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Abstract

Recently, new classes of positive and measurable functions,M(ρ) andM(±∞),
have been defined in terms of their asymptotic behaviour at infinity, when
normalized by a logarithm (Cadena et al., 2015, 2016, 2017). Looking for
other suitable normalizing functions than logarithm seems quite natural. It
is what is developed in this paper, studying new classes of functions of the type
lim
x→∞

logU(x)/H(x) = ρ < ∞ for a large class of normalizing functions H. It

provides subclasses of M(0) and M(±∞).

1 Introduction

Recently Cadena et al. (see [3, 4, 4, 5, 6, 7, 8]) introduced and studied the
class of positive and measurable functions with support R+, bounded on finite
intervals, such that

lim
x→∞

logU(x)

log x
= ρ (1)

where ρ is a finite real number, called the order of the function U given the use of
such functions in complex analysis and entire functions. Notation: U ∈ M(ρ).
Relations of the form (1) extend the class of regularly varying functions. Recall
that a positive and measurable function U is regularly varying at infinity and
with real index ρ, denoted by U ∈ RVρ, if it satisfies

lim
x→∞

U(tx)

U(x)
= tρ, ∀t > 0. (2)

It has already been proved in [8] that U ∈ RVρ ⇒ U ∈ M(ρ) but that the
converse is false. We also considered there O− type of relations and, among
others, studied functions for which lim supx→∞ logU(x)/ log x <∞.

It is clear that (1) and (2) also make sense when ρ =∞ or ρ = −∞. In general, it
is not simple to characterize the corresponding classes of functionsM(±∞), as
seen in [8]. It is also quite natural to look for other suitable normalizing function
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in (1), than log x. It turns out that there are different types of interesting
relations. The first extension leads to a subclass ofM(0), while the second one
produces a family of subclasses of M(±∞). More precisely, in this paper we
study functions U characterized by the relation

lim
x→∞

logU(x)

H(x)
= ρ <∞ (3)

for a large class of functions H.

This type of behavior can be encountered in various examples, hence our mo-
tivation for this general study. For instance, Bingham et al. considered (3)
for H ∈ RVα (see (7.3.2) in [1]). Such property (3) appears also in connection
with entire (complex) functions of the form f(z) =

∑∞
n=0 anz

n (see [8]). An-
other example is the case of classical proximate order functions ρ(.) defined by
ρ(x) = log g(x)/ log x, where g is a regularly varying function. The class of func-
tions U satisfying (3) lead then to generalized proximate order functions of the
form ρ(x) = log g(x)/H(x), where H may be different from the logarithmic func-
tion. Another case, considered by several authors, concerns semi-exponential
tail distributions of the form F (x) = P[X > x] = A(x) exp{−B(x)xα} where
A,B ∈ RV0 and 0 < α ≤ 1. Clearly we have − logF (x) = − logA(x) +
B(x)xα ∼

x→∞
B(x)xα and (3) holds. Gantert (see [9]) used those functions to

obtain asymptotic expressions for log P[Sn/n∈A]
nαB(n) , as n → ∞, where Sn denotes

the nth partial sum. Let us mention a last recent example. In [11], Mimica

considers the Laplace-Stieltjes transform f(z) =

∫
[0,∞)

e−zxdF (x) where F (.) is a

measure on [0,∞). One of his main results provides conditions on f(.) to make
sure that

lim
x→∞

logF (x,∞)

H(x)
= α,

where α is a constant and H is the identity function H(x) = x.

2 The classes M0(L, ρ) and M±
0 (L, ρ)

2.1 Definition

In our effort to generalize (1), we introduce the following classes of functions.
Throughout the paper, L(.) denotes a positive and measurable function.

Definition 2.1. Consider the class of positive and measurable functions U with
support R+, bounded on finite intervals, such that

lim
x→∞

logU(x)∫ x
a
L(t)t−1dt

= ρ (4)
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where ρ and a are real numbers.
If
∫∞
a
L(t)t−1dt <∞, we consider functions U for which we have

lim
x→∞

logU(x)∫∞
x
L(t)t−1dt

= ρ, (5)

Remark 2.2.

1. If L(x) →
x→∞

c, with 0 < c <∞, then (4) implies that U ∈M(cρ).

2. If (4) holds with
∫∞
a
L(t)t−1dt < ∞, then logU(x) →

x→∞
c < ∞, a case

with not so much interest.

Let us consider various possible behaviors for the positive and measurable func-
tion L that we present as different sets of assumptions on L.

Assumption A. Assume that

L(x) →
x→∞

0 and

∫ ∞
a

L(t)t−1dt =∞ (a ∈ R).

Under Assumption A, the class of functions satisfying (4) will be denoted by
M0(L, ρ).

Assumption B. Assume that L(x)→∞ as x→∞.

Note that this assumption implies that

∫ ∞
a

L(t)t−1dt =∞.

Under Assumption B, the class of functions satisfying (4) will be denoted by
M+

0 (L, ρ).

Assumption C. Assume that

∫ ∞
a

L(t)t−1dt <∞, with a ∈ R.

Under Assumption C, the class of functions satisfying (5) will be denoted by
M−0 (L, ρ). This class of functions will be discussed only briefly in this paper.

2.2 Examples

Standard functions can be encountered in those classes, as we can see in the
following examples.

1. If U(x) = (log x)ρ, then U ∈M0(L, ρ) with L(x) = 1/ log x.

2. Let U(x) = eρ (log x)
β

.
If 0 < β < 1, then U ∈M(0) ∩M0(L, ρ) with L(x) = β(log x)β−1.
If β < 0, then U ∈M(0) ∩M−0 (L, ρ) with L(x) = −β(log x)β−1.
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3. If U(x) = eρ x
−α

, α > 1, then U ∈M(0) ∩M−0 (L, ρ) with L(x) = αx−α.

4. If U(x) = eρ x
α

, α > 0, then U ∈M+
0 (L, ρ) with L(x) = αxα.

5. Assume that a function U has a derivative U ′ such that
xU ′(x)

L(x)U(x)
→
x→∞

α,

with α ∈ R. For each ε > 0, we can find xε such that, for x ≥ xε,

(α− ε)L(x)

x
≤ U ′(x)

U(x)
≤ (α+ ε)

L(x)

x
.

Under Assumption A, U ∈M0(L,α); under Assumption B, U ∈M+
0 (L,α);

under Assumption C, U ∈M−0 (L,α).

6. Suppose that a ∈ RV0 and that U ∈ RV0 is a positive and measurable
function. We say that U belongs to the class Π(a) if U satisfies, ∀t > 0,

lim
x→∞

U(tx)− U(x)

a(x)
= log t. (6)

The class Π(a) was introduced and studied among others by de Haan (see
[10]). If (6) holds, we have (see [1], Chapter 3)

logU(tx)− logU(x) = log
U(tx)

U(x)
∼

x→∞

U(tx)− U(x)

U(x)
∼

x→∞

a(x) log t

U(x)
,

so that logU ∈ Π(L) with L(x) := a(x)/U(x) ∈ RV0. From the repre-
sentation theorem for the class Π (see Theorem 3.7.3(ii) in [1]), it follows
that logU can be written as

logU(x) = C +A(x) +

∫ x

a

A(t)t−1dt, x ≥ a, (7)

where A ∈ RV0 and A(x) ∼
x→∞

L(x). Now consider two cases.

(i) If

∫ x

a

A(t)t−1dt →
x→∞

∞, then Karamata’s theorem shows that

A(x) = o(1)

∫ x

a

A(t)t−1dt and (7) implies that U ∈M0(L, 1).

(ii) If
∫∞
a
A(t)t−1dt <∞, then (7) implies that

logU(x) →
x→∞

C +

∫ ∞
a

A(t)t−1dt =: D; so, for x ≥ a, we have

D − logU(x) ∼
x→∞

∫ ∞
x

A(t)t−1dt. We can then deduce, since

A(x) ∼
x→∞

L(x), that V := eD/U belongs to the class M−0 (L, 1).
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2.3 The class M0(L, ρ)

2.3.1 First properties

Proposition 2.3. Under Assumption A, if U ∈M0(L, ρ) then U ∈M(0).

Proof. We have, using L’Hopital’s rule,

lim
x→∞

logU(x)

log x
= lim
x→∞

logU(x)∫ x
a
L(t)t−1dt

×
∫ x
a
L(t)t−1dt

log x
= ρ× lim

x→∞

∫ x
a
L(t)t−1dt

log x
= 0.

The following result shows that the class M0(L, ρ) does not contain regularly
varying functions with index different from 0.

Proposition 2.4. Suppose that Assumption A holds and that U ∈ RVα with
α 6= 0. Then U /∈M0(L, ρ) for any ρ.

Proof. The representation theorem for regularly varying functions (see [1], The-

orem 1.3.1) states that U can be written as U(x) = c(x) exp

{∫ x

a

β(t)t−1dt

}
,

where c(x) →
x→∞

c 6= 0 and β(x) →
x→∞

α. Taking logarithms in this expression

provides, under Assumption A,

lim
x→∞

logU(x)∫ x
a
L(t)t−1dt

= lim
x→∞

∫ x
a
β(t)t−1dt∫ x

a
L(t)t−1dt

= lim
x→∞

β(x)

L(x)
.

This limit is not finite since α 6= 0 and L(x) →
x→∞

0. Hence the result.

In our next result, we collect some algebraic results.

Lemma 2.5. Suppose U ∈M0(L1, α), with L1 satisfying Assumption A.

(i) If V ∈M0(L1, β), then UV ∈M0(L1, α+ β) and U/V ∈M0(L1, α− β).

(ii) If V ∈M0(L2, β) and L2(x)/L1(x) →
x→∞

0, then UV ∈M0(L1, α).

(iii) If xV ′(x)/V (x) →
x→∞

β > 0, then U ◦ V ∈M0(L ◦ V, αβ).

Proof. Properties (i) and (ii) follow directly from the definition (4).
Let us check (iii). The condition xV ′(x)/V (x) → β > 0 ensures that, for large
values of x, V ′(x) > 0, i.e. V (x) is increasing, implying V (x) →

x→∞
∞. Hence,

from (4), it follows that
logU(V (x))∫ V (x)

a
L(t)t−1dt

→
x→∞

α.
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But the change of variables t = V (z) gives

∫ V (x)

a

L(t)t−1dt =

∫ x

b

L(V (z))
zV ′(z)

V (z)
z−1dz.

Then, using l’Hopital’s rule, we obtain that

∫ V (x)

a
L(t)t−1dt∫ x

b
L(V (z))z−1dz

→
x→∞

β.

Combining the two limits provides the result.

2.3.2 Characterization theorem

We can obtain a characterization theorem for functions belonging toM0(L, ρ).
We denote in what follows, for a ∈ R and x > a,

V (x) := exp

{∫ x

a

L(t)t−1dt

}
. (8)

Theorem 2.6. Under Assumption A, we have:

U ∈M0(L, ρ) ⇐⇒ ∀ε > 0,
U(x)

V ρ+ε(x)
→
x→∞

0 and
U(x)

V ρ−ε(x)
→
x→∞

∞.

It is straightforward to deduce the following.

Corollary 2.7. Under the conditions of Theorem 2.6, if U ∈ M0(L, ρ), then
for each ε > 0, there exists xε > 0 such that, for all x ≥ xε,

V ρ−ε(x) ≤ U(x) ≤ V ρ+ε(x). (9)

Proof of Theorem 2.6. The proof of the theorem is based on the following
lemma, inspired by Theorem 1.1 in [5] or [8].

Lemma 2.8. Let U and g denote measurable and positive functions with support
R+ and assume that g(x) →

x→∞
∞. Let ρ ∈ R. The following statements are

equivalent:

(i) logU(x)/g(x) →
x→∞

ρ;

(ii) ∀ε > 0, U(x) e−(ρ+ε)g(x) →
x→∞

0 and U(x) e−(ρ−ε)g(x) →
x→∞

∞.

Proof of Lemma 2.8. First suppose that (i) holds and let ε > 0. For each
δ ∈ (0, ε), there exists xδ such that for all x ≥ xδ,

(ρ− δ)g(x) ≤ logU(x) ≤ (ρ+ δ)g(x).

It follows that
U(x)

exp{(ρ+ ε)g(x)}
≤ exp{(δ − ε)g(x)} →

x→∞
0 and, similarly,

U(x)

exp{(ρ− ε)g(x)}
≥ exp{(ε− δ)g(x)} →

x→∞
∞, hence the result (ii).
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Now assume that (ii) holds. For each δ > 0, there exists xδ such that for all
x ≥ xδ, U(x) e−(ρ+ε)g(x) ≤ δ. It follows that logU(x) ≤ log δ + (ρ+ ε)g(x) and
then also that lim sup

x→∞
logU(x)/g(x) ≤ ρ + ε. In a similar way, we obtain that

lim inf
x→∞

logU(x)/g(x) ≥ ρ− ε. Now (i) follows. 2

Note that Assumption A implies that V ∈ RV0, lim
x→∞

V (x) = ∞ and that

xV ′(x)/V (x) = L(x) →
x→∞

0. Applying Lemma 2.8 with g := V concludes the

proof of the theorem. 2

2.3.3 Representation theorem

We can also provide a representation theorem for the classM0(L, ρ), as follows.

Theorem 2.9. Suppose Assumption A holds. Then U ∈ M0(L, ρ) if and only
if U is of the form

logU(x) = α(x) +

∫ x

a

β(t)L(t)t−1dt (10)

where α(x) = o(1)

∫ x

a

L(t)t−1dt and β(x)→ ρ, as x→∞.

Proof. From definition (4), it follows that

logU(x) = (ρ+ ε(x))

∫ x

a

L(t)t−1dt , with ε(x) →
x→∞

0.

Therefore we can write

logU(x) = α(x) +

∫ x

a

β(t)L(t)t−1dt

where β(x) = ρ + ε(x) and α(x) = ε(x)

∫ x

a

L(t)t−1dt −
∫ x

a

ε(t)L(t)t−1dt.

Clearly α(x) = o(1)

∫ x

a

L(t)t−1dt and β(x)→ ρ, as x→∞, hence (10).

The converse result is obvious.

2.3.4 Integrals

Proposition 2.10. (Karamata’s theorem). Let U ∈M0(L, ρ). Under Assump-
tion A, we have:

(i) If α > −1, then x−1−α
∫ x

a

tαU(t) dt ∈M0(L, ρ).

(ii) If α < −1, then x−1−α
∫ ∞
x

tαU(t) dt ∈M0(L, ρ).
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Remark 2.11. Proving the converse result is an open problem. Moreover, it is
not clear what happens when α = −1.

Proof.
(i) First consider the case where α > −1. We choose ε > 0 and use (9) .
Multiplying by xα and taking integrals, we find that∫ xε

a

tαU(t)dt+

∫ x

xε

tαV ρ−ε(t)dt ≤
∫ x

a

tαU(t)dt ≤
∫ xε

a

tαU(t)dt+

∫ x

xε

tαV ρ+ε(t)dt.

Since V ∈ RV0, we find that V ρ±ε ∈ RV0, so tαV ρ±ε(t) ∈ RVα. Applying
Karamata’s theorem (see [1], Proposition 1.5.8) gives that, under Assumption
A, ∫ x

xε

tαV ρ±ε(t)dt ∼
x→∞

1

1 + α
x1+αV ρ±ε(x) →

x→∞
∞.

It follows that, there exists x0 > xε such that, for all x ≥ x0,

1− ε
1 + α

V ρ−ε(x) ≤ 1

x1+α

∫ x

a

tαU(t) dt ≤ 1 + ε

1 + α
V ρ+ε(x).

Using log V (x) →
x→∞

∞ and taking ε→ 0, we conclude that

1

x1+α

∫ x

a

tαU(t) dt ∈M0(L, ρ).

(ii) In the case where α < −1, the proof follows, using similar steps as for (i)

with now (via Karamata)

∫ ∞
x

tαV ρ±ε(t)dt ∼
−1

1 + α
x1+αV ρ±ε(x).

2.3.5 Laplace transforms

Recall that the Laplace transform of U is given by Û(s) = s

∫ ∞
0

e−sxU(x)dx.

Assume now the conditions given in [8], Lemma 1.2, namely that U is a non-
decreasing right continuous function with support R+and U(0+) = 0, that

Û(s) < ∞,∀s > 0, and that x−ηU(x) is a concave function for some real num-
ber η > 0. Then we have the following Karamata Tauberian type of theorem.

Theorem 2.12. Under Assumption A and the conditions of Lemma 1.2 in [8]
(recalled above), assuming ρ > 0, we have:

U ∈M0(L, ρ) if and only if Û(1/x) ∈M0(L, ρ).

Proof. First suppose that U ∈ M0(L, ρ). Using (9) with V defined in 8, and
Lemma 1.2 in [8], we can say that there exist positive constants a, b, c, such
that, ∀x > xε,

a V ρ−ε(x) ≤ Û(1/x) ≤ b V ρ+ε(cx).
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Since V ∈ RV0, it follows that Û(1/x) ∈ M0(L, ρ). The converse implication
can be proved in a similar way, using the same lemma.

In fact, the implication U ∈ M0(L, ρ) =⇒ Û(1/x) ∈ M0(L, ρ) can be proved
without the concavity condition:

Proposition 2.13. Let U ∈M0(L, ρ). Assume that U(.) and V (.) are bounded

on bounded intervals and that Û(s) <∞, ∀s > 0. Then, under Assumption A,

Û(1/x) ∈M0(L, ρ).

Proof. Using (9), we have

s

∫ xε

0

e−sxU(x)dx+s

∫ ∞
xε

e−sxV ρ−ε(x)dx ≤ Û(s) ≤ s
∫ xε

0

e−sxU(x)dx+s

∫ ∞
xε

e−sxV ρ+ε(x)dx.

Since V ∈ RV0, we have s
∫∞
0
e−sxV ρ±ε(x)dx ∼

s→0
V ρ±ε(1/s) (see [1], Theorem

1.7.1). Also, since V ρ±ε and U are bounded on bounded intervals, we have

s

∫ xε

0

e−sxV ρ±ε(x)dx = O(1) and s

∫ xε

0

e−sxU(x)dx = O(1),

hence (1− ε)V ρ−ε(s) +O(1) ≤ Û(1/s) ≤ (1 + ε)V ρ+ε(s) +O(1).

Since, under Assumption A, V (x)→∞, we find that Û(1/x) ∈M0(L, ρ).

Remark. We could also consider O−versions of this class of functions.

2.4 The class M−
0 (L, ρ)

Recall that for the class M−0 (L, ρ), we assume that L satisfies Assumption C.
It implies that L(x) →

x→∞
0. Moreover if U ∈ M−0 (L, ρ), then logU(x) →

x→∞
0,

hence U(x) →
x→∞

1. The following relation follows.

Proposition 2.14. Under Assumption C,

(5) holds ⇐⇒ lim
x→∞

U(x)− 1∫∞
x
L(t)t−1dt

= ρ.

Remark. The proposition implies that M−0 (L, ρ) ⊂ RV0.

In the next result we obtain a representation theorem.

Theorem 2.15. Under Assumption C, we have

U ∈M−0 (L, ρ) ⇔ logU(x) = α(x) +

∫ ∞
x

β(t)L(t)t−1dt,

where, as x→∞, β(x)→ ρ and α(x) = o(1)

∫ ∞
x

L(t)t−1dt.
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Proof. First assume U ∈M−0 (L, ρ). Define the function ε, with ε(x) →
x→∞

0, as

ε(x) =
logU(x)∫∞

x
L(t)t−1dt

− ρ.

We have logU(x) = (ε(x)+ρ)

∫ ∞
x

L(t)t−1dt = α(x)+

∫ ∞
x

β(t)L(t)t−1dt, where

β(x) = ε(x) + ρ and α(x) = ε(x)

∫ ∞
x

L(t)t−1dt−
∫ ∞
x

ε(t)L(t)t−1dt. The result

follows. The converse result is straighforward.

2.5 The class M+
0 (L, ρ)

Here we consider U ∈ M+
0 (L, ρ), and throughout this section we assume that

L satisfies Assumption B.

2.5.1 Some properties

Proposition 2.16.

(i) Suppose that U ∈M+
0 (L, ρ). If ρ > 0, then U ∈M(∞).

If ρ < 0, then U ∈M(−∞).

(ii) Suppose that U ∈M(ρ). Then U ∈M+
0 (L, 0).

Proof. (i) We have

lim
x→∞

logU(x)

log x
= lim
x→∞

logU(x)∫ x
a
L(t)t−1dt

×
∫ x
a
L(t)t−1dt

log x
= ρ× lim

x→∞

∫ x
a
L(t)t−1dt

log x
.

The result follows since lim
x→∞

∫ x

a

L(t)t−1dt/ log x =∞ by l’Hopital’s rule.

(ii) Using the representation theorem for M(ρ) (see [8], Theorem 1.2), we have

U(x) = c(x) exp

∫ x

a

β(t)t−1dt, with log c(x)/ log x →
x→∞

0 and β(x) →
x→∞

ρ.

Taking logarithms, we obtain, using l’Hopital’s rule and Assumption B,

lim
x→∞

logU(x)∫ x
a
L(t)t−1dt

= lim
x→∞

log c(x)

log x

log x∫ x
a
L(t)t−1dt

+ lim
x→∞

∫ x
a
β(t)t−1dt∫ x

a
L(t)t−1dt

= 0.

In our next result, we collect some algebraic results.
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Lemma 2.17. Suppose that U ∈M+
0 (L1, α).

(i) If V ∈M+
0 (L1, β), then UV ∈M+

0 (L1, α+ β) and U/V ∈M+
0 (L1, α− β);

(ii) If V ∈M+
0 (L2, β) and L2(x)/L1(x) →

x→∞
0, then UV ∈M+

0 (L1, α);

(iii) If xV ′(x)/V (x) →
x→∞

β > 0, then U ◦ V ∈M+
0 (K,αβ), where K = L ◦ V .

Proof. (i) and (ii) follow from the definition, whereas (iii) follows as in Lemma 2.5.

2.5.2 Characterization theorem

Following the proof and the notation of (8), Lemma 2.8 and Theorem 2.6, we
have the following result.

Theorem 2.18. We have the following equivalence:

U ∈M+
0 (L, ρ) ⇔ ∀ε > 0, U(x)/V ρ+ε(x) →

x→∞
0 and U(x)/V ρ−ε(x) →

x→∞
∞.

Remark 2.19. Let x > 0 and t > 1. We have

V (xt)

V (x)
= exp

{∫ t

1

L(xy)y−1dy

}
.

Since L(x) →
x→∞

∞, it follows that, for t > 1, V (xt)/V (x) →
x→∞

∞, whereas for

t < 1, we have V (xt)/V (x) →
x→∞

0. It shows that, under Assumption B, V is

rapidly varying. In Section 3, we will discuss other conditions on V .

2.5.3 Integrals

In this section, we consider integrals of the form
∫ x
0
U(t)dt or

∫∞
x
U(t)dt.

Proposition 2.20. Introduce the function W defined by W (x) = x/L(x). As-

sume that U is differentiable and satisfies U(x) ∼
x→∞

1

ρ
W (x)U ′(x), ρ > 0. Then

we have:

(i) If W ′(x) > 0 and W ′(x) →
x→∞

α ≥ 0, then U ∈M+
0 (L, ρ),∫ x

a

U(t)dt ∼
x→∞

1

ρ+ α
W (x)U(x) and

∫ x

a

U(t)dt ∈M+
0 (L, ρ+ α).

(ii) If W ′(x) →
x→∞

∞, then

∫ x

a

U(t)dt = o(1)W (x)U(x) and∫ x

0

U(t)dt ∈M+
0 (L, 0).

11



Proof. (i) Clearly U(x) ∼
x→∞

1
ρ W (x)U ′(x) ⇔ U ′(x)

U(x) ∼
x→∞

ρ x−1L(x); it implies

(as already seen in Section 2.2, Example 5) that U ∈ M+
0 (L, ρ), U(x) →

x→∞
∞

and there exists a such that

∫ x

a

U(t)dt ∼
x→∞

1

ρ

∫ x

a

W (t)U ′(t)dt.

Now consider R(x) =
W (x)U(x)∫ x

a
W (t)U ′(t)dt

. Applying l’Hopital’s rule, we obtain that

lim
x→∞

R(x) = lim
x→∞

W (x)U ′(x) +W ′(x)U(x)

W (x)U ′(x)
= 1 + ρ−1 lim

x→∞
W ′(x) = 1 + α/ρ.

It follows that

∫ x

a

U(t)dt ∼
x→∞

W (x)U(x)

ρ(1 + α/ρ)
, hence

∫ x

a

U(t)dt ∈ M+
0 (L, ρ + α),

when applying Example 5 in Section 2.2 for the function

∫ x

a

U(t)dt.

(ii) If W ′(x) →
x→∞

∞, then R(x) →
x→∞
∞ and

∫ x
a
U(t)dt

W (x)U(x)
∼

x→∞

1

ρR(x)
→
x→∞

0.

Remark 2.21.

1. A similar result holds for the case where ρ < 0 and the integral

∫ ∞
x

U(t)dt.

2. Assume
xW ′(x)

W (x)
→
x→∞

β with 0 < β < 1. Then W ∈ RVβ and

W ′(x) →
x→∞

0.

A related result follows directly from Theorem 4.12.10 in [1].

Proposition 2.22. Let f(x) =

∫ x

0

L(t)t−1dt and U ∈M+
0 (L, ρ).

(i) If ρ > 0 and f ∈ RVα, α > 0, then log

∫ x

0

U(t)dt ∼
x→∞

logU(x) and∫ x

0

U(t)dt ∈M+
0 (L, ρ).

(ii) If ρ < 0 and f ∈ RVα, α > 0, then − log

∫ ∞
x

U(t)dt ∼
x→∞

− logU(x) and∫ ∞
x

U(t)dt ∈M+
0 (L, ρ).

It seems to be quite difficult to consider integrals of functions in the class
M+

0 (L, ρ) without extra conditions.

3 The class M1(L, ρ)

In this section, we are interested in studying a subclass of the large classM(∞)

of positive and measurable functions for which lim
x→∞

logU(x)

log x
=∞.

12



We consider positive and measurable functions U so that

lim
x→∞

logU(x)∫ x
a
b−1(t)dt

= ρ ∈ R, (11)

where b(.) is a suitable function such that b(x)/x →
x→∞

0, to ensure that U

satisfying (11) belongs to the class M(∞).

Compared with (4), we have b−1(x) = x−1L(x) so that L(x) →
x→∞

∞.

Example 3.1. Let us give examples of functions of M(∞) satisfying (11).

1. Let U defined by U(x) = αe−αx. Then
logU(x)

x
→
x→∞

−α, and (11) holds

with b−1(x) = 1.

2. Let U be the standard normal density (U(x) = c e−x
2/2). Then

logU(x)

x2
→
x→∞

−1

2
and b−1(x) = x gives (11).

3. Let U(x) = e[x] log x, then
logU(x)

x log x
→
x→∞

1 and (11) holds with b−1(x) =

log x.

In the next section we discuss the suitable functions b(.) that we will use.

3.1 Definitions and Examples

Let us recall a few definitions (see [1], Sections 2.11 & 3.10, [2], or [12]).

Definition 3.1. The positive and measurable function b is called ’self-neglecting’,
denoted by b ∈ SN , if

b(x)/x →
x→∞

0 and lim
x→∞

b(x+ y b(x))

b(x)
= 1 locally uniformly in y.

Note that

b ∈ SN ⇒ lim
x→∞

∫ x

a

b−1(t)dt =∞ and lim
x→∞

b′(x) = 0 ⇒ b ∈ SN.

Definition 3.2.

• The positive and measurable function f belongs to the class Γ(b) if

b ∈ SN and f satisfies lim
x→∞

f(x+ yb(x))

f(x)
= ey, for all y.

• The positive and measurable function f belongs to the class Γ−(b) if
1/f ∈ Γ(b).

13



We can derive straightforward properties (see [1], Section 3.10, and [10]).

Property 3.1.

1. If f ∈ Γ(b), then

∫ x

a

f(t)dt ∈ Γ(b) and

∫ x

a

f(t)dt ∼
x→∞

b(x)f(x).

2. If f ∈ Γ−(b), then

∫ ∞
x

f(t)dt ∈ Γ−(b) and

∫ ∞
x

f(t)dt ∼
x→∞

b(x)f(x).

3. If f ∈ Γ(b) then (11) holds locally uniformly in y (the proof can be adapted
from [12] and [2]).

From Bingham et al. (see[1], Theorem 3.10.8) or Omey (see [12]), we have the
following representation theorem for functions in the class Γ(b).

Theorem 3.3. f ∈ Γ(b) for some function b ∈ SN if and only if f can be

written as f(x) = exp

{
α(x) +

∫ x

a

β(t)

c(t)
dt

}
, with α(x) →

x→∞
α ∈ R,

β(x) →
x→∞

1 and where c(.) is a positive, absolutely continuous function such

that c′(x) →
x→∞

0, and c(x) ∼
x→∞

b(x).

Example 3.2.

1. The exponential density f(x) = αe−αx belongs to the class Γ−(1/α).

2. The standard normal density f(x) = 1√
2π
e−x

2/2 belongs to the class

Γ−(1/x).

3. U(x) = e[x] log x ∈M(−∞) but U /∈ Γ (see Example 1.8 in [5]).

Definition 3.4. Let b ∈ SN . The class M1(b, ρ) is the set of positive and
measurable functions U such that (11) holds.

Note that if b ∈ SN and U satisfies b(x)U ′(x)/U(x) →
x→∞

ρ, then U ∈M1(b, ρ).

3.2 Some properties

3.2.1 General

Lemma 3.5.
For ρ > 0, M1(b, ρ) ⊂M(∞), and for ρ < 0, M1(b, ρ) ⊂M(−∞).

Proof. We have

lim
x→∞

logU(x)

log x
= lim
x→∞

logU(x)∫ x
a
b−1(t)dt

×
∫ x
a
b−1(t)dt

log x
= ρ× lim

x→∞

∫ x
a
b−1(t)dt

log x
= ρ× lim

x→∞

x

b(x)
.

Since x/b(x) →
x→∞

∞, the result follows.
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In the next result we collect some algebraic results.

Lemma 3.6. Assume that U ∈M1(b1, ρ1).

(i) If V ∈ M1(b2, ρ2) and b1(x)/b2(x) →
x→∞

c, then UV ∈ M1(b1, ρ1 + cρ2)

and U/V ∈M1(b1, ρ1 − cρ2).

(ii) If V ∈ RVα, then UV ∈M1(b1, ρ1).

(iii) If ρ1 6= 0 and V ∈ M1(b2, ρ2) with b2 bounded and b1(x)/b2(x) →
x→∞

0,

then V (x)/U(x) →
x→∞

0 and U + V ∈M1(b1, ρ1).

Proof.

(i) The result follows directly from the definitions.

(ii) We have

logU(x)V (x) = log V (x)+logU(x) = (α+o(1)) log x+(ρ1+o(1))

∫ x

a

b−11 (t)dt

and lim
x→∞

log x∫ x
a
b−11 (t)dt

= lim
x→∞

b1(x)

x
= 0, hence the result.

(iii) We deduce from (i) that U/V ∈M1(b1, ρ1). It follows that

log
U(x)

V (x)
= (ρ1 + o(1))

∫ x

a

b−11 (t)dt,

which, combined with
∫ x
a
b−11 (t)dt→∞ (via the assumptions), gives that

V (x)/U(x) →
x→∞

0.

Now we have, using (i),

log(U(x) + V (x)) = logU(x) + log (1 + V (x)/U(x)) ∼
x→∞

logU(x).

Since

∫ x

a

b−11 (t)dt →
x→∞

∞, we obtain that
log(U(x) + V (x))∫ x

a
b−11 (t)dt

→
x→∞

ρ1.

3.2.2 Integrals

Here we discuss integrals of functions in the class M1(b, ρ). Note that we can
alter the auxiliary function b so that it satisfies b′(x) →

x→∞
0.

Lemma 3.7. Assume that U ∈M1(b, ρ) with b such that b′(x) →
x→∞

0.

If ρ > 0, then

∫ x

a

U(t)dt ∈M1(b, ρ), and if ρ < 0, then

∫ ∞
x

U(t)dt ∈M1(b, ρ).
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Proof. Let assume that ρ > 0. If U ∈ M1(b, ρ), then for each 0 < ε < ρ, there
exists xε such that ∀x ≥ xε,

exp

{
(ρ− ε)

∫ x

a

b−1(t) dt

}
≤ U(x) ≤ exp

{
(ρ+ ε)

∫ x

a

b−1(t) dt

}
, (12)

from which we deduce that, for x ≥ xε,∫ x

xε

L(t) dt ≤
∫ x

xε

U(t) dt ≤
∫ x

xε

R(t) dt

where L(t) = exp

{
(ρ− ε)

∫ x

a

b−1(t) dt

}
∈M(b, ρ− ε) and

R(t) = exp

{
(ρ+ ε)

∫ x

a

b−1(t) dt

}
∈M(b, ρ+ ε). Clearly we have

R(t+ y b(t))

R(t)
= exp

{
(ρ+ ε)

∫ y

0

b(t)

b(t+ θ b(t))
dθ

}
→
x→∞

e(ρ+ε)y,

hence R ∈ Γ(b/(ρ+ ε)), and

∫ x

xε

R(t)dt ∼
x→∞

b(x)R(x)

ρ+ ε
.

Now, using the definition of R, we have

log
b(x)R(x)

ρ+ ε
= log b(x)− log(ρ+ ε) + (ρ+ ε)

∫ x

a

b−1(t)dt.

Using l’Hopital’s rule provides lim
x→∞

log b(x)∫ x
a
b−1(t)dt

= lim
x→∞

b′(x) = 0.

It follows that
∫ x
xε
R(t)dt ∈M1(b, ρ+ ε).

Similarly, we obtain

∫ x

xε

L(t)dt ∼
x→∞

b(x)L(x)

ρ− ε
and

∫ x

xε

L(t)dt ∈M1(b, ρ− ε).

We can conclude, via (12), that
∫ x
xε
U(t)dt ∈M1(b, ρ).

The proof when ρ < 0 follows the same steps.

Remark 3.8.

(i) In view of Lemma 3.6, (ii), the result given in Lemma 3.7 holds when
replacing U(x) by xαU(x).

(ii) The proof of Lemma 3.7,(i), shows that for ε > 0, there exists xε such
that, for all x > xε,

Hρ−ε(x) ≤ U(x) ≤ Hρ+ε(x)

where H(x) = exp

{∫ x

a

b−1(t)dt

}
∈ Γ(b) satisfies b(x)H ′(x)/H(x) = 1

(see Theorem 2.18).
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Example 3.3.

1. Consider the tail distribution F (x) = e−x−0.5 sin x.
We have logF (x)/x →

x→∞
−1 and F ∈ M1(1,−1). The density, given

by f(x) = F (x)(1 + 0.5 cosx)(> 0), belongs to M1(1,−1). We see that
b(x)f(x)/F (x) does not converge to a limit as x→∞.

Note that F
n
(anx) = exp{−nan(x + 0.5 sin(anx)/an)}. If nan →

n→∞
1,

then an →
n→∞

0 and F
n
(anx) →

n→∞
e−1.5x.

2. Consider U(x) = ex
β+cos x, with β > 1. Then U ′(x) = U(x)(βxβ−1+sinx)

and b(x)U ′(x)/U(x) →
x→∞

1.

Note that both U and U ′ ∈M1(b−1, 1), with b−1(x) = βxβ−1.

3.2.3 Inverse functions

Proposition 3.9. Let U ∈ M1(b, ρ) and suppose that U has a derivative U ′

satisfying b(x)U ′(x)/U(x) →
x→∞

ρ > 0. Then the inverse function of U, denoted

V = U inv, belongs to M0(L, 1/ρ) with L defined by L(x) = b(V (x))/V (x).

Proof. We have V ′(x) =
1

U ′(V (x))
, so that V ′(x) ∼

x→∞

b(V (x))

ρU(V (x))
=
b(V (x))

ρ x
.

It follows that, introducing b0 defined by b0(x) = xV (x)/b(V (x)),

b0(x)b(V (x))

xV (x)ρ
∼

x→∞

b0(x)V ′(x)

V (x)
→
x→∞

1/ρ

and we see that, for L(x) = b(V (x))/V (x),
log V (x)∫ x
a
L(t)t−1dt

→
x→∞

1/ρ.

Note that L(U(x)) = b(x)/x, L(x) →
x→∞

0 (since b ∈ SN), and∫ x

a

L(t)t−1dt =

∫ x

a

b(V (t))/(tV (t))dt. It follows that

∫ x

a

L(t)t−1dt =

∫ V (x)

V (a)

b(t)/(tU(t))U ′(t)dt ∼
x→∞

ρ

∫ V (x)

V (a)

1/t dt →
x→∞

∞.

Hence we obtain that V ∈M0(L, 1/ρ).

Note that we provided conditions to show that U ∈ M1(b, ρ) implies that its
inverse function V ∈M0(L, 1/ρ). It is not clear if these additional assumptions
can be omitted.
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4 Concluding remarks

The previous results easily extend to sequences. For a given sequence of positive
numbers (bn), we can consider the class of sequences (an) satisfying for instance
limn→∞ log an/

∑n
k=1 k

−1bk = α. If (an) is a regularly varying sequence, we
have that limn→∞ log an/ log n = α, a constant.

We may also study O−type of results. Under Assumption A, we may define ρL
and ρU as follows:

ρL = lim inf
x→∞

logU(x)∫ x
a
L(t)t−1dt

and ρU = lim sup
x→∞

logU(x)∫ x
a
L(t)t−1dt

, with ρL < ρU .

This leads to inequalities of the form (see Corollary 2.7), with V defined in (8),

V ρL−ε(x) ≤ U(x) ≤ V ρU+ε(x).

Finally note that many distribution functions F and densities f satisfy a relation
of the form

lim
x→∞

log(1− F (x))

log f(x)
= 1.

So it may be interesting to study functions U satisfying the following relation:

lim
x→∞

logU(x)

log |U ′(x)|
= 1.
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