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Abstract

This paper studies the properties of multi-step projections, and fore-

casts that are obtained using either iterated or direct methods. The
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forecasting by considering the horizon in relation to the observable sam-

ple size. We show the implication of our results for models of predictive

regressions used in the financial literature. We show here that direct

projection methods at intermediate and long horizons are robust to the

potential misspecification of the serial correlation of the regression er-
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regressions, a combination of test statistics with and without autocor-
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1 Introduction and overview

Two parallel literatures have developed or accelerated recently that aim to estimate relationships

over a so-called multi-step horizon. On the one hand, there has been a renewed interest in assessing

the relative merits of two forecasting methods: those of iterated and direct multi-step forecasts

(denoted IMS and DMS). The former technique constitutes the standard in econometrics and

consists in estimating a one-step ahead model relating, say, yt to yt−1 in a sample of T observations

and using it to forecast yT+1 using yT and extrapolating the relation to generate a forecast for yT+2

using the forecast for yT+1 that has previously been obtained. Direct multi-step forecasting by

contrast will aim to develop a distinct model for each forecast horizon h ≥ 1: relating, in-sample, yt

to yt−h so that a forecast for yT+h can be obtained ‘directly’ using yT . The relative performances

of these forecasts was first derived in general settings by Weiss (1991), but it has been been a

continuous interest, since, as in e.g., Clements and Hendry (1996), Ing (2003, 2004), Marcellino,

Stock, and Watson (2006), and Schorfheide (2005), most recently, Carriero, Clark, and Marcellino

(2015) Chevillon (2016), McElroy and McCracken (2017) and Hendry and Martinez (2017).

On the other hand, the seminal work by Fama and French (1988), Campbell and Shiller (1988)

and Stambaugh (1999) has spurred a whole literature within finance of authors who aim to assess

the predictive power a variable xt has on another, say zt over some horizon. The prototypical

“predictive” or “long horizon” regression will take the form of a regression of zt+h on xt, but∑h
i=1 zt+i or

∑h
i=1 xt+i also appear as regressand and regressor in the literature (see e.g. Lanne,

2002, Torous et al., 2004, Valkanov (2003), Boudoukh et al., 2008, Hjalmarsson, 2011, Phillips and

Lee, 2013, Phillips, 2015, and the references therein). The long horizon regression literature shares

with that on direct multi-step forecasting three key features: (i) the model which is estimated is

not a priori that which would most efficiently chose (i.e. the one-step ahead model) but one that

induces the errors in the regression to be serially correlated; the chosen multi-step technique works

for the estimated model because (ii) this model is potentially misspecified as the errors are serially

correlated (see Ferson et al., 2003, and Pástor and Stambaugh, 2009) and (iii) the variables that

are being used are non-stationary or nearly so (in addition to the papers above, see inter alia

Stambaugh, 1999, Lettau and Ludvigson, 2001).

In this paper, we propose a local-asymptotic model that builds on the work of Kemp (1999),

Valkanov (2003), Torous et al. (2004), Chevillon and Hendry (2005) and Hjalmarsson (2011). We

prove a new key property of direct multi-step estimators, namely their robustness to misspecifi-

cation of the serial correlation of the error process. We then show how this property also applies

in the case of long-horizon regressions and that it provides a new justification for why they have

proved so successful empirically. We show that the bias that was found by Hjalmarsson relies on

his assumption that the horizon h is small compared to the observed sample T , h = o (T ) , but

that it vanishes when considering h = O (T ) , as suggested by Cochrane (2006) and sheds light on

his results. Our analytic results lead us to recommending at long horizon the combination of a

standard test and that with Heteroskedasticity and Autocorrelation correction (HAC). We show

by simulations that the combination achieves better global power.
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This paper is organized as follows. Section 2 presents the forecasting and predictive regression

models that we consider and the way they are related. We then derive the distributions of iterated

and directed multi-step estimators and forecasts in Section 3. The same section applies these

results to predictive regressions. A Monte Carlo assessment follows in Section 4. In the paper,

row vectors are denoted as (x1 : x2) and column vectors as (x1, x2) . Throughout, we also use the

following notations: λ{h} ≡
∑h−1
i=0 λ

i for h ≥ 1, ‘⇒’ denotes weak convergence of the associated

probability measure, W (r) is a standard Brownian motion on C [0, 1], and bwc denotes the integer

part of w for any real scalar w.

2 The models and local-asymptotic assumptions

We introduce here the literatures on multistep forecasting and long-horizon regressions. These

literatures present similarities which have not always been stressed.

Throughout the paper, we are considering the simple autoregressive model for the process {yt}

yt = τ + ρyt−1 + εt (1)

for t ≥ 1, where y0 has a finite distribution and the error εt is assumed to satisfy the following

condition.

Condition P. A sequence {εt} satisfies Condition P if and only if

(i) E [εt] = 0 for all t ∈ Z;

(ii) suptE |εt|
β+η

<∞ for some β > 2 and η > 0;

(iii) {εt} is weakly stationary with covariance function series {ξε (i)}∞i=−∞ such that
∑∞
i=−∞ iξε (i) <

∞.
Condition P allows to derive general results for general distributions of the errors. Here we

restrict our attention to weakly stationary εt as it allows to derive more explicit results. Yet, our

results hold replacing (iii) above with the less restrictive assumption that εt is strongly mixing with

mixing coefficients αm such that
∑∞
m=1 α

1−2/β
m <∞ and that limT→∞ T−1Var

[∑T
j=1 εj

]
= ξε <∞

(as in Phillips, 1987). In the following we will be led to restricting the serial dependence of εt and

consider the cases where it is a white noise process or follows a moving average or order one, an

MA(1). Also, where use the notation ξu =
∑∞
i=−∞ ξu (i) for the long run variance of any process

ut satisfying the condition. In the specific case of εt in (1) we write σ2 = ξε.

In the time series forecasting literature, the standard multistep forecasting technique consists

in estimating the parameters (τ, ρ) of model (1) and then to use the estimators (τ̂ , ρ̂) to compute

forecasts recursively at all horizons h ≥ 1 :

ŷt+h|t = τ̂ + ρ̂ŷt+h−1|t = ρ̂{h}τ̂ + ρ̂hyt (2)

where we let ŷt|t = yt and ρ̂{h} =
∑h−1
i=0 ρ̂

i. This constitutes the plug-in or iterated multi-step

(IMS) technique.
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Direct multistep (DMS) has often been proposed as an alternative: it which consists in esti-

mating the parameters (τh, ρh) of the projection of yt+h on yt,

yt = τh + ρhyt−h + wh,t, for h ≥ 1, (3)

with (τh, ρh) =
(
ρ{h}τ, ρh

)
and wh,t =

∑h−1
i=0 ρ

iεt−i. The DMS forecasts are obtained from estima-

tors (τ̃h, ρ̃h) as

ỹt+h|t = τ̃h + ρ̃hyt. (4)

To achieve robustness to misspecification, the literature has often considered (τ̂ , ρ̂) and (τ̃h, ρ̃h) to

be the ordinary least squares (OLS) estimators and we follow this approach here. The rationale

for DMS lies in that when εt in (1) is serially correlated, IMS forecasts are biased and DMS can

prove more accurate in terms of mean-square forecast error (MSFE).

The predictive regression literature (since Fama and Schwert, 1977, and Rozeff, 1984, see

Stambaugh, 1999) has considered testing the null of not predictability in a bivariate setting: a

standard model (see e.g. Valkanov, 2003) lets, for t = 0, ..., T[
zt+1

yt+1

]
=

[
α

τ

]
+

[
0 β

0 ρ

][
zt

yt

]
+

[
εt+1

εt+1

]
(5)

where both εt and εt are assumed to satisfy Condition P.1 For instance, in Pástor and Stambaugh

(2009), zt denotes the return on an asset, yt an imperfect predictor thereof, and the null hypothesis

is H0 : β = 0. Model (5) is often expressed, for h ≥ 1, as

zt = αh + βhyt−h + ωh,t (6)

with (αh, βh) =
(
α+ βτρ{h−1}, βρh−1

)
, ωh,t+h = β

∑h−1
i=1 ρ

h−1−iεt−h+i + εt; or using Zht−h+1 =∑h
i=1 zt−h+i as a regressand (see Valkanov, 2003, and references therein). In Expression (6), the

hypothesis of interest is Hh0 : βh = 0. The empirical literature has shown that whereas Hh=1
0

often does not reject, this is not the case when considering large h, in which case Hh0 may reject

and yt−h appears helpful in predicting zt. The question of how large h should be is an empirical

one: Hjalmarsson (2011) studies the case where h is fixed, whereas Valkanov (2003), Torous et al.

(2004) and Hjalmarsson (2011) have considered letting the horizon grow with the sample size T

as respectively h = O (T ) and h = o (T ) . In their setting, Torous et al. and Hjalmarsson allowed

in addition for the error (εt+1, εt+1) to exhibit autocorrelation. This complicates the derivation of

the distributions of the estimators and test statistics but it yields insight regarding the role played

by h. Indeed, Hjalmarsson shows that the estimators of the regression coefficient of Zht−h+1 on

yt−h suffers from second-order bias generated by the correlation between εt and εt. This result

is similar to that of Banerjee et al. (1996) in the context of a comparison between iterated and

direct multistep forecasting. Here the main insight we gain about predictive regressions from multi-

step forecasting occurs under predictability (βh 6= 0), hence our results allow to devise tests with

increased global power.

1This precludes assumptions such as in Deng (2013) where εt exhibits a moving average local unit root.
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In the following, we assume that the parameters of (6) are estimated using OLS. This choice

assumes that the errors εt are martingale difference sequences (MDS) and is common in empirical

work, see e.g. Stambaugh (1999). In reality, this assumption may be wrong and εt may be auto-

correlated as shown by Pástor and Stambaugh (2009) where they follow an MA(1) . Although the

literature has also considered variance estimators which are heteroskedasticity and autocorrelation

consistent (HAC), we do not study them specifically here. Indeed, these do not correct for the

bias in the autoregression. Also, by taking into account the serial correlation in the estimation of

the variances of wh,t and ωh,t they should benefit multistep or long horizon estimators and only

strengthen our argument.

In this paper, we aim to capture three key issues that arise both the in predictive regression and

multistep forecasting frameworks: (i) the interaction between the horizon h, the available sample

size T, (ii) the persistence in the time series yt and zt and (iii) the serial dependence in εt and

εt. For this we consider the local-asymptotic framework that is now common in the econometric

literature.

First, we follow the now standard assumptions that ρ is close to unity: we follow authors such

as Phillips (1987) or Campbell and Yogo (2006) and model them as local to unity

ρT = exp (φ/T ) = 1 + φ/T +O
(
T−2

)
, (7)

Expression (7) implies that yt is near integrated and that τ acts as a near drift. This latter issue

has generally been avoided in the early literature by imposing α = τ = 0 which corresponds

to using demeaned variables, but not in the some seminal articles (e.g. Campbell and Yogo,

2006). Owing to the near non-stationary nature of the variables, demeaning may not provide more

accurate estimates. In particular if τ is indeed nonzero but very small so that a near linear trend

is mistaken for a non zero mean (see for instance Pástor and Stambaugh, 2009, where τ is low

when ρ is close to unity). Chevillon and Hendry (2005) have shown that small nonzero drifts can

have a significant influence on the multistep forecasts when dealing with non-stationary variables.

Also, the literature on returns forecasting has acknowledged the importance of slowly drifting

expected returns (see e.g. Lettau and Van Nieuwerburgh, 2007). For these reasons we allow for

the parameter τ in (1) to be nonzero but assume that it is small and model it via local-asymptotics

as a Pitman drift:

τT =
ψ√
T
. (8)

Such a local drift would be of low magnitude, justifying the local-asymptotic assumption. Local-

to-zero drifts have been used inter alia in Monte Carlo simulations of unit root tests in Vogelsang

(1998), Rossi (2005a) and Busetti and Harvey (2008); they have been studied analytically by

Haldrup and Hylleberg (1995) and Stock and Watson (1996). Parameterizing the drift as (8)

induces a (nonlinear since ρT < 1) deterministic trend of order O
(√

T
)
. In the paper, we denote

by yt the triangular array that is generated by the non-constant parameters (τT , ρT ) .

Second, we consider either hold the horizon h constant, or letting it grow as a constant fraction

of the sample size T as in the following definition.
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Definition 1 Let h ≥ 1 denote the horizon of interest.

We refer to the horizon begin long with respect to the sample size T if there exists a constant

c ∈ (0, 1) such that h/T → c as T →∞;

the horizon is short if h is constant irrespective of T ; and

the horizon is said intermediate in a sequential asymptotic setting where h/T → c as T →∞ and

then we let c→ 0.

Long run forecasting has been studied by Stock (1996), Phillips (1998), Kemp (1999) and in

long-run predictive regression by Valkanov (2003), Torous et al. (2004), Turner (2004) and Elliott

(2006). Although different, the sequential asymptotic intermediate horizon framework relates the

setting of Hjalmarsson (2011) where h/T → 0.

Finally, the problem of misspecification may arise even for h = 1 if εt or εt exhibits serial

correlation and cross correlation. We define their joint autocovariance function

E

[
εt

εt

][
εt−k

εt−k

]′
= Ξk =

[
ξε (k) ξε,ε (k)

ξε,ε (k) ξε (k)

]

with Ξ =
∑+∞
k=−∞ Ξk and denote ς2 =

∑+∞
k=−∞ ξε (k), %2 =

∑+∞
k=−∞ ξε,ε (k) , with as before σ2 =∑+∞

k=−∞ ξε (k) .

3 Estimators and Forecasts

This section provides our main results. First, we consider the asymptotic distribution of the

OLS estimators (τ̂ , ρ̂) and (τ̃h, ρ̃h) under various assumptions on the horizon. Then we derive the

implications of our results for forecasting.

3.1 Distributions of empirical moments

Under Condition P, T−1/2
∑bTrc
i=1 εi ⇒ σW (r), as T →∞, where W (r) denotes a Wiener process.

We define the Vasiček process2 K∗ψ,φ (r) = ψfφ (r) +
∫ r
0
eφ(r−s)dW (s),for r ∈ [0, 1], where the

functional3 f(·) : R → C [0, 1] satisfies fφ (·) : r →
(
eφr − 1

)
/φ for φ ∈ R\ {0} and f0 (r) = r. By

extension, for a given σ > 0, denote by Kψ,φ (r) the functional Kψ,φ (r) = σJψ/σ,φ (r) solution to

the linear stochastic differential equation.

dKψ,φ (r) = [ψ + φKψ,φ (r)] dr + σdW (r) (9)

with initial condition Kψ,φ (0) = 0. Kψ,φ (r) is a Gaussian process for fixed r with expectation

ψfφ (r) and variance σ2f2φ (r) . For ψ = 0, it reduces to an Ornstein-Uhlenbeck (OU) Jφ (r) =

K0,φ (r) .

2It is standard in the literature to parametrize instead the process imposing ψ = −λφ for some λ ≥ 0.
3We denote by D [0, 1] the space of real-valued functions on the interval [0, 1] which are right continuous and

have finite left limits (càdlàg). C [0, 1] is the subspace of D [0, 1] of continuous functions. We will straightforwardly

extend this definition below to allow for r > 1 in forecasting.
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First, holding h constant, the variance of the fixed horizon multi-step disturbance wh,t admits

the variance

σ2
wh

= lim
T→∞

T−1
T∑
t=h

w2
h,t = hσ2

ε + 2

h−1∑
i=1

(h− i) ξε (i)

and let its long-run variance σ2
h = limT→∞ T−1Var

[∑[Trc
i=h wh,i

]
= h2σ2. Then, simply, for r ∈

[0, 1], T−1/2
∑bTrc
i=h wh,i ⇒ σhW (r) = hσW (r), as T →∞.

When letting h be a fraction of the sample size T : h = O (T ) , wh,t becomes a non-stationary

series exhibiting a stochastic trend and the usual scaling factors for integrated processes no longer

hold. We define the operator δcφ which, for any diffusion process Z (r) defined on C [0, η], η ≥ c lets

δcφZ on C [0, η] be such that: δcφZ (r) = Z (r) − eφcZ (r − c) , for c ≤ r ≤ η and δcφZ (r) = Z (r) ,

for 0 ≤ r < c. A proposition follows that provides all the asymptotic convergence properties that

we require in the paper.

Proposition 1 Let yt be generated as (1) under Condition P with local asymptotic parameters (7)

and (8). Then, the following holds as T →∞,

under short horizon, h ∈ [1, T ) is constant,

(ah) T−1/2ybTrc ⇒ Kψ,φ, T−3/2
∑T
t=h yt ⇒

∫ 1

0
Kψ,φ, T−2

∑T
t=h y

2
t ⇒

∫ 1

0
K2
ψ,φ;

(bh) T−1
∑T
t=h yt−hwh,t ⇒ hσ

∫ 1

0
Kψ,φdW + 1

2

[
hσ2 − σ2

wh

]
;

(ch) T−1/2
∑bTrc
i=h wh,i ⇒ hσW (r) , T−1

∑T
t=h w

2
h,t → σ2

wh
.

under long horizon h/T → c ∈ (0, 1), as T →∞,
(ac) T

−1/2ybTrc ⇒ Kψ,φ (r) , T−3/2
∑T
t=h yt ⇒

∫ 1

c
Kψ,φ, T−2

∑T
t=h y

2
t ⇒

∫ 1

c
K2
ψ,φ;

(bc) T
−2∑ yt−hwh,t ⇒

∫ 1

c
Kψ,φ (r − c) δcφJφ (r) dr − 1

2cψ
2e−φc [fφ (c)]

2

(cc) T
−1/2wh,bTrc ⇒ δcφJφ (r) , T−3/2

∑T
t=h wh,t ⇒

∫ 1

c
δcφJφ (r) dr, T−2

∑T
t=h w

2
h,t ⇒

∫ 1

c

[
δcφJφ (r)

]2
dr.

To allow for a comparison between short and long horizons in Proposition 1, the following

corollary considers the intermediate horizon setting. The notation A
L
=
c→0

B means that as c→ 0+,

for all x ∈ R, Pr (A < x) /Pr (B < x)→ 1.

Corollary 2 (Intermediate Horizon) Under the assumption of 1, the asymptotic distributions

under long horizon settings satisfy as c→ 0 :

(ac)
∫ 1

c
Kψ,φ

L
=
c→0

∫ 1

0
Kψ,φ,

∫ 1

c
K2
ψ,φ

L
=
c→0

∫ 1

0
K2
ψ,φ;

(bc)
∫ 1

c
Kψ,φ (r − c) δcφJφ (r) dr − 1

2cψ
2λ−c [fφ (c)]

2 L
=
c→0

√
cσ
∫ 1

0
Kψ,φ (r) dW (r)

(cc) δ
c
φJφ (r + c)

L
=
c→0

σ [W (r + c)−W (r)] ,
∫ 1

c
δcφJφ (r + c) dr

L
=
c→0

√
cσW (1) , and∫ 1

c
δc2φJ

2
φ (r) dr

L
=
c→0

σ2c.

One of the key implications of the different behaviors under short and long horizons relates

to the sample covariance between the regressors and the disturbances in expressions (1) and (3).

Under short horizons:

h−1T−1

(
T∑
t=h

yt−hwh,t − h
T∑
t=1

yt−1εt

)
⇒ −

h−1∑
i=1

(h− i) ξε (i) . (10)
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so differences between multi-step and scaled one-step moments only arise asymptotically when the

error εt is autocorrelated.

Expressions under long horizons are more involved, but intermediate horizons allow for an easy

comparison:

lim
T→∞

T−2
∑
yt−bcTcwbcTc,t

L
=
c→0

c1/2σ
∫ 1

0
Kψ,φ (r) dW (r) ,

T−2
(
bcT c

∑T
t=1 yt−1εt

)
⇒ c

(
σ
∫ 1

0
Kψ,φdW + 1

2

[
σ2 − σ2

ε

])
.

(11)

This latter expression show that in OLS estimation, there will be a trade-off of bias and efficiency be-

tween one-step ahead and multistep projections. Indeed the expectation of lim
T→∞

T−2
∑
yt−bcTcwbcTc,t

is nonzero but o (c) whether or not the error is autocorrelated.4 By contrast the corresponding

expectation of T−2
(
bcT c

∑T
t=1 yt−1εt

)
is zero in the absence of misspecification but O (c) other-

wise. In terms of variance, the order is reversed: the multistep moments have asymptotic variance

in the O (c) and the scaled one-step in O
(
c2
)

for c→ 0.

The previous analysis show that whether the horizon is short or long will have a significant

impact on the estimators. Short horizons multistep estimation will be affected by misspecification,

and this may be beneficial or detrimental. By contrast, long horizon multi-step estimation will be

mostly unaffected by the misspecification. This is due to the fact that as h → ∞, the multi-step

error wh,t becomes an integrated process whose autocovariance function is constant; in other terms,

the correction hσ2 − σ2
wh
→ 0 in Proposition 1-(bh) .

3.2 OLS Estimators

To emphasize the different behaviors, define the scaled deviations of OLS slope and intercept

estimators from the parameters as:5

γT = T (ρ̂T − 1)⇒ γ0, and πT = T 1/2 (τ̂T − τT )⇒ π0. (12)

We define, for notational ease, the following stochastic matrix

Dc =

[
1− c

∫ 1

c
Kψ,φ∫ 1

c
Kψ,φ

∫ 1

c
K2
ψ,φ

]
.

The one-step OLS estimator is then characterized by[
π0

γ0 − φ

]
= D−10

[
σW (1)

σ
∫ 1

0
Kψ,φdW +

σ2−σ2
ε

2

]
(13)

The presence of a local-to-zero drift implies that the stochastic and the deterministic trends have

identical asymptotic orders of magnitude, both Op
(
T 1/2

)
. The unit-root estimator is super-

consistent but the corresponding error is of order Op
(
T−1

)
and not the Op

(
T−3/2

)
observed

4The term 1
2
cψ2e−φc

[
fφ (c)

]2
that arises in proposition 1-(bc) is O

(
c3
)
. It is zero in the absence of a drift, i.e.

when ψ = 0.
5We define γT as deviation for ρ̂T for unity rather than from ρT for ease of notation in the long horizon setting.
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in the presence of a true linear trend. When εt is white noise, σ = σε and we denote the esti-

mators of a true AR(1) as
(
π×0 , γ

×
0

)
= σD−10

(
W (1) ,

∫ 1

0
Kψ,φdW

)
. In the presence of dependent

errors,
(
σ2 − σ2

ε

)
/2 =

∑∞
i=1 ξε (i) and this is the channel through which misspecification of the

innovations affects the estimators. The correlation between π0 and γ0 is then a positive function

of −
∫ 1

0
Kψ,φdr and the latter’s expectation has a sign opposite that of ψ.

Now, the previous results may be used for computing IMS and DMS estimators of the mul-

tistep parameters (τh,T , ρh,T )
′

=
(
ρ
{h}
T τT , ρ

h
T

)′
. The IMS estimators are naturally defined as(

τ̂{h},T , ρ̂{h},T
)′

=
(
ρ̂
{h}
T τ̂T , ρ̂

h
T

)′
. The DMS estimators (τ̃h,T , ρ̃h,T )

′
are computed via OLS of (1)

over a sample of size T. We denote the asymptotic limits as follows. Under short horizon (fixed h),

IMS :
(√

T
(
τ̂{h},T − τh,T

)
, T
(
ρ̂hT − 1

))
⇒
(
π{h}, γ{h}

)
,

DMS :
(√

T (τ̃h,T − τh,T ) , T (ρ̃h,T − 1)
)
⇒ (πh, γh) ,

and under long horizon, as h/T → c,

IMS :
(
T−1/2

(
τ̂{h},T − τh,T

)
, ρ̂hT − 1

)
⇒
(
π{c}, γ{c}

)
,

DMS :
(
T−1/2 (τ̃h,T − τh,T ) , ρ̃h,T − 1

)
⇒ (πc, γc) .

Using the results above, the following Proposition relates the distribution of the multi-step esti-

mators to those of the one-step.

Proposition 3 Let yt be generated as (1) under Condition P with local asymptotic parameters (7)

and (8). Then the following holds as T →∞,
under short horizon, h ∈ [1, T ) is constant, and the limits are,

IMS :

[
π{h}

γ{h}

]
= h

[
π0

γ0

]
,

DMS :

[
πh

γh

]
= h

[
π0

γ0

]
+

1

2

(
hσ2

ε − σ2
wh

)
D−10

[
0

1

]
;

under long horizon, h/T → c ∈ (0, 1) , the limits are

IMS :

[
π{c}

γ{c}

]
=

[
[fγ0 (c)− fφ (c)]ψ + fγ0 (c)π0

fγ
0

(c) γ0

]
,

DMS :

[
πc

γc

]
=

[
0

φfφ (c)

]
+D−1c

[ ∫ 1

c
δcφJφ (r) dr∫ 1

c
Kψ,φ (r − c) δcφJφ (r) dr − 1

2cψ
2e−φc [fφ (c)]

2

]
.

Proposition 3 allows for a comparison of IMS and DMS estimation accuracy. Both estimators

are consistent for the multistep parameters at short but not at long horizons. Indeed for the

latter, the estimators must be scaled by an additional T (or h) to ensure they weakly converge.

At short horizons, IMS and DMS yield identical asymptotic distributions when εt follows a white

noise and these are simply h times the one-step. By contrast, serial correlation in εt implies that

9



DMS distributions which are not h times that of the one-step model. To see the impact of the

autocorrelation of εt, consider the differences between
(
π{h}, γ{h}

)
and the corresponding random

variables
(
π×{h}, γ

×
{h}

)
when εt is white noise (we define

(
π×h , γ

×
h

)
similarly): then(

π{h} − π×{h}, γ{h} − γ
×
{h}

)
= h

(
π0 − π×0 , γ0 − γ

×
0

)
(
πh − π×h , γh − γ

×
h

)
=
hσ2 − σ2

wh

σ2 − σ2
ε

(
π0 − π×0 , γ0 − γ

×
0

)
where

hσ2−σ2
wh

σ2−σ2
ε

= h − (
∑∞
i=1 ξε (i))

−1∑h−1
i=1 (h− i) ξε (i). In particular, if εt follows an MA(q) ,

then for h > q, hσ2 − σ2
wh

= qσ2 − σ2
wq . This shows that if εt follows a moving average (as in e.g.

Pástor and Stambaugh, 2009, where it is an MA(1)) then the impact of the serial correlation in εt

is increasing linearly in the horizon for IMS but bounded by that at horizon q for DMS. Banerjee,

Hendry, and Mizon (1996) find a similar result. Now the actual distribution of
(
π0 − π×0 , γ0 − γ

×
0

)
depends on the parameters of the DGP but its expectation has the sign of (−ψ, 1)

(
σ2 − σ2

ε

)
=

(−ψ, 1)
∑h−1
i=1 (h− i) ξε (i). Since, in general, the bias in autoregressive parameter estimators is

negative an AR(1) with a near unit root, this implies that E
(
γ×0
)
< 0. Hence if εt is negatively

autocorrelated then the probability E
[
γ0 − γ×0

]
< 0 so the distribution of γ0 is shifted to the left, i.e

ρ̂ further away from unity, with a larger absolute bias than when εt is white noise. As the horizon

grows, then IMS compounds the bias but that of DMS remains bounded (if εt follows a moving

average). Given the negative expected correlation between the intercept and slope estimators,

positive ψ will have the same effect on the bias of the multistep intercept estimator. This is what

Chevillon and Hendry (2005) found in their simulations.

Proposition 3 also allows for a comparison of the estimators at long horizons, but nonlinearities

render the analysis of analytical results difficult. For this reason, the following corollary considers

intermediate horizons.

Corollary 4 (Intermediate Horizon) Under the assumptions of Proposition 3,the asymptotic

distributions under long horizon settings satisfy as c→ 0 :[
π{c}

γ{c} − cφ

]
L
=
c→0

c

[
π0

γ0 − φ

]
and

[
πc

γc − cφ

]
L
=
c→0

√
c

[
π×0

γ×0 − φ

]
Corollary 4 confirms the analysis that was made previously that intermediate horizon DMS

estimators are robust to serial correlation of εt since their distribution is a proportional to the

unbiased
(
π×0 , γ

×
0

)
. This is not the case for IMS which are biased. Yet, as c → 0,

√
c is of higher

magnitude than c, so DMS suffers from higher variance than IMS.

3.3 Forecasting

We now derive the distributions of the forecast errors. Parameter estimates are used to forecast

the series h steps ahead from an end-of-sample forecast origin yT using the expressions of Section

2. Define the IMS forecast errors under short horizon as êh|T = yT+h − ŷT+h|T and under long

horizons as ê∗c,T = h−1/2êh|T . Denote the corresponding DMS forecast errors as ẽh|T and ẽ∗c,T .

10



In short-horizon forecasting, consistency of the estimators imply that the asymptotic limit of the

forecast error is simply êh|T −
∑h−1
j=0 εT+h−j

p→ 0
T→∞

and similarly for ẽh|T . Hence, for a comparison

we derive the short horizon distributions as deviations from
∑h−1
j=0 εT+h−j . For the long horizon

case, we need to extend the definition of Kψ,φ (r) to cover r ∈ [0, 1 + `] for some ` ∈ (c, 1). The

following proposition provides asymptotic distributions of the forecast errors.

Proposition 5 Let yt be generated as (1) under Condition P with local asymptotic parameters (7)

and (8). Then the following holds as T →∞,
under short horizons h ∈ [1, T ) ,

T 1/2
(
êh|T −

∑h−1
j=0 ρ

j
T εT+h−j

)
⇒ −π{h} −

(
γ{h} − hφ

)
Kψ,φ (1)

T 1/2
(
ẽh|T −

∑h−1
j=0 ρ

j
T εT+h−j

)
⇒ −πh − (γh − hφ)Kψ,φ (1)

and under long horizons h/T → c ∈ (0, 1) ,

√
cê∗c,T ⇒ −

[
π{c} +

(
γ{c} − φfφ (c)

)
Kψ,φ (1)

]
+ δcφJφ (1 + c) ,

√
cẽ∗c,T ⇒ − [πc + (γc − φfφ (c))Kψ,φ (1)] + δcφJφ (1 + c) .

The key to forecast accuracy is here the correlation between the slope estimator and the de-

meaned forecast origin. Indeed, whereas for stationary processes it has been customary to assume

that the correlation between the forecast origin and the estimators has little impact, this assump-

tion does not hold in the presence of trending behavior (see Ing, 2004). In short horizon forecasting,

the proposition implies that

T 1/2
(
êh|T − ẽh|T

)
⇒ −h

h−1∑
i=1

(1− i/h) ξε (i)
Kµ
ψ,φ (1)∫ (
Kµ
ψ,φ

)2 . (14)

where Kµ
ψ,φ = Kψ,φ (r) −

∫ 1

0
Kψ,φ (u) du. This expression shows that for εt ∼ MA (q) , whichever

method is more precise at horizon q + 1 will tend also to be so for h ≥ q + 1, and the difference in

forecast errors is close to being linear in h. When εt is white noise and the horizon short, both meth-

ods are asymptotically equivalent. Expression (14) also shows that if E

[
Kµ
ψ,φ (1) /

∫ (
Kµ
ψ,φ

)2]
> 0,

such as when ψ > 0, then negatively autocorrelated εt imply that E
[
êh|T − ẽh|T

]
> 0. In particular,

if εt follows an MA(1) , then

sign
(
E
[
êh|T − ẽh|T

])
= −sign (ξε (1)ψ) . (15)

Heuristically, if E
[
êh|T

]
and E

[
ẽh|T

]
have the sign of ψ, then ξε (1) < 0 implies that forecast biases

favor DMS: E
[∣∣êh|T ∣∣] > E

[∣∣ẽh|T ∣∣] .
Next, we consider intermediate and long horizon settings. For low c, the forecast errors from

either method do not behave comparably with respect to the horizon:

11



Corollary 6 (Intermediate Horizon) Under the assumptions of Proposition 5, the limiting dis-

tributions as c→ 0 satisfy:

ê∗c,T
L
=
c→0
−
√
c (γ0 − φ)Kψ,φ (1)−

√
cπ0 + σ

[
W (1 + c)−W (1)√

c

]
(16a)

ẽ∗c,T
L
=
c→0
−
(
γ×0 − φ

)
Kψ,φ (1)− π×0 + σ

[
W (1 + c)−W (1)√

c

]
(16b)

The corollary shows the insight we drew from the estimators carry over to the forecasts: (i)

since DMS estimator biases are not affected by serial correlation of εt at intermediate horizons nor

are the forecast; yet (ii) DMS forecasts have higher variance. There therefore exists a trade-off

between DMS robustness to dynamic misspecification and the compounded variance due to the

horizon effect. The corollary shows though that at intermediate horizons in the presence of serial

correlation of εt, biases differ by an order of magnitude: E
[
ê∗c,T

]
/E
[
ẽ∗c,T

]
= O (

√
c) , but variances

are comparable Var
[
ê∗c,T

]
= O (1) , Var

[
ẽ∗c,T

]
= O (1) . If

(
γ×0 − φ

)
Kψ,φ (1) has zero expectation,

then DMS is unbiased but not IMS so the contribution of the IMS bias to the MSFE is of order c.

3.4 Predictive Regressions

The results that were derived in the multi-step autoregression can be used to obtain the distri-

butions of the estimators in the predictive regression of zt on yt−h. Define the bivariate Brow-

nian motion H (r) such that T−1/2
∑bTrc
t=1 (εt, εt)

′ ⇒ H (r) = (H (r) , σW (r))
′

where we write

H = ςU + σδW. In Expression (6), α1 = (1− ρ)α + βτ hence since (1− ρT ) = O
(
T−1

)
, only

τ needs to be considered local asymptotic. To match the results from Proposition 1, we let

Gφ (r) =
∫ r
0
eφ(r−s)dH (s) = (Gφ, Jφ). A proposition follows.

Proposition 7 Let {zt, yt} generated by (5), where εt and εt satisfy Condition P and with local

asymptotic parameters (7) and (8). Then the following holds, as T →∞, if β 6= 0

under short horizon, for h ∈ [1, T ) constant, there exist6 $h ∈ R such that

(ah) T−1/2
∑T
t=h ωh,t ⇒ H (1) + σ (h− 1)βW (r)

(bh) T−1
∑T
t=h yt−hωh,t ⇒

∫ 1

0
Kψ,φd (H + σβ (h− 1)W ) +$h

under long horizon, for h/T → c ∈ (0, 1) ,

6The definition of $h is

$h =
1

2β

(
[(h− 1) ξε + ξε (0)] + ρ

2(h−1)
T [(h− 1) ξε − ξε (0)]

)
−

1

β
ρh−1
T [(h− 1) ξε − ξε (h)] −

1

β
ξε (h− 1)

(17)

+

∞∑
i=1

ξε,ε (−i) −
h−1∑
i=1

ξε,ε (1 − i) +

h−1∑
j=1

ρj−1
T

[
(h− 1) ξε,ε − ξε,ε (j) − ρh−1

T [(h− 1) ξε,ε − ξε,ε (j − (h− 1))]
]

+
β

2

h−1∑
j=1

h−1∑
k=1

ρj+k−2
T [(h− 1) ξε − ξε (k − j)]
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(ac) T
−3/2∑T

t=h ωh,t ⇒ β
∫ 1

c
δcφJφds

(bc) T
−2∑T

t=h yt−hωh,t ⇒ β
∫ 1

c
Kψ,φ (r − c) δcφJφ (r) dr − 1

2cβψ
2e−φc [fφ (c)]

2

Corollary 8 Under the assumptions of Proposition 7, if β = 0 the results simplify to

(a∗h) T−1/2
∑T
t=h ωh,t ⇒ H (1) , (b∗h) T−1

∑T
t=h yt−hωh,t ⇒

∫ 1

0
Kψ,φdH +

∑∞
i=h ξε,ε (i)

(a∗c) T
−1/2∑T

t=h ωh,t ⇒ H (1)−H1 (c) , (b∗c) T
−1∑T

t=h yt−hωh,t ⇒
∫ 1

c
Kψ,φ (s− c) dH (s)

Elements (b∗h) and (b∗c) show that only long horizons are robust to the cross-correlation
∑∞
i=h ξε,ε (i) .

Proposition 7 shows that the results that were derived for multi-step forecasting can be used for

the analysis of the predictive regression. In particular, the scaled empirical moments converge to

distributions that are very close to those of DMS. They share the similar properties that when

h = bcT c misspecification of the regression errors has a negligible impact. By contrast, if a modeler

had attempted to forecast using a one-step predictive regression, she would have been subject to

errors comparable to those found in IMS forecasting.

Indeed consider β̃h the OLS estimator of βh, in the regression zt = αh + βhyt−h + ωh,t. Let

ξ
(h)
ε,ε =

∑∞
i=h−1 ξε,ε (i) , then a straightforward application of Proposition 7 yields the following

proposition.

Proposition 9 Under the assumptions of Proposition 7, the following holds:

first if β 6= 0,

T
(
β̂ − β

)
⇒

(∫ 1

0

(
Kµ
ϕ,φ

)2
dr

)−1 (∫ 1

0
Kµ
ϕ,φd (ςU + σδW ) +$1

)
def
= λβ

T
(
β̃h − β

)
⇒

(∫ 1

0

(
Kµ
ϕ,φ

)2
dr

)−1 [∫ 1

0
Kµ
ϕ,φd (ςU + σ [δ + β (h− 1)]W ) +$h

]
def
= λβ,{h}

β̃bcTc − βeφc ⇒ β

(∫ 1−c
0

(
Kµ
ϕ,φ

)2
dr

)−1 [∫ 1

c
Kµ
ϕ,φ (r − c) δcφJφ (r) dr − 1

2cψ
2e−φc [fφ (c)]

2
]
def
= λβ,c

and if β = 0(
T β̂, T β̃h, T β̃bcTc

)
⇒
( ∫ 1

0
Kµ
ϕ,φdH+ξ(i)ε,ε∫ 1

0 (Kµ
ϕ,φ)

2
dr

,
∫ 1
0
Kµ
ϕ,φdH+ξ(h)ε,ε∫ 1

0 (Kµ
ϕ,φ)

2
dr

,
∫ 1
c
Kµ
ψ,φ(s−c)dH(s)∫ 1−c

0 (Kµ
ϕ,φ)

2
dr

)

Corollary 10 Under the assumptions of Proposition 9, at intermediate horizons,

λβ,c
L
=
c→0

√
c
σβ

∫ 1
0
Kµ
ϕ,φdW∫ 1

0 (Kµ
ϕ,φ)

2
dr

if β 6= 0, and λ0,c
L
=
c→0

∫ 1
0
Kµ
ϕ,φdH∫ 1

0 (Kµ
ϕ,φ)

2
dr

otherwise.

Corollary 11 Consider the regression of h−1
∑h
k=1 zt+k on a constant and xt, the estimator of

the coefficient of xt admits the following distribution:

if h is fixed, T
(
β̂{h} − β

)
⇒ h−1

∑h
k=1 λβ,{k};

if h/T → c, β̃c − βfφ (c)⇒
∫ c
0
λβ,sds.

Proposition 9 shows that intermediate and long horizon predictive regressions are robust to

dynamic misspecification (yet not to contemporary correlation of the errors). As c → 0, the

behavior of c−1/2λβ,c is close to that of λβ provided that all Ξk, are diagonal. The main difference
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is that the former involves the stochastic integral of Kµ
ϕ,φ with respect to increments in W whereas

that of λβ involves the increments ofH. Hence, when β 6= 0, λβ,c is immune at intermediate horizons

to the long run endogeneity and serial correlation of the errors in the predictive regression.

4 Monte Carlo

In order to illustrate the theoretical results presented above, we perform some simple simulations.

We first compare the distributions of IMS and DMS forecast error under dynamic specification to

those under correct specification. For this, we simulate an ARMA(1, 1) data generating process

(DGP) yt = τ + ρyt−1 + εt + θεt−1 where εt
i.i.d∼ N (0, 1) as well as an AR(1) with the same long

run variance yt = τ + ρyt−1 + (1 + θ) εt. Parameters vary as follows: and ρ ∈ {±.99,±.95,±.6, 0} ,
θ ∈ {±.9,±.4} and T ∈ {100, 250} (with an initialization of 200 observations) with h ranging from

1 to bT/3c . For each DGP, we compute 5,000 replications of the IMS and DMS forecast errors

based on an AR(1) model. We report the p-values of a Kolmogorov-Smirnov test for the null of

equal distributions of the forecast errors under the ARMA(1, 1) and AR(1) DGP. Non-rejection

of the null is interpreted as evidence that for the DGP and horizon considered, the forecasting

method is robust to the dynamic misspecification considered.

Figures 1 and 2 report the p-values of the Kolmogorov-Smirov test as a function of the horizon

and for, respectively, T = 100 and 250 observations. The simulations all confirm that the p-values

reject equal distributions of the forecast errors (and hence robustness to dynamic misspecification)

at very low horizons in the presence of severe misspecification (large |θ|). Yet the p-values increase

rapidly with h when ρ is positive. This is especially true of DMS; this is less so for IMS: for

instance, when ρ = .99 and θ = −.4, the test rejects at the 10% level for h ≤ 0.15× T.
The figures also report cases where ρ < 0 and we see that the forecasts then tend to be less

robust, in particular when θ > 0 and ρ is close to −1.

To assess how the results on multistep forecasting carry over to predictive regressions, we

simulate Model (5) where α = τ = 0 and β = 1. Under dynamic misspecification εt follows an

MA(1) process with parameter θ and standard Gaussian white noise innovations, whereas under

correct specification εt
i.i.d∼ N

(
0, (1 + θ)

2
)

. We consider both the case of Corr(εt, εt) = 0 (no

endogeneity) and of Corr(εt, εt) = 1/
√

2 ≈ .7 (endogenous case). We let εt
i.i.d∼ N (0, 1) and consider

various values of ρ and h as before. We only record the case of T = 250. Results are reported

in Figures 3 and 4, respectively for the exogenous and endogenous situations: the graphs present

the p-values of the Kolmogorov-Smirnov test for the null that the standardized β̂ (i.e. divided by

their estimated standard error, without autocorrelation correction) have identical distributions for

εt ∼ MA (1) or εt ∼ iid. The figures report patterns similar to those observed under multi-step

forecasting.

Finally, we assess the implications of the results above for the test of the null H0 : β = 0 at the

10% significance level in the predictive regression model with ρ = 0.99. For this, we consider the

simple situation where critical values of the test statistic is obtained by parametric bootstrap over
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Figure 1: The figure reports p-values of the Kolmogorov-Smirnov test that the distributions of

forecast errors (IMS, left and DMS, right) are the same in the models with misspeficied and correctly

specified error dynamics. The horizontal axis is the horizon h. The sample size is T = 100

observations.
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Figure 2: The figure reports p-values of the Kolmogorov-Smirnov test that the distributions of

forecast errors (IMS, left and DMS, right) are the same in the models with misspeficied and correctly

specified error dynamics. The horizontal axis is the horizon h. The sample size is T = 250

observations.
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Figure 3: The figure reports p-values of the Kolmogorov-Smirnov test that the distributions of

standardized β̂ are the same in the predictive regression models with misspecified and correctly

specified error dynamics (without long run endogeneity). The horizontal axis is the horizon h. The

sample size is T = 250 observations.
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Figure 4: The figure reports p-values of the Kolmogorov-Smirnov test that the distributions of

standardized β̂ are the same in the predictive regression models with misspeficied and correctly

specified error dynamics (with long run endogeneity). The horizontal axis is the horizon h. The

sample size is T = 250 observations.
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a sample of T = 250 observations under the assumption that εt is iid and normal.7

Figures 5-8 report the rejection probabilities of four statistics: t0 is obtained as as simple t-test

where the DGP shows no serial correlation in the errors, t0, HAC is computed with a New-West

HAC correction (in a DGP with no serial correlation), t is the statistic where εt follows an MA(1)

with parameter θ (where θ =-0.4 in Figures 5 and 6, θ =-0.9 in Figures 7 and 8) and tHAC is the

statistic with Newey-West HAC correction where εt ∼ MA (1) . In all DGPs considered the long

run variance of εt is (1 + θ)
2
, and we consider both the exogenous case (Corr(εt, εt) = 0 in Figures

5 and 7) and the presence of endogeneity (Corr(εt, εt) = 1/
√

2 in Figures 6 and 8).

The figures show that misspecifying the dynamics of εt yields very low local power for the

standard t statistic close to the null β = 0 at all horizons when Corr(εt, εt) = 0. In the exogenous

case, tHAC is slightly undersized but shows better local power than t. As the horizon h grows

though, HAC corrections lower the power, whether or not εt is serially correlated. By contrast,

standard t test do not suffer from this upper limit and the power tends to unity as |β| gets larger.

Hence a combined test that rejects if either t or tHAC rejects will yield better local and global

power at all horizons. When θ =-0.9 so the degree of misspecification is large, the local power

remains low though.

Similar results hold for the endogenous case where Corr(εt, εt) = 1/
√

2. The main difference is

that both t and tHAC are locally biased and skewed at low h. Both are unreliable here when h = 1

(tHAC become very liberal).

Overall, our simulations show that the robustness of long horizon projections to dynamic mis-

specification advocates the use of the non HAC corrected statistic. To ensure better power, this

statistic should be combined with its HAC version which the empirical literature has usually con-

sidered: the combined test rejects occurs if either statistic does.

5 Conclusions

In this paper, we have studied the properties of iterated and direct multi-step forecasts in the

presence of model misspecification and non-stationarity (both stochastic and deterministic trends).

We have shown that in this framework, most general random walk estimation results apply when

standard Brownian motions are replaced with trending Ornstein-Uhlenbeck processes. This allowed

us to characterize the non-linear patterns exhibited by both estimators and forecasts. In particular,

by letting the forecast horizon h grow with the sample size, we were able to show how much IMS

and DMS differ in terms of long range forecasting. A Monte Carlo simulation illustrated the

analytical results that were derived from the weak trend framework. Namely, that DMS is exhibits

robustness to dynamic misspecification at intermediate horizons, and, these can be possibly very

short in finite samples.

7This critical value is unobtainable in practice since we compute it under a known ρ so this constitutes an

unfeasible bound where we do not need to resort to the corrections considered in the literature, e.g., Bonferroni as

in Rossi (2005) or the IVX of Phillips and Magdalinos (2009) and Kostakis et al. (2015)
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Figure 5: The figure reports the rejection probabilities of four test statistics (t0, t0,HAC , t and

tHAC) for the null that β = 0. The sample size is T = 250 observations, θ = −0.4 and there is no

endogeneity.
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Figure 6: The figure reports the rejection probabilities of four test statistics (t0, t0,HAC , t and

tHAC) for the null that β = 0. The sample size is T = 250 observations, θ = −0.4 and there is

contemporaneous endogeneity: Corr(εt, εt) = 1/
√

2.
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Figure 7: The figure reports the rejection probabilities of four test statistics (t0, t0,HAC , t and

tHAC) for the null that β = 0. The sample size is T = 250 observations, θ = −0.9 and there is no

endogeneity.
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Figure 8: The figure reports the rejection probabilities of four test statistics (t0, t0,HAC , t and

tHAC) for the null that β = 0. The sample size is T = 250 observations, θ = −0.9 and there is

contemporaneous endogeneity: Corr(εt, εt) = 1/
√

2.
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The recommendations that we were able to derive are as follow. A forecaster who is confident

that her model is well-specified ought to use iterated multi-step forecasts when the horizon is small

compared to the sample size. If she must obtain long horizon forecasts using the available data, she

should then resort to DMS. By contrast, should she suspect that her model might be misspecified,

then DMS ought to be used at all horizons.

The Direct Multi-Step Forecasting framework has also been show to be useful for the analysis

of predictive regressions as found in the literature. It follows that long-horizon regressions can be

understood to work well when the model is misspecified for the serial correlation of the regression

errors. Using simple simulations, we were able to show that, at intermediate or long horizons,

a combination of the HAC test often considered in the empirical literature with the non-HAC

version of the statistic achieves better global power than either separately. The literature has

also considered alternative test, (optimal under Gaussianity in the case of Jansson and Moreira,

2006) or, e.g., Campbell and Yogo, 2005) or finite sample distributional adjustments (McCloskey,

2012). Although we do not explicitly study them here, our theoretical analysis seem to indicate

that similar results are likely to hold.
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Appendices

A Proof of Proposition 1

A.1 Short horizon

For r ∈ [0, 1] , we write the series as the sum of a moving average and a deterministic component:

T−1/2ybTrc = T−1/2eφbTrc/T y0 +

[∑bTrc−1

i=0
eiφ/T

]
ψT−1 + T−1/2

∑bTrc−1

i=0
eiφ/T εbTrc−i.

Hence,

T−1/2ybTrc = eφbTrc/T
y0√
T

+ ψfφ (r)
(
1 +O

(
T−1

))
+ T−1/2

∑bTrc

i=1
e(bTrc−i)φ/T εi,

where T−1/2
∑bTrc
i=1 e(bTrc−i)φ/T εi ⇒ Jφ (r) Phillips (1987). Proof of (ah) follows. Now, we write

the statistic (bh) as a functional on D [0, 1]. We first square T−1/2yt :

T−1y2t = T−1 (τh + ρhyt−h + wh,t)
2

= T−2

(
h−1∑
i=0

eiφ/T

)2

ψ2 + T−1e2hφ/T y2t−h + T−1w2
h,t + 2T−3/2

(
h−1∑
i=0

e(i+h)φ/T

)
ψyt−h,T .

Hence

2T−1ehφ/T yt−h,Twh,t. = T−1
[
y2t,T − e2hφ/T y2t−h,T

]
− T−2

(
1− ehφ/T

1− eφ/T

)2

ψ2

− T−1w2
h,t − 2T−3/2

(
ehφ/T

1− ehφ/T

1− eφ/T

)
ψyt−h,T − 2T−3/2ψwh,t.

We notice that, summing over t,

T−1
T∑
t=h

(
y2t,T − e2hφ/T y2t−h,T

)
= T−1

T∑
t=T−h+1

y2t,T − T−1
h−1∑
t=0

y2t,T −
(
e2hφ/T − 1

)
T−1

T∑
t=h

y2t−h,T

T−1
T∑
t=h

(
y2t,T − e2hφ/T y2t−h,T

)
=

(
T−1

T∑
t=T−h+1

y2t,T − 2φhT−2
T∑
t=h

y2t−h,T − T−1
2h−1∑
t=h

y2t−h,T

)

+
1

T 2

( ∞∑
i=0

(2hφ)
i+2

(i+ 2)!T i

)
T−1

T∑
t=h

y2t−h,T ,

hence, as T →∞

T−1
T∑
t=h

(
y2t,T − e2hφ/T y2t−h,T

)
⇒ h {Kψ,φ (1)}2 − 2φ

∫ 1

0

[Kψ,φ (r)]
2
dr

Collecting the elements we find:

T−1
∑

yt−h,Twh,t ⇒
h

2

{
{Kψ,φ (1)}2 − 2φ

∫ 1

0

[Kψ,φ (r)]
2
dr − h−1σ2

wh
− 2ψ

∫ 1

0

Kψ,φ (r) dr

}
=
h

2

{
{Kψ,φ (1)}2 − 2

∫ 1

0

[
ψKψ,φ + φK2

ψ,φ (r)
]
dr − h−1σ2

wh

}
. (A.1)
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Now, using Itô’s lemma:

dK2
ψ,φ (r) =

(
2Kψ,φ (r) [ψ + φKψ,φ (r)] + σ2

)
dr + 2σKψ,φ (r) dW (r) , (A.2)

{Kψ,φ (1)}2 = σ2 + 2

∫ 1

0

[
ψKψ,φ (r) + φK2

ψ,φ (r)
]
dr + 2σ

∫ 1

0

Kψ,φ (r) dW (r) . (A.3)

whence the result, using (A.1) and the definition of σ2
wh
.

A.2 Long Horizon

Preliminary results Item (ac) is clear using the Functional Central Limit theorem (FCLT)

and the Continuous Mapping theorem (CMT) respectively. As regard (bc) , we first derive the

asymptotic distribution of sample moments of the multi-step residuals wh,t (this constitutes the

proof of (cc)). They follow an MA(h− 1)

wh,t =

h−1∑
i=0

ρiT εt−i =

t∑
j=t−h+1

e(t−j)φ/T εj ,

which, using UT (r) = T−1/2
∑bTrc
t=1 εt, can be rewritten so that we let appear a stochastic integral:

T−1/2wbcTc,brTc =

brTc∑
j=b(r−c)Tc+1

eφ(brTc−j)/T
∫ j/T

(j−1)/T
dUT (s)

=

bTrc∑
j=bT (r−c)c+1

∫ j/T

(j−1)/T
eφ(brTc/T−s)dUT (s) =

∫ r

r−c
eφ(brTc/T−s)dUT (s)

⇒ σ

∫ r

r−c
eφ(r−s)dW (s) = σJφ (r)− σeφcJφ (r − c) .

We recognize the quasi-difference of an Ornstein-Uhlenbeck process:

T−1/2wbcTc,brTc ⇒ δcφJφ (r) = δc0Jφ (r)− φfφ (c) Jφ (r − c) . (A.4)

Using the continuous mapping theorem, we obtain the limit distributions of empirical moments of

T−1/2wh,bTrc, first the sample mean: T−3/2
∑T
t=h wh,t = T−3/2

∑T
j=bcTc wbcTc,bTrc

T−3/2
T∑

j=bcTc

wbcTc,j ⇒ σ

∫ 1

c

δcφJφ (r) dr, (A.5)

and the sum of squares:

T−2
T∑

j=bcTc

w2
bcTc,j ⇒ σ

∫ 1

c

[
δcφJφ (r)

]2
dr. (A.6)

A useful lemma
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Lemma 12 Using the definition of δcθ and Kψ,φ (r) from the main text, then for nonzero φ∫ 1

c

[δcθKψ,φ (r)]
2
dr =

∫ 1

c

K2
ψ,φ (r) dr − θ2c

∫ 1

c

K2
ψ,φ (r − c) dr

− θc

φ
Kψ,φ (1− c) δcθKψ,φ (1)− θ2c (1− c) σ

2

φ

+ θc
ψ

φ

∫ 1

c

{δcθKψ,φ (r) + (1− θc)Kψ,φ (r − c)} dr

+
σθc

φ

(∫ 1

c

δcθKψ,φ (r) dW (r − c) +

∫ 1

c

Kψ,φ (r − c) d [δcθW (r)]

)
Proof. Develop

[δcθKψ,φ (r)]
2

= K2
ψ,φ (r) + θ2cK2

ψ,φ (r − c)− 2θcKψ,φ (r)Kψ,φ (r − c)

= K2
ψ,φ (r)− θ2cK2

ψ,φ (r − c)− 2θc [δcθKψ,φ (r)]Kψ,φ (r − c) (A.7)

When taking the integral over (c, 1) with respect to r, we recognize the sum of
∫ 1

c
δ2cθ K

2
ψ,φ (r) dr

and of −2θ
∫ 1

c
[δcθK (r)]K (r − c) dr. We analyze them in turn. First, Expression (A.2) implies

that

θ2cdK2
ψ,φ (r − c) =

(
2θ2cKψ,φ (r − c) [ψ + φKψ,φ (r − c)] + θ2cσ2

)
dr+2σθ2cKψ,φ (r − c) dW (r − c)

(A.8)

hence

d
[
K2
ψ,φ (r)− θ2cK2

ψ,φ (r − c)
]

=
(

2
[
ψ
{
Kψ,φ (r)− θ2cKψ,φ (r − c)

}
+ φ

{
K2
ψ,φ (r)− θ2cK2

ψ,φ (r − c)
}]2)

dr

+ σ
(
1− θ2c

)
dr + 2σ

[
Kψ,φ (r) dW (r)− θ2cKψ,φ (r − c) dW (r − c)

]
.

Integrating over (c, 1)∫ 1

c

d
[
K2
ψ,φ (r)− θ2cK2

ψ,φ (r − c)
]

=
(
1− θ2c

)
(1− c)σ2 + 2ψ

∫ 1

c

{
Kψ,φ (r)− θ2cKψ,φ (r − c)

}
dr

+ 2φ

∫ 1

c

{
K2
ψ,φ (r)− θ2cK2

ψ,φ (r − c)
}
dr

+ 2σ

[∫ 1

c

Kψ,φ (r) dW (r)− θ2c
∫ 1

c

Kψ,φ (r − c) dW (r − c)
]
.

Therefore

2φ

∫ 1

c

{
K2
ψ,φ (r)− θ2cK2

ψ,φ (r − c)
}
dr = 2φ

∫ 1

c

δ2cθ K
2
ψ,φ (r) dr

= K2
ψ,φ (1)− θ2cK2

ψ,φ (1− c)−K2
ψ,φ (c)−

(
1− θ2c

)
(1− c)σ2

− 2ψ

∫ 1

c

{
Kψ,φ (r)− θ2cKψ,φ (r − c)

}
dr

− 2σ

[∫ 1

c

Kψ,φ (r) dW (r)− θ2c
∫ 1

c

Kψ,φ (r − c) dW (r − c)
]
.
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Now, for
∫ 1

c
[δcθKψ,φ (r)]Kψ,φ (r − c) dr, using the formula for stochastic integration by parts, if

c 6= 0 :

d [Kψ,φ (r)Kψ,φ (r − c)] = [ψ {Kψ,φ (r) +Kψ,φ (r − c)}+ 2φKψ,φ (r)Kψ,φ (r − c)] dr

+ σKψ,φ (r) dW (r − c) + σKψ,φ (r − c) dW (r) ,

since dW (r) and dW (r − c) are independent.

Combining (A.2) and the previous expression, the difference

d [Kψ,φ (r − c) δcθKψ,φ (r)] = d [Kψ,φ (r)Kψ,φ (r − c)]− θcdK2
ψ,φ (r − c)

is then equal to{
ψ {δcθKψ,φ (r) + (1− θc)Kψ,φ (r − c)}+ 2φKψ,φ (r − c) [δcθKψ,φ (r)]− σ2θc

}
dr

+ σ {[δcθKψ,φ (r)] dW (r − c) +Kψ,φ (r − c) d [δcθW (r)]} .

We then re-express 2φKψ,φ (r − c) [δcθKψ,φ (r)] dr as

d [Kψ,φ (r)Kψ,φ (r − c)]− θcdK2
ψ,φ (r − c)−

{
ψ {δcθKψ,φ (r) + (1− θc)Kψ,φ (r − c)} − σ2θc

}
dr

− σ {[δcθKψ,φ (r)] dW (r − c) +Kψ,φ (r − c) dδcθW (r)} .

The expression for 2φ
∫ 1

c
[δcθKψ,φ (r)]Kψ,φ (r − c) dr is therefore

[Kψ,φ (1)Kψ,φ (1− c)]− θcK2
ψ,φ (1− c)−

∫ 1

c

ψ {δcθKψ,φ (r) + (1− θc)Kψ,φ (r − c)} dr − σ2θc (1− c)

− σ
∫ 1

c

{[δcθKψ,φ (r)] dW (r − c) +Kψ,φ (r − c) dδcθW (r)}

and the result follows using (A.7).

Proof of (bc). We can now move to finding the expression for (bc) . For nonzero φ, we square

yt,T and express it as the sum (τh,T + ρh,T yt−h,T + wh,t)
2
, or:

y2t,T = ψ2

(
1− eφh/T

1− eφ/T

)2

T−1 + e2φh/T y2t−h,T + w2
h,t

+ 2ψ

(
1− eφh/T

1− eφ/T

)
T−1/2eφh/T yt−h,T + 2eφh/T yt−h,Twh,t + 2ψ

(
1− eφh/T

1− eφ/T

)
T−1/2wh,t.

Summing over t ranging from h to T and rearranging yields

2eφh/TT−2
∑

yt−h,Twh,t = T−2
∑

y2t,T − e2φh/TT−2
∑

y2t−h,T (A.9)

− ψ2

(
T−1

1− eφh/T

1− eφ/T

)2

− T−2
∑

w2
h,t

− 2ψeφh/T
(
T−1

1− eφh/T

1− eφ/T

)
T−3/2

∑
yt−h,T

− 2ψ

(
T−1

1− eφh/T

1− eφ/T

)
T−3/2

∑
wh,t.
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Deterministic components admit the following limits as T →∞

T
(

1− eφ/T
)
→ −φ

T−1
1− eφh/T

1− eφ/T
→ fφ (c) .

Using the continuous mapping theorem, and Slutsky’s formula for weak convergence (since e2φh/T →
e2φc),

T−2
∑

y2t,T − e2φh/TT−2
∑

y2t−h,T ⇒
∫ 1

c

[
K2
ψ,φ (r) e2φcK2

ψ,φ (r − c)
]
dr. (A.10)

Combing (A.5), (A.6) and (A.10) in Expression (A.9), we obtain

2ecφT−2
∑

yt−h,Twh,t ⇒
∫ 1

c

δ2ceφK
2
ψ,φ (r) dr

− ψ2fφ (c)
2 −

∫ 1

c

[
δcφJφ (r)

]2
dr

− 2ψeφcfφ (c)

∫ 1−c

0

Kψ,φ (r) dr

− 2ψfφ (c)

∫ 1

c

δcφJφ (r) dr. (A.11)

Now, from lemma 12, we let for ease of notation

F =

∫ 1

c

δ2ceφK
2
ψ,φ (r) dr −

∫ 1

c

[
δcφKψ,φ (r)

]2
dr

=
eφc

φ
Kψ,φ (1− c) δcφKψ,φ (1) + e2φc (1− c) σ

2

φ

− eφcψ
φ

∫ 1

c

{
δcφKψ,φ (r) +

(
1− eφc

)
Kψ,φ (r − c)

}
dr

− σeφc

φ

(∫ 1

c

δcφKψ,φ (r) dW (r − c) +

∫ 1

c

Kψ,φ (r − c) d
[
δcφW (r)

])
so the right-hand side of Expression (A.11) is equal to∫ 1

c

[
δcφKψ,φ (r)

]2
dr + F

− ψ2fφ (c)
2 −

∫ 1

c

[
δcφJφ (r)

]2
dr − 2ψeφcfφ (c)

∫ 1−c

0

Kψ,φ (r) dr − 2ψfφ (c)

∫ 1

c

δcφJφ (r) dr.

Recall that Kψ,φ (r) = ψfφ (r) + Jφ (r) so that the previous expression is equal to∫ 1

c

[
ψδcφfφ (r)

]2
dr + 2ψ

∫ 1

c

[
δcφfφ (r)

] [
δcφJφ (r)

]
dr + F

− ψ2fφ (c)
2 − 2ψeφcfφ (c)

∫ 1−c

0

Kψ,φ (r) dr − 2ψfφ (c)

∫ 1

c

δcφJφ (r) dr
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Notice that δcφfφ (r) = fφ (r) − eφcfφ (r − c) = fφ (c) for all r, hence the previous expression

becomes

ψ2fφ (c)
2

(1− c) + F

− ψ2fφ (c)
2 − 2ψeφcfφ (c)

∫ 1−c

0

Kψ,φ (r) dr

= −cψ2fφ (c)
2 − 2ψeφcfφ (c)

∫ 1−c

0

Kψ,φ (r) dr + F

Now we replace F with its expression and get:

− cψ2fφ (c)
2 − 2ψeφcfφ (c)

∫ 1−c

0

Kψ,φ (r) dr

+
eφc

φ
Kψ,φ (1− c) δcφKψ,φ (1) + eφ2c (1− c) σ

2

φ

− eφcψ
φ

∫ 1

c

{
δcφKψ,φ (r) +

(
1− eφc

)
Kψ,φ (r − c)

}
dr

− σeφc

φ

(∫ 1

c

δcφKψ,φ (r) dW (r − c) +

∫ 1

c

Kψ,φ (r − c) d
[
δcφW (r)

])
We rewrite δcφKψ,φ (r)+

(
1− eφc

)
Kψ,φ (r − c) asKψ,φ (r)+

(
1− 2eφc

)
Kψ,φ (r − c) and the previous

expression rewrites as

− cψ2fφ (c)
2 −

[
2ψeφcfφ (c)− eφcψ

φ

(
1− 2eφc

)] ∫ 1−c

0

Kψ,φ (r) dr

+
eφc

φ
Kψ,φ (1− c) δcφKψ,φ (1) + e2φc (1− c) σ

2

φ

− eφcψ
φ

∫ 1

c

Kψ,φ (r) dr

− σeφc

φ

(∫ 1

c

δcφKψ,φ (r) dW (r − c) +

∫ 1

c

Kψ,φ (r − c) d
[
δcφW (r)

])
and 2eφcfφ (c) +

(
1− 2eφc

)
λc/φ = −eφc/φ hence the result:

T−2
∑

yt−h,Twh,t ⇒ −
σ2

2φ
(1− c) eφc − c

2
e−φcψ2fφ (c)

2
(A.12)

+
1

2φ
Kψ,φ (1− c) δcφKψ,φ (1)

+
ψ

2φ

[∫ c

0

Kψ,φ (r) dr −
∫ 1

1−c
Kψ,φ (r) dr

]
− σ

2φ

(∫ 1

c

δcφKψ,φ (r) dW (r − c) +

∫ 1

c

Kψ,φ (r − c) d
[
δcφW (r)

])
.

We notice that e−φcf2φ (c) = φ−1 (fφ (c) + fφ (−c)) .
We can simplify the result further using Expression (A.3:
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{Kψ,φ (1)}2 = σ2 + 2

∫ 1

0

[
ψKψ,φ (r) + φK2

ψ,φ (r)
]
dr + 2σ

∫ 1

0

Kψ,φ (r) dW (r) ,

{Kψ,φ (1)}2 − {Kψ,φ (c)}2 = (1− c)σ2 + 2

∫ 1

c

[
ψKψ,φ (r) + φK2

ψ,φ (r)
]
dr + 2σ

∫ 1

c

Kψ,φ (r) dW (r)

{Kψ,φ (1− c)}2 = (1− c)σ2 + 2

∫ 1−c

0

[
ψKψ,φ (r) + φK2

ψ,φ (r)
]
dr + 2σ

∫ 1−c

0

Kψ,φ (r) dW (r)

and

d [Kψ,φ (r)Kψ,φ (r − c)] = [ψ {Kψ,φ (r) +Kψ,φ (r − c)}+ 2φKψ,φ (r)Kψ,φ (r − c)] dr

+ σKψ,φ (r) dW (r − c) + σKψ,φ (r − c) dW (r) ,

which, when integrating over [c, 1] yields

Kψ,φ (1)Kψ,φ (1− c) =

∫ 1

c

ψ {Kψ,φ (r) +Kψ,φ (r − c)} dr + 2φ

∫ 1

c

Kψ,φ (r)Kψ,φ (r − c) dr

+ σ

∫ 1

c

Kψ,φ (r) dW (r − c) + σ

∫ 1

c

Kψ,φ (r − c) dW (r) .

This implies that

Kψ,φ (1− c) δcφKψ,φ (1) = Kψ,φ (1)Kψ,φ (1− c)− eφcKψ,φ (1− c)2

=

∫ 1

c

ψ {Kψ,φ (r) +Kψ,φ (r − c)} dr + 2φ

∫ 1

c

Kψ,φ (r)Kψ,φ (r − c) dr

− 2eφc
∫ 1−c

0

[
ψKψ,φ (r) + φK2

ψ,φ (r)
]
dr − eφc (1− c)σ2

+ σ

∫ 1

c

Kψ,φ (r) dW (r − c) + σ

∫ 1

c

Kψ,φ (r − c) dW (r)

− 2eφcσ

∫ 1−c

0

Kψ,φ (r) dW (r)

We rearrange the previous expression as

Kψ,φ (1− c) δcφKψ,φ (1)

− σ
(∫ 1

c

δcφKψ,φ (r) dW (r − c) +

∫ 1

c

Kψ,φ (r − c) d
[
δcφW (r)

])
=

∫ 1

1−c
ψKψ,φ (r) dr −

∫ c

0

ψKψ,φ (r) dr + 2
(
1− eφc

) ∫ 1−c

0

ψKψ,φ (r) dr

+ 2φ

∫ 1

c

Kψ,φ (r)Kψ,φ (r − c) dr − 2eφc
∫ 1−c

0

φK2
ψ,φ (r) dr − eφc (1− c)σ2.
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So that the right-hand side of (A.12) rewrites as

− c

2

[
e−φcψ2fφ (c)

2
+
σ2

φ
eφc
]

+
1

2

σ2

φ
eφc

+
1

2φ

[∫ 1

1−c
ψKψ,φ (r) dr −

∫ c

0

ψKψ,φ (r) dr + 2
(
1− eφc

) ∫ 1−c

0

ψKψ,φ (r) dr+

+ 2φ

∫ 1

c

Kψ,φ (r)Kψ,φ (r − c) dr − 2eφc
∫ 1−c

0

φK2
ψ,φ (r) dr

]
− 1

2φ
eφc (1− c)σ2

+
ψ

2φ

[∫ c

0

Kψ,φ (r) dr −
∫ 1

1−c
Kψ,φ (r) dr

]
= −1

2
cψ2e−φcfφ (c)

2 − fφ (c)

∫ 1−c

0

ψKψ,φ (r) dr +

∫ 1−c

0

[
Kψ,φ (r + c)− eφcKψ,φ (r)

]
Kψ,φ (r) dr,

= −1

2
cψ2e−φcfφ (c)

2
+

∫ 1

c

Kψ,φ (r − c) δcφJφ (r) dr (A.13)

When φ = 0, (A.12) rewrites as σ
∫ 1

c
[δc1W (r)]Kψ,φ (r − c) dr − 1

2ψ
2c3 which implies that Ex-

pression (A.13) also holds for φ = 0.

B Proof of Corollary 2

First note that

Jφ (r + c)− eφcJφ (r) = Jφ (r + c)− Jφ (r)− φfφ (c) Jφ (r)

=

∫ c

0

dJφ (r + u)− φfφ (c) Jφ (r)

hence for low horizon, such that replacing c with cdr

δcdrφ Jφ (r + cdr) = Jφ (r + cdr)− Jφ (r)− φcJφ (r) dr + op (cdr)

= cφJφ (r) dr + σ [W (r + cdr)−W (r)]− φcJφ (r) dr + op (cdr)

= σ [W (r + cdr)−W (r)] + op (cdr)

and W (r + cdr)−W (r) ∼ N (0, cdr), with the definition dW (r) = W (r + dr)−W (r) . Then (ec)

rewrites for low horizons as

δcdrφ Jφ (r + cdr)
L
=
c→0

√
cσdW (r) + op (cdr)

δcφJφ (r + c)
L
=
c→0

σ [W (r + c)−W (r)] + op (c) (B.14)

Hence (fc) becomes∫ 1−c

0

δcφJφ (r + c) dr
L
=
c→0

√
cσW (1) + op (c) . (B.15)
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Now, as regards (dc) ,∫ 1−c

0

Kψ,φ (r) δcφJφ (r + c) dr
L
=
c→0

√
cσ

∫ 1

0

Kψ,φ (r) dW (r) + op (c) (B.16)

Finally, for (gc) we see that,
[
δcdrφ Jφ (r + cdr)

]2
= σ2cdr + op (cdr) so (gc) rewrites as.

∫ 1

c

[
δcφJφ (r)

]2
dr

L
=
c→0

σ2c+ op (c)

C Proof of Proposition 3

C.1 Short horizon

Results for DMS follow from Proposition 1 since estimators are computed by OLS. Now for IMS,

We first consider fixed horizons ρ̂hT =
(
1 + T−1γT

)h
= 1 + hT−1γT + Op

(
T−2

)
, hence the result

for the slope estimator:

T
(
ρ̂hT − 1

)
= hγT +Op

(
T−1

)
. (C.17)

As regards the intercept:

τ̂{h},T =

h−1∑
i=0

ρ̂iT τ̂T =
(
τT + T−1/2πT

) h−1∑
i=0

(
1 + T−1γ{h},T

)i
=
(
τT + T−1/2πT

) h−1∑
i=0

(
1 + iT−1γ{h},T + op

(
T−1γ{h},T

))
= h

(
τT + T−1/2πT

)(
1 +

h− 1

2
T−1γ{h},T

)
= h

(
τT + T−1/2πT

)
+Op

(
T−3/2

)
since

(
τT + T−1/2πT

)
= Op

(
T−1/2

)
. Now

τ{h},T =

h−1∑
i=0

ρiT τT =
fφ (h/T )

fφ (1/T )
τT = h

ψ√
T

(
1 +

h− 1

2T
+O

(
1

T 2

))
and

T 1/2
(
τ̂{h},T − τ{h},T

)
= hπ0 +Op

(
T−1

)
. (C.18)

Now, letting h = bcT c, we see that ρhT = ehφ/T = ecTφ and h−1/2ρ
{h}
T τT = T−1

fφ (cT )

fφ (1/T )
c
−1/2
T ψ.

Also, by definition γT = T (ρ̂T − 1)⇒ γ0. The estimated slope therefore converges to

ρ̂hT =
(
1 + T−1γT

)h
=
(
1 + h−1cT γT

)h
= eh log(1+h−1cT γT ) ⇒ ecγ0 ,

hence

ρ̂hT − 1⇒ ecγ0 − 1 = fγ0 (c) γ0.
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Similarly, we obtain the asymptotic distribution:

(
ρ̂
{h}
T τ̂T − ρ{h}T τT

)
=

[(
h−1∑
i=0

{
elog(1+h

−1cT γT )
}i)

τ̂T −

(
h−1∑
i=0

eiφ/T

)
τT

]

=

[
flog(1+h−1cT γT ) (h)

flog(1+h−1cT γT ) (1)

(
τT + T−1/2πT

)
− fφ (h/T )

fφ (1/T )
τT

]
= T 1/2

[
cT
fh log(1+h−1cT γT ) (1)

flog(1+h−1cT γT ) (1)
− fφ (h/T )

fφ/T (1)

]
ψ

+ T 1/2cT
fh log(1+h−1cT γT ) (1)

flog(1+h−1cT γT ) (1)
πT ,

and hence the convergence:

T−1/2
(
ρ̂
{h}
T τ̂T − ρ{h}T τT

)
⇒
[
c
fcγ0
f0 (1)

− fφ (c)

f0 (1)

]
ψ + c

fcγ0
f0 (1)

π0

= [fγ0 (c)− fφ (c)]ψ + fγ0 (c)π0. (C.19)

C.2 Long Horizon

We first focus on the IMS forecast error and apply the short horizon results derive previously to

êh|T = yT+h −
(
τ̂{h},T + ρ̂hT yT

)
. Then,

ê∗c,T = c
−1/2
T YT (1 + cT )− h−1/2ρ̂{h}T τ̂T − c−1/2T ρ̂hTYT (1)

= c
−1/2
T YT (1 + cT )− c−1/2T ρhTYT (1)

− h−1/2ρ{h}T τT − h−1/2
(
ρ̂
{h}
T τ̂T − ρ{h}T τT

)
− c−1/2T

(
ρ̂hT − ρhT

)
YT (1) .

Given that ρhT = ehφ/T = ecTφ and h−1/2ρ
{h}
T τT = T−1

fφ (cT )

fφ (1/T )
c
−1/2
T ψ, the scaled forecast error

ê∗c,T = h−1/2êh|T can be decomposed into

ê∗c,T = c
−1/2
T

(
YT (1 + cT )− ecTφYT (1)

)
− T−1

fφ (T−1)
fφ (cT ) c

−1/2
T ψ − c−1/2T T−1/2

(
ρ̂
{h}
T τ̂T − ρ{h}T τT

)
− c−1/2T

(
ρ̂hT − 1− φfφ (cT )

)
YT (1) ,

where the estimated slope converges as ρ̂hT ⇒ ecγ0 . Recall the definition of
(
π{c}, γ{c}

)
, then

√
cT ê
∗
c,T ⇒ Kψ,φ (1 + c)− ecφKψ,φ (1)

− fφ (c)ψ − π{c}
−
(
γ{c} − φfφ (c)

)
Kψ,φ (1) (C.20)

and the IMS part of the theorem follows, using Expression (C.19).
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By contrast the multi-step forecast error is much simpler:

ẽh|T = yT+h − ỹT+h|T = (τh,T − τ̃h,T ) +
(
ρhT − ρ̃h,T

)
yT +

h−1∑
j=0

ρjT εT+h−j ,

but now the rates of convergence of estimators differ since T−1/2 (τ̃h,T − τh,T )⇒ πc and
(
ρ̃h,T − ρhT

)
⇒

γc + 1− λc. This leads to

T−1/2ẽh|T ⇒ −πc − (γc + 1− λc)Kψ,φ (1) +K0,φ (1 + c)− λcK0,φ (1)

or, rewriting with the scaled forecast error, since bcT c−1/2 ẽh|T = h−1/2ẽh|T

ẽ∗c,T ⇒ c−1/2 {−πc − (γc + 1− λc)Kψ,φ (1) +K0,φ (1 + c)− λcK0,φ (1)} (C.21)

and hence the results.

Independence between Kψ,φ (1 + c)−ecφKψ,φ (1) and the remainders of the RHS of expressions

(C.20) and (C.20) follows from uncorrelatedness and Gaussianity.

D Proof of Proposition 7

We use the definition:

zt = αh + βhyt−h + ωh,t (D.22)

with

(αh, βh) =
(
α+ βτT ρ

{h−1}
T , βρh−1T

)
, ωh,t = β

h−1∑
i=1

ρh−1−iT εt−h+i + εt;

and let νt = (εt, εt) so ωh,t =
(

1, β
∑h−1
i=1 ρ

i−1
T Li

)′
νt. Let first h ∈ [1, T ) be fixed, then T−1/2

∑bTrc
t=h νt ⇒

H (r) implies

T−1/2
bTrc∑
t=h

ωh,t ⇒ (1, (h− 1)β)
′
H (r) (D.23)

whereas if h = bcT c , then{
T−1/2ωbcTc,brTc ⇒ (0 : β) δcφGφ (r)

T−3/2
∑bTrc
t=h ωh,t ⇒ (0 : β)

∫ r
c
δcφGφ (s) ds.

(D.24)

This proves (ah) and (ac) using the definition of Jφ. In the following, we use H = (H,σW ) and for

all i,

Ξi =

[
ξε (i) ξε,ε (i)

ξε,ε (i) ξε (i)

]
.
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Now for (bh) and (bc) , i.e. the distribution of
∑bTrc
t=h xt−hωh,t. We assume throughout that

β 6= 0. Using yt−h = β−1 (zt−h+1 − α− εt−h+1), replacing it in Expression (D.22) we get an

expression similar to the multi-step forecasting model

zt =
(
α
(
1− ρhT

)
+ βτT ρ

{h}
T

)
+ ρhT zt−h + wh,t (D.25)

where wh,t = ωh+1,t − ρhT εt−h and w0,t = 0. Letting h = 1 in Expression (D.25) yields zt =

(α (1− ρT ) + βτT ) + ρT zt−1 + w1,t, where w1,t = εt − ρεt−1 + βεt−1. The intercept above is the

sum of two terms, βτT = O
(
T−1/2

)
and α (1− ρT ) = O

(
T−1

)
so we may disregard the impact of

α when using the results we derived in univariate forecasting.

To apply the results from the forecasting section, we need to compute the covariance function

of wh,t,

ξwh (i) = Cov

εt − ρhT εt−h + β

h∑
j=1

ρj−1T εt−j , εt−i − ρhT εt−h−i + β

h∑
j=1

ρj−1T εt−j−i


= ξε (i)− ρhT ξε (h+ i) + β

h∑
j=1

ρj−1T ξε,ε (j + i)

− ρhT ξε (h− i) + ρ2hT ξε (i)− ρhTβ
h∑
j=1

ρj−1T ξε,ε (j − h+ i)

+ β

h∑
j=1

ρj−1T ξε,ε (j − i)− ρhTβ
h∑
j=1

ρj−1T ξε,ε (j − h− i) + β2
h∑
j=1

h∑
k=1

ρj+k−2T ξε (k − j + i)

=
(
1 + ρ2hT

)
ξε (i)− ρhT [ξε (h+ i) + ξε (h− i)]

+ β

 h∑
j=1

ρj−1T

[
ξε,ε (j + i) + ξε,ε (j − i)− ρhT [ξε,ε (j − h+ i) + ξε,ε (j − h− i)]

]
+ β2

h∑
j=1

h∑
k=1

ρj+k−2T ξε (k − j + i)

with variance

ξwh (0) =
(
1 + ρ2hT

)
ξε (0)− 2ρhT ξε (h) + 2β

 h∑
j=1

ρj−1T

[
ξε,ε (j)− ρhT ξε,ε (j − h)

]
+ β2

h∑
j=1

h∑
k=1

ρj+k−2T ξε (k − j) ,

and long run variance ξwh =
(
1− ρhT

)2
ξε + 2β

(1−ρhT )
2

1−ρT ξε,ε + β2
(

1−ρhT
1−ρT

)2
ξε. Specifically for h = 1
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the expressions become

ξw1 (0) =
(
1 + ρ2T

)
σ2
ε + β2σ2

ε − 2β (ρT ξε,ε (0)− ξε,ε (1))

ξw1
(i) =

(
1 + ρ2T

)
ξε (i)− ρT [ξε (i+ 1) + ξε (i− 1)]

− β [ρT (ξε,ε (i) + ξε,ε (−i))− (ξε,ε (i+ 1) + ξε,ε (1− i))]

+ β2ξε (i)

with long run variance ξw1
=
∑∞
i=−∞ ξw1

(i) = (1− ρT )
2
ξε + 2 (1− ρT )βξε,ε + β2ξε. From the

assumption w1,t = ((1− ρTL) , βTL)
′
νt, it follows that

T−1/2
bTrc∑
t=1

w1,t = T−1/2

εbTrc + (1− ρT , β)
′
bTrc−1∑
t=1

νt + (−ρT , β)
′
ε0


⇒ (0, β)

′
H (r) = βσW (r)

hence T−1/2
∑brTc
t=1 zt ⇒ βKψ,φ (r) . Also for fixed h, T−1/2

∑brTc
t=h wh,t ⇒ hβσW (r) , whereas for

h/T → c > 0

T−1/2wh,bTrc ⇒ βδcφJφ (r) , T−3/2
T∑
t=h

wh,t ⇒ β

∫ 1

c

δcφJφ (r) dr, T−2
T∑
t=h

w2
h,t ⇒ β

∫ 1

c

[
δcφJφ (r)

]2
dr.

To derive the required results using those on univariate forecasting, we rewrite:

bTrc∑
t=h

yt−hωh,t = β−1
bTrc∑
t=h

(
zt−(h−1) − α− εt−h+1

) (
wh−1,t + ρh−1T εt−h+1

)
= β−1

bTrc∑
t=h

zt−(h−1)wh−1,t + ρh−1T

bTrc∑
t=h

zt−(h−1)εt−(h−1) − α
bTrc∑
t=h

ωh,t −
bTrc∑
t=h

εt−(h−1)ωh,t


(D.26)

The asymptotic distribution of the first term on the RHS is derived from the multi-step forecasting

model, Proposition 1,

T−1
T∑

t=h−1

zt−(h−1)wh−1,t ⇒ (h− 1)β2σ

∫ 1

0

Kψ,φdW +
1

2

[
(h− 1) ξwh−1

− ξwh−1
(0)
]

T−2
T∑

t=bcT−1c

zt−wbcT−1c,t ⇒ β2

∫ 1

c

Kψ,φ (r − c) δcφJφ (r) dr − 1

2
cβ2ψ2e−φc [fφ (c)]

2

For the other terms, we start with with

bTrc∑
t=h

zt−(h−1)εt−(h−1) = α

bTrc∑
t=h

εt−(h−1) + β

bTrc∑
t=h

yt−hεt−(h−1) +

bTrc∑
t=h

ε2t−(h−1)
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where

bTrc∑
t=h

yt−hεt−(h−1) =

bTrc∑
t=h

t−h∑
i=1

ρt−iT (τT + εi) εt−(h−1) + op (T )

= τT

bTrc∑
t=h

(
t−1∑
i=h

ρiT

)
εt−(h−1) +

bTrc∑
t=h

t−h∑
i=1

ρt−iT εiεt−(h−1) + op (T )

Hence, starting with h fixed, noticing that

E
T∑
t=h

t−h∑
i=1

ρt−iT εiεt−(h−1) =

T∑
t=h

t−h∑
i=1

ρt−iT ξε,ε (t− (h− 1)− i)

= ρh−1T

T−h∑
i=1

(T − (h− 1)− i) ρiT ξε,ε (i)

= [T − (h− 1)] ρh−1T

T−h∑
i=1

ρiT ξε,ε (i)− ρh−1T

T−h∑
i=1

iρiT ξε,ε (i)

hence for fixed h since
∑∞
i=1 iξε,ε (i) < ∞, and using the weak law or large numbers for non-

identically distributed processes (see e.g. Andrews, 1988), T−1
∑T
t=h

∑t−h
i=1 ρ

t−i
T εiεt−(h−1)

p→
∑∞
i=1 ξε,ε (−i) ,

and

T−1
T∑
t=h

yt−hεt−(h−1) ⇒
∫ 1

0

Kψ,φ (s) dH (s) +

∞∑
i=1

ξε,ε (−i)

T−1
bTrc∑
t=h

zt−(h−1)εt−(h−1) ⇒ β

∫ 1

0

Kψ,φ (s) dH1 (s) + β

∞∑
i=1

ξε,ε (−i) + σ2
ε .

Now if h = bcT c ,
∑bTrc−h
i=h−1 ρt−iT

(
εiεt−(h−1) − ξε,ε (t− (h− 1)− i)

)
= Op

(√
T
)

and

T−h∑
i=1

ρiT ξε,ε (−i) =

T−h∑
i=1

ξε,ε (−i) +
φ

T

T−h∑
i=1

(
1 +

i

2!T
+ ...

)
iξε,ε (−i)

=

∞∑
i=1

ξε,ε (−i) +O
(
T−1

)
hence T−1

∑T
t=h yt−hεt−(h−1) ⇒

∫ 1−c
0

Kψ,φ (s) dH (s) + (1− c) eφc
∑∞
i=1 ξε,ε (−i) , and

T−1
T∑
t=h

zt−(h−1)εt−(h−1) ⇒ β

∫ 1−c

0

Kψ,φ (s) dH1 (s) + β (1− c) eφc
∞∑
i=1

ξε,ε (−i) + (1− c)σ2
ε .

Now the third term in (D.26) is
∑
t ωh,t whose asymptotic behavior depends on the rate of h:

for fixed h

T−1/2
brTc∑
t=h

ωh,t ⇒ H (r) + hβσW (r)

36



whereas for h/T → c > 0

T−1/2ωbcTc,bTrc ⇒ βδcφJφ (r) , T−3/2
T∑

t=bcTc

ωbcTc,t ⇒ β

∫ 1

c

δcφJφ (r) dr,

T−2
T∑

t=bcTc

ω2
bcTc,t ⇒ β

∫ 1

c

[
δcφJφ (r)

]2
dr.

The fourth term in (D.26) is

∑
t

εt−(h−1)ωh,t =
∑
t

(
β

h−1∑
i=1

ρi−1T εt−(h−1)εt−i + εt−(h−1)εt

)

= β
∑
t

h−1∑
i=1

ρh−1−iT εt−(h−i)εt−(h−1) +
∑
t

εt−(h−1)εt

so for h fixed, T−1
∑bTrc
t=h εt−(h−1)ωh,t ⇒ β

∑h−1
i=1 ξε,ε (1− i) + ξε (h− 1), and if h = bcT c ,∑bTrc

t=h

∑h−1
i=1 ρ

h−1−i
T εt−h+iεt−(h−1) = Op (T ).

We now collect all the terms, starting with h/T → c

T−2
T∑
t=h

yt−hωh,t = β

∫ 1

c

Kψ,φ (r − c) δcφJφ (r) dr − 1

2
cβψ2e−φc [fφ (c)]

2

and if h fixed,

T−1
T∑
t=h

yt−hωh,t =

∫ 1

0

Kψ,φd (H1 + (h− 1)βσW ) +$h

with

$h =
1

2β

[
(h− 1) ξwh−1

− ξwh−1
(0)
]

+
1

β

[
σ2
ε − ξε (h− 1)

]
+

∞∑
i=1

ξε,ε (−i)−
h−1∑
i=1

ξε,ε (1− i)

where

ξwh−1
=
(
1− ρh−1T

)2
ξε + β

(
1− ρh−1T

)2
1− ρT

ξε,ε + β2

(
1− ρh−1T

1− ρT

)2

ξε.

ξwh−1
(0) =

(
1 + ρ

2(h−1)
T

)
ξε (0)− 2ρh−1T ξε (h)

+ 2β

h−1∑
j=1

ρj−1T

[
ξε,ε (j)− ρh−1T ξε,ε (j − (h− 1))

]
+ β2

h−1∑
j=1

h−1∑
k=1

ρj+k−2T ξε (k − j)

37



so

(h− 1) ξwh−1
− ξwh−1

(0)

=
(

1 + ρ
2(h−1)
T

)
[(h− 1) ξε − ξε (0)]− 2ρh−1T [(h− 1) ξε − ξε (h)]

+ 2β

h−1∑
j=1

ρj−1T

[
(h− 1) ξε,ε − ξε,ε (j)− ρh−1T [(h− 1) ξε,ε − ξε,ε (j − (h− 1))]

]
+ β2

h−1∑
j=1

h−1∑
k=1

ρj+k−2T [(h− 1) ξε − ξε (k − j)]

and

$h =
1

2β

[
(h− 1) ξwh−1

− ξwh−1
(0)
]

+
1

β

[
σ2
ε − ξε (h− 1)

]
+

∞∑
i=h+1

ξε,ε (−i)− ξε,ε (0)

=
1

2β

(
[(h− 1) ξε + ξε (0)] + ρ

2(h−1)
T [(h− 1) ξε − ξε (0)]

)
− 1

β
ρh−1T [(h− 1) ξε − ξε (h)]− 1

β
ξε (h− 1)

+

∞∑
i=1

ξε,ε (−i)−
h−1∑
i=1

ξε,ε (1− i)

+

h−1∑
j=1

ρj−1T

[
(h− 1) ξε,ε − ξε,ε (j)− ρh−1T [(h− 1) ξε,ε − ξε,ε (j − (h− 1))]

]
+
β

2

h−1∑
j=1

h−1∑
k=1

ρj+k−2T [(h− 1) ξε − ξε (k − j)]

Notice that if εt is not autocorrelated then

(h− 1) ξε + ξε (0) = hσ2
ε and (h− 1) ξε − ξε (0) = (h− 2)σ2

ε , (D.27)

if ξε,ε = ξε,ε (0) = σε,ε, i.e. the cross correlation is only contemporaneous:

∞∑
i=1

ξε,ε (−i)−
h−1∑
i=1

ξε,ε (1− i) +

h−1∑
j=1

ρj−1T

[
(h− 1) ξε,ε − ρh−1T [(h− 1) ξε,ε − ξε,ε (j − (h− 1))]

]

=

 (1−ρh−1
T )

2

1−ρT (h− 1)σε,ε − ρ2h−3T σε,ε − σε,ε h ≥ 2

0 h = 1

and finally if εt is not autocorrelated

β

2

h−1∑
j=1

h−1∑
k=1

ρj+k−2T [(h− 1) ξε − ξε (k − j)] =
β

2

1− ρ2(h−1)T

1− ρ2T
hξε
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Under these assumptions for h ≥ 2

$h =
1

2β

(
h− 2ρh−1T (h− 1) + ρ

2(h−1)
T (h− 2)

)
σ2
ε

+

(
1− ρh−1T

)2
1− ρT

(h− 1)σε,ε −
(
1 + ρ2h−3T

)
σε,ε +

β

2

1− ρ2(h−1)T

1− ρ2T
hξε

=
σ2
ε

2β

(
1− ρh−1T

) (
h
(
1− ρh−1T

)
+ 2ρh−1T

)
+

(
1− ρh−1T

)2
1− ρT

(h− 1)σε,ε −
(
1 + ρ2h−3T

)
σε,ε +

β

2

1− ρ2(h−1)T

1− ρ2T
hσ2

ε

and $1 = 0.

E Proof of Corollary 8

We assume β = 0. From the assumption νt = ((1− ρTL) , 0)
′
(εt, εt), it follows that

bTrc∑
t=1

νt = εbTrc + (1− ρT )

bTrc−1∑
t=1

εt + (−ρT : 0) ε0

= εbTrc − ε0 + op (1) = Op (1)

From (5), zt+h = α+ εt+h = α+ ωh,t+h with ωh,t+h = εt+h. Therefore, if as T →∞, h ∈ [1, T ) is

fixed

T−1/2
bTrc∑
t=h

ωh,t ⇒ H (r) (E.28)

and if h/T → c, then{
T−1/2ωbcTc,brTc ⇒ 0

T−1/2
∑bTrc
t=h ωh,t ⇒ H (r)−H (c) .

(E.29)

This proves (ah) and (ac) using the definition of Jφ. Now for (bh) and (bc) ,i.e. the distribution of

T∑
t=h

yt−hωh,t =

T∑
t=h

(
eφ(t−h)/T y0 + ψT−1/2

fφ ((t− h) /T )

fφ (1/T )
+
∑t−h−1

i=0
eφi/T εt−h−i

)
εt

Hence for h fixed T−1
∑T
t=h yt−hωh,t ⇒

∫ 1

0
Kψ,φ (s) dH (s) +

∑∞
i=h ξε,ε (i) , and as h/T → c,∑∞

i=h ξε,ε (i)→ 0 so

T−1
T∑
t=h

yt−hωh,t ⇒
∫ 1

c

Kψ,φ (s− c) dH (s) .
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