22 > 0,

P (5 € () x [0.20)°) v (([0,21) % 0,22
2k A00)

= H(:L’l,:lig).

where

H(z1,5) = —(o7 + 25°) + min(z72%, 552) = —x<([0,1] x [0, 22])°) + x> ([0, 21] X [0, 22])°).
(4.19)
Since v(I'y) = 2 (Step 1), with x = x~ — x< as defined in Theorem 6.3 in the Appendix,
and using (4.19), we can compute for any k > 0,

(kDo) = —(k™ + k~%) + (k/2) 72 = —2k7%(1 — 220719,

Applying Proposition 2.1, we have Sy = X1 + Xo € 2RV _, _o(b2, A2) where
t 1/
ba(t) = (v(T2))/b(t) = 8Y/(\/1 4 32/t—1)"1/ ~ <2> and  As(t) = A((w(D2)) "V t) = A7 Vt) = 4.

We also have from (2.1),

. tP[SQ/bQ(t) > .%'] r@ Ccoy _ _
| ="z %z -1 =H 4.2
Jim Ao(0a(D) A ) 2(2), (4.20)
where ) )
—o2% 25 A |
— 2 1—\ 1/041—1 - = 21+1/O¢1’\ — 20c
2 = 5oq x(2(w(12)) /9T2) = o x( 2) = a2 —

Finally we obtain the result on risk concentration by applying Theorem 3.2. For any
x>0,

ile_ x(X)—KQ — (e —c . L 1/a7122(o¢—1)_1 .
e o 0 Nl e L v c ey )

Ja
where we have Ao, by, co are as defined in Step 4 above and Ky = % (Zg?g = 21/e=1 Therefore

we can rewrite, using the definitions of As, ba, c2, K5 and noticing that As(ba(1/7)) ~ 8,
VaRi_14(52) _olja| _ glja+3 22—l —1

lw Y Va0 (X1) e 1) LT

5. Conclusion

Our goal in this paper was to exhibit the strength of the assumption of second order multivariate
regular variation for understanding diversification benefits in a portfolio of risk factors. We have
seen that 2MRYV encompasses a broad variety of dependence structures where we could compute
the diversification index and observe penultimate behavior of portfolio of risk factors with respect
to the risk measure VaR. Explicit computations of the constants in many examples seem tedious,
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although numerical tools can be often used here. A few questions still remain open. For instance,
a characterization of multivariate second order regular variation in terms of linear combination of
its marginals akin to a Cramér-Wold Theorem is yet to be discovered. We are also interested in
finding the effects of the related concept of hidden regular variation on diversification.
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6. Appendix

We discuss results and assumptions from (Resnick, 2002, Section 4.2) that are used in this paper
for the sake of completeness. The following results provide conditions under which the second order
regular variation condition of Definition 1.5 can be represented as vague convergence of measures.
Assumption 1 gives the appropriate conditions when the limit measure v(-) as obtained in Defnition
1.4 has a density with respect to the Lebesgue measure; hence X is not asymptotically independent.
On the other hand, Assumption 2 gives appropriate conditions when v(-) does not have a density;
it means that asymptotic independence holds for the tail distribution of X.

Suppose X is a d-dimensional non-negative random vector with distribution function F' and iden-
tical one-dimensional marginals Fj.

Assumption 1. We assume the following on F'.

1. Let F have a density F' such that for b(t) — oo,
E@M@%F@@@—A@ﬂzameﬂ (6.1)

where A(+) # 0 is bounded on N and moreover

lim sup |b(t)%F (b(t)a) — Ma)| = 0,z € E. (6.2)
t—o00 acR

The limit function () necessarily satisfies A(tx) = t=*"4\(x). This implies from (Resnick,
2008) that there exists V. € RV _,, such that

L 1= Flb(t)e)

i—oo V() / AMu)du = v([0,x]°), x> 0. (6.3)

[0,z]

Thus conditions (6.1) and (6.2) imply multivariate reqular variation. Instead of conditions
(6.1) and (6.2) it is sufficient to assume F1 € RV _, and

F'(tx)
t=4F(t)

F'(ta)

- \x) T (D)

=0,z €E, and lim sup

t—o00 t—o0 aer

—Am4zu (6.4)

and we can take V = F.
2. Assume that the second order condition given in (1.2) holds for F1 so that F1 € RV_, and
A€RV,,p<0,A— 0 and forx € E,
F(tx)
m t=dF(t) (z)
t—oo A(t)

—-x (®)| =0, (6.5)

where X/ # 0 is integrable on sets bounded away from 0. We also assume uniform convergence

on N:
L~ Ma)
. t=aF(t) L B
BRI Am = (00

Also assume that ' is finite and bounded on .
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Remark 6.1. For X ~ F with identical marginals Fy, assuming conditions (6.4)-(6.6) is suffi-
cient for (6.1)-(6.3) to hold with V = F1.

Using v as defined in (6.3), we define the signed measure

tP % € [0.2)°] - v((0.2])

we ([0, x]€) = A00) , (6.7)
which has a density given by
df’ x)— Nz
([0, z]°) = PO jgb((bt(t)) A@) e [0, 00)" (6.8)

Theorem 6.2 (Proposition 5, Resnick (2002)). If X € [0,00)? with distribution function F' and
identical marginals Fy satisfies Assumption 1 then

uE S5 x*E,  on E,
where fort > 0, uj, w: X, x~ are positive Radon measures with p, = ,uj —py and x =xT —x".

If X € F with F € MRV _,(b) but possesses asymptotic independence then the limit measure v/(-)
as obtained in (1.4) does not have a density with respect to Lebesgue measure. Hence Assumption
1 does not hold. In this case we require a different set of assumptions which are given below.

Assumption 2. We assume the following on F'.

1. Suppose (1.5) holds with v([0, x]¢) = /{Z?zl x; *, where k is some constant.
2. Moreover the one dimensional marginals are identical and satisfy the second order condition
as in Definition 1.2 such that we also have

+
. [ [% e } — )
My = A(b(t))

5T (6.9)

—azP—1

on (0, 00] where x1(z,00] = cx 5

Theorem 6.3 (Theorem 2, Resnick (2002)). If X € [0,00) with distribution function F and
Assumption 2 holds, then with p; as defined in (6.7) and H as in (1.5), there exist non-negative
Radon measures 17, pis, X, X~ such that

where uy = 7 — p and H(z) = x~ ([0, 2]) — x<(|0, z]¢). For our purposes we take for any set A

in [0,00)%, x(A4) := x"(4) — x~(4)

>
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