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Abstract

There exist situations where the transportation cost is better estimated as a function of the number

of vehicles required for transporting a load, rather than a linear function of the load. This provides

a stepwise cost function, which defines the so-called Modular Hub Location Problem (MHLP, or HLP

with modular capacities) that has received increasing attention in the last decade.

In this paper, we consider formulations to be solved by exact methods. We show that by choosing

a specific generalized linear cost function with slope and intercept depending on problem data, one

minimizes the measurement deviation between the two cost functions and obtains solutions close to

those found with the stepwise cost function, while avoiding the higher computational complexity of the

latter. As a side contribution, we look at the savings induced by using direct shipments in a hub and

spoke network, given the better ability of a stepwise cost function to incorporate direct transportation.

Numerical experiments are conducted over benchmark HLP instances of the OR-library.

1 Introduction

Hubs are facilities that enable to decrease the number of transportation links between origins and desti-

nations in many-to-many distribution systems. They play an important role for several purposes such as

consolidation, switching, connection and sorting points in a large number of businesses and industries. The

smaller number of links required, as well as the economy of scale provided by consolidation of the loads

are the main incentives for a hub and spoke transportation system. The consolidation happens all over the

transportation network: on the routes from origins to hubs, from hubs to destinations, and between the

hubs. Considering the higher amounts of load between the hubs, larger transportation modes may be used,

which results in lower per-unit costs. The telecommunication industry, airline industry, postal delivery,
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public transit, maritime industry and freight transportation companies are areas that benefit from hubs.

The Hub Location Problem (HLP) consists of locating hub facilities, as well as allocating supply and

demand nodes to the hubs in order to route the traffic between origin-destination (O-D) pairs. The

objective is to minimize the total transportation cost of the distribution network system. This problem

first appeared in Toh and Higgins (1985), where the authors discussed the application of hub location

in the airline industry. It was followed then by O’Kelly (1986) and Campbell (1994) who presented the

first mathematical formulation and first integer programming formulation for the problem. Later, Skorin-

Kapov et al. (1996) proposed a tighter integer programming formulation, which has been widely used in

the literature.

Due to the wide applications of the HLP, the problem has been studied under different assumptions and

settings: piecewise linear cost function (O’Kelly and Bryan 1998, Ishfaq and Sox 2010), capacitated hubs

Contreras et al. (2012), single versus multiple allocation of the nodes to the hubs (O’Kelly 2012), continuous

p-HLP (Aykin and Brown 1992), fixed costs for establishing hubs (Tanash et al. 2017), hub location under

uncertainty (Contreras et al. 2011b, Alumur et al. 2012, Meraklı and Yaman 2017), or competition (Lüer-

Villagra and Marianov 2013, Mahmutogullari and Kara 2016), multi-period hub location (Gelareh et al.

2015), etc. Different solution approaches were proposed for the problem as well. One can refer to Alumur

and Kara (2008), Campbell and O’Kelly (2012), Farahani et al. (2013), Contreras (2015) for an overview

of different models, classifications and solution approaches in the HLP literature. Moreover, Contreras

and Fernández (2012) provide an overview of hub location models in the context of network design, where

some of the classical HLP assumptions such as the full connectivity of the hubs, or direct connection of all

terminal nodes to the hubs are relaxed, to attain more efficient or effective transportation networks.

The majority of hub location research assumes a simple function for the transportation cost, with

a cost rate (per unit of flow and unit distance) that is discounted on the arcs between hubs, to reflect

economies of scale from consolidation on these arcs (O’Kelly 1986, Skorin-Kapov et al. 1996, Ebery et al.

2000, Cánovas et al. 2007, Gelareh et al. 2015). In practice however, in airline of trucking companies, these

transportations are usually characterized by the vehicles traveling between the network’s nodes (O’Kelly

et al. 2015), which can lead to using a stepwise cost function associated with the number of vehicles used

on a link. Considering instead simple linear cost functions may not be a good reflection of transportation

network operations in some cases (O’Kelly et al. 2015), and consequently, result in sub optimal decisions.

The Hub Location Problem with a stepwise cost function is often called Modular Hub Location Problem

(MHLP), or HLP with modular capacities, and has received increasing attention in the literature. Studying
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Figure 1: Stepwise vs linear cost functions of the load, when C and Q represent the cost and capacity of
the vehicle

the problem of locating hubs in a telecommunication network, Yaman and Carello (2005) considered a

stepwise cost function for the required capacity to be installed on the links that connect hubs together,

and proposed a heuristic solution for the problem. Tanash et al. (2017) considered a modular HLP in the

context of airline industry, and proposed a Branch-and Bound algorithm for the problem. Other papers

such as Takano and Arai (2009), Corberán et al. (2016) and Hoff et al. (2017) studied similar problems with

a stepwise cost function and developed heuristics to address the complex nature of the problem. Moreover,

there exist relevant articles such as Jaillet et al. (1996), Janic (2007) and Yaman (2008) that consider

similar cost functions for hub location in the context of network design.

Figure 1 illustrates the difference between a stepwise and a linear cost function. In a stepwise cost

function, the transportation cost does not systematically increase as the load increases, but when the

number of required vehicles increases (Figure 1a). On the other hand, the two cost functions imply

different cost-per-unit load (Figure 1b). While a simple linear function assumes a fixed unit cost, in a

stepwise function the cost per unit of load depends on the overall load to be transported; when all vehicles

are full, the per-unit load transportation cost is at the lowest, while having a relatively empty vehicle would

lead to a higher per-unit transportation cost. In fact, using a simple linear cost function may provide a

rather far estimation of the transportation cost on a link. Such a difference in cost calculation may result

in different location/ allocation decisions than those which would be selected if a stepwise cost function

were used.

However, the MILP formulations with stepwise cost function contain a larger number of integer vari-

ables, which makes it harder to use for larger problems. It is not surprising then that most of the papers

which study the MHLP come up with heuristic solutions.
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To overcome this issue, we seek to approximate the stepwise cost function by a generalized linear

function with a non-zero intercept, which could refer to the fixed (or sunk) cost of vehicle(s) required for

the transportation. Although there exist a number of papers in the HLP literature that consider such a

linear cost function (Adler and Smilowitz 2007, O’Kelly 2012, O’Kelly et al. 2015), none of these research

define their linear functions as approximations of stepwise functions, nor provide analyses for that purpose.

We determine the slope and intercept of the linear function so that the expected total transportation cost

is the same for both stepwise and linear functions. Our results show that the optimal decisions found under

these two cost functions are most often very close.

Indeed, comparing two HLP formulations, one with stepwise and another with a linear cost function,

our findings indicate a strong correlation between the difference in the total transportation cost computed

by the two formulations on one hand, and their difference in their optimal location/ allocation decisions

on the other.

In order to develop our analysis, we focus on one of the most common settings in the HLP literature:

the Uncapacitated Single Allocation HLP, where hubs are fully connected and each node is exclusively

allocated to one hub. Fully inter-connected hubs are common in practice and arise in a broad range of

applications (Contreras and Fernández 2012). Moreover, restricting the non-hub nodes to be connected to

exactly one hub is economically justified in several applications, due to amalgamation of flows into efficient

bundles (Skorin-Kapov et al. 1996).

We also consider the possibility of direct shipments from origins to destinations in a hub and spoke

network with modular capacities, since a stepwise or a generalized linear cost function provide a better

ground to model this feature. Despite its extensive applications in real world problems, only a small fraction

of the HLP literature considers the possibility of direct shipments in the network (SteadieSeifi et al. 2014).

Indeed, there are several occasions where it is more economic to send the flow directly from the origin

to the destination. Other concerns such as the preference of passengers for direct flights in the airline

industry (Aykin 1994), or benefiting from the existing train lines in railroad transportation (Racunica and

Wynter 2005), make the direct shipment inevitable for many applications. Our results indicate a significant

reduction in transportation cost by incorporating direct shipments in the MHLP, and this cost reduction

is decreasing in the shipment frequency throughout the supply chain.

The paper is structured as follows. Section 2 provides the MILP formulations for the MHLP as well

as a generalized linear cost function. Section 3 compares the stepwise and the generalized linear cost

functions, and provides linear approximations of the stepwise cost function, as well as an approximation of
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the deviation between the total cost, computed by a stepwise and a linear function. Section 4 extends the

formulations to incorporate the possibility of direct shipments. The computational results and managerial

insights are reported in Section 5, together with managerial insights. Finally, Section 6 concludes the

paper.

2 MILP formulations

Consider a set V of demand nodes, where each node is a potential location for setting up a hub. We assume

an Uncapacitated Single Allocation HLP, where each node is allocated to only one hub, and all hubs are

connected. For simplicity, hereinafter we refer to links that connect the terminal nodes to their hubs as

c/d links (collection/distribution), and the links that connect two hubs as h/h links. We assume c/d links

use small vehicles of capacity Q2, and a unit cost per load and distance of C2, while h/h links use larger

vehicles of capacity Q1 > Q2 and unit cost C1 > C2. Economies of scale of inter-hub transportation imply

that C1

Q1
< C2

Q2
.

Assuming modular capacities over the links, the transportation cost does not increase linearly in the

load, but rather as a stepwise function of the number of vehicles, as in Jaillet et al. (1996), Hoff et al.

(2017). It calculates the transportation cost of a load L over a distance d as

Coststp(L) = C

⌈
L

Q

⌉
d, (1)

where Q is the capacity of the vehicle, C represents the cost per distance unit of that vehicle (possibly

including fuel, maintenance, insurance, driver costs, etc.) and dxe denotes the smallest integer larger than

or equal to x. An HLP formulation with a stepwise cost function encourages solutions with higher load

aggregation and is sparing in the use of linkages and vehicles.

Let Lij denote the load to be transported from node i to node j, and dij the distance between nodes i

and j. We note V ci = d
∑
j Lij

Q2
e the number of vehicles required to collect the load from node i to its related

hub, and V dj = d
∑
i Lij
Q2
e the number of vehicles required to distribute the loads to node j from its hub.

The decision variables for the Modular Hub Location Problem (MHLP) are:

• Yik = 1 if node i is allocated to the hub at location k, and 0 otherwise;

• Zijkm = 1 if the load shipped from node i to j transits through hubs k and m, and 0 otherwise.

• V
h/h
km : the number of large vehicles used to transport the load from hub k to hub m.

The Modular Hub Location Problem (MHLP) under the uncapacitated single-allocation assumption can

be written as follows.
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min
∑
i

∑
k

C2dikV
c
i Yik +

∑
k

∑
m

C1dkmV
h/h
km +

∑
j

∑
m

C2dmjV
d
j Ymj (2)

s.t.
∑
k

Ykk = p (3)

∑
k

Yik = 1 ∀i (4)

Yik ≤ Ykk ∀i, k (5)∑
m

Zijkm = Yik ∀i, j 6= i, k (6)

∑
k

Zijkm = Yjm ∀i, j 6= i,m (7)

∑
i

∑
j

LijZijkm ≤ Q1V
h/h
km ∀k,m 6= k (8)

V
h/h
km ∈ Z+ ∀k,m (9)

Zijkm ≥ 0, Yik ∈ {0, 1} ∀i, j, k,m (10)

The terms in Equation (2) calculate the cost of vehicles used for collection, inter-hub transportation, and

distribution respectively. Constraint (3) implies that p hubs have to be located. Constraints (4) state that

each node is allocated to only one hub. Constraints (5) imply that to allocate a node i to node k, a hub

has to be constructed at location k. Constraints (6) and (7) relate variables Y to variables Z, and imply

that if Zijkm = 1 then Yik = Ymj = 1. Constraints (8) compute the number of vehicles on each h/h link

as V
h/h
km = d

∑
i

∑
j LijZijkm/Q1e. Finally, Constraints (10) and (9) determine the type of each variable.

Note that a similar formulation was studied in Tanash et al. (2017). There exist other formulations

for the Modular HLP in the literature, such as the formulation with quadratic constraints in Yaman and

Carello (2005), Hoff et al. (2017), or the flow-based formulation of Tanash et al. (2017). However, since

the focus of the current research is on the tradeoff between different cost functions, and all formulations

provide the same integer solution, we use the current path-based MILP formulation to study the choice

between stepwise and linear functions.

Due to the large number of integer variables, the above MHLP formulation is likely to be intractable

for medium-size problems. For example, for a similar formulation, Tanash et al. (2017) developed a branch

and bound algorithm that solves instances up to size n = 40 whereas, for the classical HLP, instances of size

200 and up to 500 could be solved, using Benders-Decomposition techniques (Contreras et al. 2011a). Since

the formulations with linear cost functions allow to solve larger problems to optimality, we approximate
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the stepwise cost with a linear function. Such a function should allow for a non-zero intercept, to consider

the fixed cost of using vehicles over a transportation link, and has been used in the literature (Adler and

Smilowitz 2007, O’Kelly 2012, O’Kelly et al. 2015). We refer to this function as Generalized Linear Cost

(GLC) function, and define it as:

Costlin(L) = (aL+ b)d (11)

where a and b represent the slope (e.g. cost rate) and the intercept (e.g. fixed cost) of transportation cost

function respectively. Based on Equation (11) we define the HLP with Generalized Linear Cost function

(HLP-GLC) formulation as follows:

min
∑
i

∑
k

(b2Yik + a2
∑
j

∑
m

ZijkmLij)dik +
∑
j

∑
m

(b2Yjm + a2
∑
i

∑
k

ZijkmLij)djm

∑
k

∑
m

(b1wkm + a1
∑
i

∑
j

ZijkmLij)dkm (12)

s.t. wkm ≥ Ykk + Ymm − 1 ∀k,m (13)

Constraints (3) to (7), (10)

wkm ≥ 0 ∀i, j (14)

where a1 and b1 represent the slope and intercept of the linear cost function on h/h links, while a2 and

b2 identify the cost function on c/d links, and auxiliary variable wkm is equal to 1 if nodes k and m are

both hubs, and 0 otherwise. The terms in the objective function (12) refer to the collection cost, inter-hub

transportation cost and distribution cost, respectively. Constraints (13) determine if the link between

nodes k and m is a h/h link. Note that similarly to Zijkm, variables wkm only take binary values in the

optimal solution. The HLP-GLC formulation reduces to the Skorin-Kapov et al. (1996) formulation by

setting b1 = b2 = 0. Thus, regardless of the linear cost function’s intercept, hereinafter we refer to the

MILP formulations that use a linear cost function as HLP-GLC.

Both formulations above reduce to the classical HLP formulation of Skorin-Kapov et al. (1996), by

removing Constraints (8) and (9) from the MHLP formulation, and Constraints (13) and (14) from the

HLP-GLC formulation, as well as replacing the objective function with

min
∑
i

∑
j

∑
k

∑
m

Lij(a2dik + a1dkm + a2dmj)Zijkm (15)

with a1 = αa2, where α ≤ 1 is a discount factor to address economies of scale over h/h links.

In the next section, we introduce a way to define the slope a and intercept b of the linear cost function of

Equation (11), so that the expected measurement deviation between the linear and stepwise cost functions
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is minimized. Furthermore, we estimate the expected deviation between the two cost functions for any

given parameters a and b.

3 Comparison of linear vs stepwise formulations

3.1 Notations and probabilistic assumptions

For a given link l with a total flow of Ll, we define the measurement deviation between the transportation

costs computed by both the stepwise and the linear cost functions as εl = Coststp(l)−Costlin(l). Now, let

Y be an arbitrary solution of the HLP (i.e., location of the hubs and allocation of the terminal nodes to

these hubs are given). Using the linear cost function of Equation (11), we calculate the total linear cost of

Y , TClin(Y ) =
∑
l∈Y Costlin(l), where l ∈ Y refers to the subset of links used in solution Y . Similarly, we

can calculate the stepwise cost of Y as TCstp(Y ) =
∑
l∈Y Coststp(l). The two values are not necessarily

the same, and we refer to the difference as the measurement deviation, denoted by ε:

ε(Y ) = TCstp(Y )− TClin(Y ) =
∑
l∈Y

εl (16)

Now assume Y ∗stp and Y ∗lin are optimal solutions of the MHLP and the HLP-GLC formulations, respectively.

If the location/allocation decisions of Y ∗stp and Y ∗lin are not identical, they are likely to result in different

stepwise costs, i.e. TCstp(Y
∗
lin) 6= TCstp(Y

∗
lin). We refer to this gap as the solution gap δ between the

optimal solutions of the two formulations:

δ = TCstp(Y
∗
lin)− TCstp(Y ∗stp) ≥ 0. (17)

We use δ as an indicator of the sub-optimality of the HLP-GLC’s solutions, when compared to those

of the MHLP. Due to the higher tractability of the HLP-GLC formulations, one may prefer HLP-GLC

over MHLP as long as the solution gap δ is small. Although it is hard to infer some bound for δ in

general, our numerical results in Section 5 show that a linear cost function that in average, results in a

smaller measurement deviation ε for any given solution, is more likely to find optimal solutions with smaller

solution gaps δ as well. Therefore, for a given stepwise cost we need to find a linear approximation with

the minimum measurement deviation.

In case we know the exact load on a link l, we can define a linear cost function specific to l that results

in εl = 0. Assume a load L to be transported using vehicle(s) of capacity Q and cost per unit distance of

C; in this case, such a linear approximation of form (aL+ b)d is given by:

a =

⌈
L

Q

⌉
C

L
, b = 0. (18)
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In a modular HLP, the above cost function is applicable for the c/d links of the HLP-GLC model presented

in Section 2, since the total load to be transported from a node to its associated hub is known. However,

this approach is not applicable to the h/h links, as the total flow on a link depends on the allocation of

terminal nodes to the hubs. Moreover in some applications, a unique cost function for all links of the same

type (e.g. all c/d links) may be preferred.

Therefore, we need to define a generalized linear function for a family of links that share the same

stepwise function, e.g. c/d links or h/h links. Since the flow on each link depends on factors such as the

load matrix and location/allocation decisions, and is not known before solving the problem, we design

a probabilistic study to find a linear approximation of the stepwise function that in average, has a zero

measurement deviation for that family of links, i.e. El(εl) = 0 .

We assume that for all O-D pairs (i, j), the load Lij is a random variable with expected value of

µ̂ = E[Lij ] and variance σ̂2. For the numerical purposes, these parameters can be calculated from the load

matrix.

Let random variable Ll be the total flow passing over link l. This implies that Ll is the sum of a number

nl of loads Lij that pass through link l. According to the Central Limit Theorem (CLT), as nl increases

the distribution of Ll tends to a Normal distribution; the speed of convergence depends on the distribution

of Lijs. For example, according to Renyi (1970), the sum of n random variables with identical uniform

distributions follows an Irvin-Hall distribution, that is very close to a Normal distribution even for small

values of n, typically n ≥ 4 (Killmann and von Collani 2001). Indeed, even for relatively small or medium

networks with tens of demand points, the load on each c/d or h/h link would consist of several O-D loads,

which is enough to satisfy the CLT, regardless the distribution of Lij . Hence in the sequel, we approximate

the distribution of Ll, f(Ll) by a Normal distribution, i.e. f(Ll) ∼ N (µl, σ
2
l ).

3.2 Best approximation of the stepwise cost function by a generalized linear

function

Theorem 1 specifies the best linear approximation of a stepwise cost function. The resulting linear function

could be used for a family/group of similar links such as h/h or c/d links.

Theorem 1. The best linear approximation of a stepwise cost function with parameters C and Q that

satisfies E[Coststp(Ll)]− E[Costlin(Ll)] = 0 is given by

Costlin(Ll) =
C

Q
Ll + C

(
1

2
+

δl
2Q
−∆l

)
, (19)
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where δl = Q
⌈
2µl
Q

⌉
− 2µl, with µl as the expected load on link l and

∆l =

bµlQ c∑
t=1

∫ tQ

tQ−δl
f(Ll)dLl +

∫ µl

min{µl,dµlQ eQ−δl}
f(Ll)dLl.

All proofs can be found in Appendix A. Note that for a generic link l, the slope C
Q does not depend on the

load’s density function f ; however, this holds true for the intercept, only if µl is a multiple of Q
2 .

Corollary 1. If µl is a multiple of Q/2, then Costlin(Ll) = C
QLl + C

2 .

In case µl is not a multiple of Q
2 , we need to estimate the load’s distribution, f(Ll). Decomposing the

analysis into c/d and h/h links, we have:

(i) For c/d links, the load distribution is

f(Ll) ∼ N
(
(n− 1)µ̂, (n− 1)σ̂2

)
, (20)

since the load carried on a c/d link from terminal node i to its hub is the sum of loads from/to node i

to/from n − 1 other nodes. Thus using the CLT, the load distribution for a randomly selected c/d link

follows Equation (20), which enables to compute b2 using Equation (19).

(ii) For h/h links, we can estimate µl and σl assuming cluster symmetry, i.e., each hub serves n/p customers

(if n/p is fractional, we keep the fractional value for approximation), which enables to consider the same

expected load on all h/h links. Therefore according to the CLT, the load distribution on h/h links is

f(Ll) ∼ N
(
n2

p2
µ̂,
n2

p2
σ̂2

)
. (21)

The numerical results is Section 5 confirm the robustness of this assumption.

Nonetheless, even without any knowledge of the load distribution, one can simply approximate the

intercept of the linear cost function, only based on the cost and capacity of the vehicle being used as

follows.

Corollary 2. When 2µl
Q is large, the GLC function proposed by Theorem 1 can be approximated by a GLC

with slope a = C
Q and intercept b = C

2 .

3.3 Predicting the measurement deviation when using an arbitrary linear cost

function

Using the linear cost functions identified by Theorem 1, results in an expected measurement deviation

equal to zero. However, this may not hold true if other linear functions are being used. Since our results in
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Section 5.1 indicate a positive correlation between the measurement deviation (in absolute value) and the

solution gap, it would be of our interest to approximate the expected measurement deviation between the

stepwise cost and any given linear function. To have a robust measure that is independent of the problem

size or load magnitude, we define the relative measurement deviation ε̃(Y ) as

ε̃(Y ) =
ε(Y )

TClin(Y )

Proposition 1 provides an approximation of the expected relative measurement deviation, ε̂, for a hub and

spoke network.

Proposition 1. An approximation ε̂ of the expected relative measurement deviation E[ε̃(Y )] when using a

linear cost function with slope at and intercept bt as an approximation of a stepwise function with cost Ct

and capacity Qt, assuming symmetry in allocation of terminal nodes to the hubs, is given by

ε̂ =
A1ρp(p− 1) + 2A2(n− p)

b1ρp(p− 1) + a1ρn2
p−1
p µ̂+ 2b2(n− p) + 2a2(n− p)(n− 1)µ̂

(22)

where At = CtE
(⌈

Ll
Qt

⌉)
− atµl − bt, t = 1, 2, and ρ is the ratio of the average length of a h/h link by that

of a c/d link.

For Equation (22), all parameters are known a priori except ρ. In Appendix B we propose a heuristic to

estimate ρ based on the number of hubs p. Moreover, A1 and A2 can be computed by numerical methods,

using the approximations of the load distributions given by Equations (20) and (21). Although we assume

a symmetry in allocation of nodes to the hubs to obtain this result, our results in Section 5.2 show that

the prediction of Proposition 1 is robust, regardless of the allocation of nodes to the hubs or distribution

of the load.

Note that any stepwise cost function of a more general form, such as Coststp = V + (R + CdLQe)d,

where V and R are constants (see Swan and Adler (2006)), can be approximated by a linear function of

the form Costlin = v + (aL + b)d, using Theorem 1 with small modifications. Similarly, Proposition 1 is

applicable to such cost functions with few changes. However, since such cost functions are less common in

the HLP literature, we do not develop this variant in this paper.

4 Extension of formulations to incorporate direct shipments

As mentioned earlier, using direct connections in parallel with through-hub shipments is common in prac-

tice. In this section we incorporate direct shipments into our MILP formulations, MHLP and HLP-GLC.

The incentive is the better ability of a stepwise or a generalized linear function, due to enforcing fixed
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transportation costs, to model direct connections in a hub and spoke network.

With a simple linear cost function (with zero intercept), the transportation cost for direct connections

can be modeled with a higher cost-per-unit rate, e.g. c′ for direct links vs. c for c/d links, with c′ ≥ c. This

implies that regardless of the load magnitude, for any O-D pair (i, j) that c′dij < c(dik+αdkm+dmj), direct

shipment is preferred over transportation through hubs k and m. Consequently, if c′ is not considerably

larger than c, one could expect a significant proportion of shipments –especially between two non-hub

nodes that belong to the same cluster– to be transported directly. Such a solution would require a larger

number of vehicles, with a lower capacity utilization rate and a higher total transportation cost in reality.

This issue, however, is easily solved using a stepwise cost function, since for having a direct shipment the

full capacity cost of required vehicle(s) for that link has to be paid.

To incorporate direct shipments in the MHLP formulation presented in Section 2, we define binary

variables qij which is equal to 1 if j receives its demand from i directly, and 0 otherwise. Without loss of

generality, we assume C3 and Q3 represent the cost and capacity of the vehicles used for direct shipments.

Finally, we define V sij = dLijQ3
e as the number of vehicles required for transporting the load directly from i to

j. Note that unlike Section 2, the vehicles required for collection V cik and distribution V dmj become decision

variables, since part of the flow on the c/d links can be transported by direct shipments and consequently,

less vehicles may be required. The MHLP with direct shipments can be written as

min
∑
i

∑
k

C2dikV
c
ik +

∑
k

∑
m

C1dkmV
h/h
km +

∑
j

∑
m

C2dmjV
d
mj +

∑
i

∑
j

C3dijV
s
ijqij (23)

s.t. Equations (3), (4), (5), (8)∑
k

∑
m

Zijkm + qij = 1 ∀i, j 6= i (24)

∑
j

∑
m

Zijkm ≤MYik ∀i, k (25)

∑
i

∑
k

Zijkm ≤MYjm ∀j,m (26)

∑
l

LilYik −
∑
j

Lijqij ≤ Q2V
c
ik ∀k, i 6= k (27)

∑
l

LljYmj −
∑
i

Lijqij ≤ Q2V
d
mj ∀j,m 6= j (28)

Zijkm ≥ 0, Yij , qij ∈ {0, 1} , V cik, V
h/h
km , V dmj ∈ Z+ ∀i, j, k,m (29)

Constraints (24) state that i sends the load to j either through hubs or by direct shipment. Constraints

12



(6) and (7) in the original model were replaced by constraints (25) and (26) to allow for direct shipments.

In these two constraints, M is a large constant and can be set to n. Finally, constraints (27) and (28)

calculate the number of vehicles required for collection and distribution, respectively.

We can add two additional constraints (30) and (31) to tighten the above formulation by limiting the

definition of direct links to the links that connect two non-hub nodes. Without changing solutions, these

constraints enhance the computational speed:

qij ≤ 1− (Yij + Yji)/2, ∀(i, j) (30)

qij ≤ 2− (Yii + Yjj), ∀(i, j) (31)

Similarly to Section 2, the large number of integer and binary variables makes the above formulation

computationally demanding. Therefore, we need to extend the HLP-GLC formulation to allow solving

larger problems optimally. On the other hand, a positive intercept in the linear cost function could resemble

a sunk cost for assigning a vehicle to direct shipments, which allows for solutions of higher quality.

To incorporate direct shipments in the HLP-GLC formulation, we change the objective function to

min
∑
i

∑
k

(b2Yik + a2
∑
j

∑
m

ZijkmLij)dik +
∑
j

∑
m

(b2Yjm + a2
∑
i

∑
k

ZijkmLij)djm

∑
k

∑
m

(b1wkm + a1
∑
i

∑
j

ZijkmLij)dkm +
∑
i

∑
j

qij (b3 + a3Lij) dij (32)

Moreover, similarly to the extended version of MHLP, we need Equation (24) to relate qij to Zijkm.

Likewise, we can also include Equations (30) and (31) to tighten the formulation.

In order to find a proper linear approximation for the stepwise function on direct links (i.e. linear

parameters a3 and b3), one can consider cost functions specific to each direct link as Equation (18), which

result in zero measurement deviation on these links. Using Corollary 2 on the other hand, provides a

unique linear cost function for all direct connections, which depends only on the vehicle’s characteristic.

Theorem 1 can also be used if the distribution of Lij is known. However, assuming less-than-truck load

for all O-D pairs (i.e. 0 < Lij ≤ Q3,∀ i, j), we can define a3 and b3 in an effective way.

Assuming a3 = C3

Q3
, in order to have a zero expected measurement deviation on the direct links we get:

E
(
C3

⌈
Lij
Q3

⌉)
= E(a3Lij + b3) ⇔ C3 =

C3

Q3
E(Lij) + b3 ⇔ b3 = C3(1− µ̂

Q3
).

Therefore, for the direct links, one can use a unique linear cost function (a3Lij + b3)dij with:

a3 =
C3

Q3
, b3 = C3(1− µ̂

Q3
). (33)
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5 Numerical experiments

This section on numerical results is organized as follows. In Section 5.1, we compare the solution gaps and

measurement deviations for HLP-GLC under different linear cost functions. We discuss about the choice of

proper cost function for a modular HLP, considering factors such as solution gap and computational time.

In Section 5.2 we conduct simulations to test the accuracy and robustness of Proposition 1 regarding the

predicted measurement deviation, and the factors impacting this deviation. In Section 5.3, we compare

the ability of the stepwise and GLC functions to model the impact of shipment frequency in hub and

spoke networks. Finally in Section 5.4, we study the advantages of allowing for direct shipments in hub

distribution systems. To run these tests, we use a computer of 16 GB RAM and 3.60 GHz processor, with

OS Windows 7 and CPLEX 12.6, and a computational time limit of three hours.

5.1 Measuring solution gaps and choosing the proper cost function

As defined in Section 3, the solution gap δ determines how close the optimal decisions of HLP-GLC are

to those of MHLP. This indicator will help to choose an appropriate GLC function to replace with the

stepwise function when the MHLP formulation is computationally intractable. Similarly to Section 3.3, we

define the relative solution gap, δ̃ as

δ̃ =
TCstp(Y

∗
lin)

TCstp(Y ∗stp)
− 1

To have reliable insights on the solution gap δ, we use all three main benchmark datasets in the HLP

literature, namely the CAB dataset of O’Kelly (1987), the AP dataset of Ernst and Krishnamoorthy

(1996) and the Turkish dataset of Tan and Kara (2007).

Regarding the stepwise cost function used in the MHLP formulation, we consider two transportation

modes: large and small trucks with capacities of Q1 = 4.5 and Q2 = 1 tonnes, with costs of C1 = 1.93

and C2 = 1.45 dollars per kilometer respectively1. These parameters result in an α close to the one

recommended by AP data set (0.296 against 0.252). Furthermore, similarly to Contreras and Fernández

(2014), we consider identical collection and distribution costs, as we assume that both are performed by

the same type of vehicle. Finally for simplicity, we assume Q3 = Q2 and C3 = C2, i.e. c/d links and direct

links use the same type of vehicle.

We solve HLP-GLC using four different linear cost functions, and under two scenarios of allowing

or forbidding direct shipments. In the absence of direct shipments, we use the MHLP and HLP-GLC

1The data come from section 14 of the Owner Drivers and Forestry Contractors Act 2005 of Australia
2Value of α according to AP dataset is equal to transfer cost

collection cost
= 0.75

3
= 0.25
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GLC0 GLC1 GLC2 GLC3

c/d links
a = C2

Q2
a = C2

Q2
a = C2

Q2

ai,c = d
∑
j Lij

Q2
e C2∑

j Lij
,

aj,d = d
∑
i Lij
Q2
e C2∑

i Lij

b = 0 b = C2

2 b: from Eq (19),(20) b = 0

h/h links
a = C1

Q1
a = C1

Q1
a = C1

Q1
a = C1

Q1

b = 0 b = C1

2 b: from Eq (19),(21) b: from Eq (19),(21)

direct links
a = C2

Q2
a = C2

Q2
a = C2

Q2
aij = dLijQ2

e
b = 0 b = C2

2 b : C2(1− µ̂
Q2

) b = 0

Table 1: Calibration of the four GLC functions

formulations presented in Section 2, while in the presence of direct shipments, the extended versions of the

formulations presented in Section 4 are used. The four GLC functions are:

• GLC0 with a slope of at = Ct
Qt

for t = 1, 2, 3, and intercept bt = 0; we use this cost function to

represent the HLP formulations with a zero intercept in the literature;

• GLC1 with at = Ct
Qt

and bt = Ct
2 recommended by Corollary 2;

• GLC2 with at = Ct
Qt

and intercepts based on the overall load of the network, i.e. using Theorem 1 for

c/d and h/h links, and Equation (33) for direct links.

• GLC3 where we determine specific cost functions for each c/d1 and direct links, but use Theorem 1

for h/h links.

Table 1 presents the parameters of the four aforementioned GLC functions. To summarize, GLC0

represents a simple linear cost function with zero intercept, GLC1 uses a generalized linear cost function

which only uses vehicle’s cost and capacity, and GLC2 considers the load information as well, to determine

the cost functions. These three cost functions identify a single linear cost function for each family of links.

Finally, GLC3 provides a taylored cost function for each c/d and direct link, although it uses the same cost

function for all h/h links.

We test instances of size 10, 15, 20 and 25, with 2 and 3 hubs. Since the AP data set does not have an

instance of size 15, we use the first 15×15 matrices from the load and distance matrices of the problem of

size n = 40 of this dataset. Similarly, for the Turkish data set we use the first n× n matrices of load and

distance to generate datasets of different size n.

We introduce a new parameter to have a better understanding of the problem. For the HLP formulations

with a linear cost function of zero intercept, multiplying the demand matrix by a constant does not change

1Note that in presence of direct shipments, in order to identify the a specific cost function for each link, we simply consider
the whole flow that would pass over the link if the terminal node had no direct connections.
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the location/allocation decisions; whereas it may change the solutions of the MHLP or HLP-GLC (with a

cost function of non-zero intercept). To study the impact of the load’s magnitude being transported over

the network, we define β as the average number of vehicles required to carry loads on a c/d link.

β =
(n− 1)µ̂

Q2
. (34)

This parameter can be used further to study the shipment frequency in the supply network (as we will

see in Section 5.3), or to choose the proper transportation mode given the loads to be distributed over the

network. We consider scenarios of β equal to 0.25, 0.5, 0.75, 1 and 1.5. For each case, the load matrix is

multiplied by a factor in order to get the favorite value of β.

For each set of n, p and β, we solve the MHLP and HLP-GLC (under each of the aforementioned

GLCs), for each of the three data sets. We then calculate the relative solution gap δ̃, as well as the

absolute value of relative measurement deviation |ε̃|, and compute the average of these two indicators over

the three datasets,for each problem. Table 2 reports the average relative solution gap, and average relative

measurement deviation (in parentheses) for each HLP-GLC formulation. Moreover, Table 3 provides the

average of these two indicators over all test problems. For simplicity, henceforth we refer to different

HLP-GLC formulations, only with the name of their cost functions; for example, in Table 2 GLC0 refers

to the HLP-GLC formulation with the cost function GLC0. Note that due to the high computational

requirements of the MHLP formulation with direct shipments, we only consider samples of size 10 and 15

when direct shipment is allowed.

In Table 2, ∗ implies that at least for one of the three datasets, we could not find the optimal solution

of MHLP within three hours; for these cases, we consider the best integer solution found. Indeed for these

cases, δ̃ is a lower bound for its true value. Moreover † implies that the solution of HLP-GLC could not

be found within three hours.

Without direct shipments, the highest relative solution gap is for GLC0, with an average δ̃ of 6.03%,

while it exceeds 20% solution gaps for some problems. However, as β increases, GLC0 results in smaller

δ̃. Nonetheless in GLC0, allowing for direct shipments, while charging the same transportation rate as for

c/d links, results in solutions of poor quality, as our results show an average δ̃ of 449.25%.

GLC1 and GLC2 result in smaller gaps: in the absence of direct shipments, the average δ̃ is 1.34% for

GLC1 and 0.94% for GLC2. Allowing for direct shipments, increases the average solution gaps of these two

cost functions to 2.74% and 2.13%, respectively. For both formulations δ̃ is usually small, especially in the

absence of direct shipments. Although statistically speaking, GLC2 outperforms GLC1 (using the paired

t-test, the p-value=0.0452 when direct shipment is not allowed, and p-value=0.0493 when it is allowed),
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p = 2 p = 3

β GLC0 GLC1 GLC2 GLC3 GLC0 GLC1 GLC2 GLC3

D
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t
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m
en

t
is

N
O

T
a
ll

ow
ed

0.25 4.9 (460.8) 2.4 (46.1) 0.0 (2.9) 0.0 (1.2) 5.4 (698.6) 3.3 (57.9) 0.4 (3.8) 0.0 (0.3)

0.5 4.6 (190.6) 2.7 (20.0) 0.1 (11.5) 0.0 (2.3) 5.4 (299.3) 5.1 (32.9) 1.9 (10.1) 0.0 (0.7)

n = 10 0.75 2.9 (101.7) 1.0 (6.7) 1.0 (9.5) 0.0 (2.6) 4.6 (174.0) 4.3 (17.2) 0.0 (6.9) 0.0 (0.2)

1 1.6 (63.9) 0.4 (6.2) 0.4 (7.0) 0.0 (3.5) 1.7 (116.8) 1.4 (8.1) 1.4 (3.1) 0.0 (1.4)

1.5 0.4 (46.5) 0.5 (2.6) 0.5 (3.5) 0.0 (2.0) 0.4 (79.8) 0.4 (8.0) 0.4 (4.9) 0.0 (2.2)

0.25 17.4 (427.2) 0.4 (36.5) 0.0 (2.6) 0.0 (1.0) 20.5 (594.6) 0.6 (44.9) 0.1 (3.1) 0.1 (0.6)

0.5 12.6 (166.9) 1.2 (10.5) 1.2 (9.6) 0.0 (1.6) 16.6∗(247.3) 2.7∗(20.4) 0.9∗(9.6) 0.0∗(1.2)

n = 15 0.75 5.2 (87.5) 0.7 (3.0) 0.7 (10.7) 2.4 (4.9) 9.2 (138.6) 0.6 (7.0) 0.4 (8.8) 0.6 (2.2)

1 5.4 (66.8) 0.5 (4.3) 0.5 (4.0) 0.5 (1.0) 7.6 (101.9) 3.1 (7.2) 1.5 (2.9) 0.0 (1.1)

1.5 3.1 (42.3) 0.5 (4.2) 0.5 (4.7) 0.7 (2.1) 3.6 (56.0) 0.3 (5.0) 5.0 (3.3) 0.6 (3.8)

n = 20

0.25 10.6 (403.2) 0.0 (38.3) 0.0 (3.5) 0.0 (1.8) 18.4∗(560.3) 2.2∗(46.1) 0.1∗(3.0) 0.0∗(1.0)

0.5 6.9 (159.8) 0.5 (13.0) 0.5 (14.4) 0.0 (3.0) 13.3∗(234.3) 1.2∗(20.8) 0.8∗(11.7) 0.0∗(1.9)

0.75 4.9 (88.9) 0.5 (7.5) 0.5 (10.9) 0.0 (2.0) 7.5∗(133.0) 0.0∗(9.1) 0.3∗(11.3) 0.0∗(3.0)

1 2.1 (57.9) 1.8 (4.4) 2.7 (5.5) 0.4 (3.1) 6.6∗(88.2) 1.9∗(5.5) 1.9∗(5.8) 1.9∗(3.5)

1.5 3.1 (41.9) 1.9 (2.6) 2.8 (3.0) 2.6 (2.2) 5.6∗(56.4) 0.9∗(2.1) 3.5∗(3.9) 1.7∗(3.4)

n = 25

0.25 3.4∗(374.1) 1.6∗(41.2) 1.6∗(6.5) 0.0∗(0.8) 7.7∗(477.9) 0.0∗(43.6) 0.0∗(3.3) 0.0∗(0.7)

0.5 3.4 (152.1) 1.9 (15.4) 1.9 (19.0) 0.1 (1.7) 5.8∗(199.5) 3.0∗(21.9) 0.4∗(12.7) 0.1∗(1.5)

0.75 2.0 (80.5) 1.9 (3.5) 1.9 (9.1) 0.0 (3.7) 3.1∗(109.6) 0.8∗(5.8) 0.8∗(13.9) 0.8∗(3.4)

1 0.6 (59.5) 0.6 (6.0) 0.6 (6.1) 0.6 (2.3) 1.2∗(73.8) 0.1∗(3.7) 0.1∗(5.8) 0.2∗(4.5)

1.5 0.1 (35.4) 0.1 (3.6) 0.1 (3.8) 0.0 (2.6) 1.4∗(46.8) 0.3∗(3.3) 0.3∗(3.6) 0.4∗(2.7)

D
ir

ec
t

sh
ip

m
en

t
is

al
lo

w
ed

n = 10

0.25 490.7 (3652.3) 2.4 (46.1) 0.0 (2.9) 0.0 (1.2) 280.3 (3100.6) 3.3 (57.9) 0.4 (3.8) 1.5 (4.9)

0.5 468.7 (1776.2) 2.8 (20.0) 0.2 (11.5) 0.1 (2.3) 280.3 (1500.3) 5.1 (32.9) 3.4 (12.0) 1.5 (5.3)

0.75 441.4 (1150.8) 1.6 (6.7) 1.6 (9.5) 0.6 (2.6) 266.3 (966.9) 4.3 (17.2) 1.5 (7.6) 1.5 (4.9)

1 403.2 (838.1) 3.4 (6.4) 3.6 (7.0) 2.9 (3.5) 248.8 (700.1) 3.9 (8.0) 4.1 (3.1) 1.2 (0.9)

1.5 275.2 (531.1) 4.0 (3.2) 3.6 (3.5) 3.2 (0.5) 181.0 (442.6) 4.1 (8.6) 3.7 (4.9) 3.7 (2.9)

n = 15

0.25 779.8†(4987.7) 0.4 (36.5) 0.0 (2.6) 1.0 (2.3) 608.1 (4678.7) 0.6 (44.9) 0.1 (3.1) 1.0 (1.5)

0.5 748.1†(2443.9) 2.0 (10.5) 2.0 (9.6) 1.7 (2.8) 590.9∗(2289.3) 3.5∗(20.4) 1.7∗(9.6) 1.7∗(2.4)

0.75 649.8†∗(1595.9) 0.8∗(3.0) 0.8∗(10.7) 6.0∗(9.7) 521.8∗(1492.9) 0.6∗(7.0) 0.4∗(8.8) 0.8∗(2.7)

1 550.4†∗(1171.9) 3.2∗(4.1) 3.4∗(4.0) 2.5∗(1.5) 444.3∗(1094.7) 3.3∗(6.8) 2.2∗(2.9) 0.7∗(1.1)

1.5 399.0†∗(753.2) 4.4∗(3.8) 4.5∗(4.7) 3.0∗(2.4) 357.0∗(703.6) 1.2∗(5.3) 5.8∗(3.9) 1.4∗(3.8)

Table 2: Average relative solution gap δ̃ (measurement deviation ε̃) in %

the difference between the two linear approximations is not large. Finally, GLC3 outperforms all other

HLP-GLC formulations, with an average δ̃ of 0.34% in the absence of direct shipments and 1.80% in the

presence of direct shipments.

A partial correlation test with control variables of n, p, β and the type of GLC, indicates a significant

positive correlation between δ̃ and |ε̃|, at 0.001 significance level. The results are similar for correlation

between δ and |ε|. This finding implies that the magnitude of measurement deviation is a reliable predictor

of the size of solution gap, regardless of the choice of linear function, problem size, etc. Furthermore, a

similar analysis indicates a negative correlation between δ̃ and β at 0.001 significance level, with n, p and

the type of cost function as control variables. In other words, as β increases, the gap between the solutions

of MHLP and HLP-GLC decreases.

Moreover, we found that there is no significant relation between the problem size n and the relative

solution gap δ̃, when approximating stepwise cost by a GLC function. Conducting a partial correlation
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Direct shipment is NOT allowed Direct shipment is allowed

GLC0 GLC1 GLC2 GLC3 GLC0 GLC1 GLC2 GLC3

average δ̃ 6.03 1.34 0.94 0.34 449.25 2.74 2.13 1.80

average ε̃ 189.86 16.15 6.97 2.13 1793.53 17.46 6.28 2.95

Table 3: Average relative solution gap δ̃ and measurement deviation ε̃ in % over all test problems

test between δ̃ and n, with the type of linear function as control variable, we have a p-value of 0.9882 when

direct shipment is not allowed, and p-value of 0.8875 when it is allowed. Note that for some of the larger

problems we could not find the optimal solution of MHLP within the time limit, implying that the solution

gap could be even larger, which strengthens our findings.

Table 4 reports the average computational time over the three datasets. Note that ∗ implies that at

least for one of the datasets, the optimal solution could not be found within the three hours time limit.

p = 2 p = 3

β MHLP GLC0 GLC1 GLC2 GLC3 MHLP GLC0 GLC1 GLC2 GLC3

D
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N
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T
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ed

n = 10

0.25 1.7 0.3 0.5 0.5 0.5 16.1 0.2 0.5 0.7 0.7

0.5 2.1 0.3 0.5 0.5 0.5 17.6 0.3 0.5 0.6 0.6

0.75 1.8 0.2 0.4 0.4 0.4 50.3 0.3 0.5 0.6 0.6

1 1.7 0.3 0.4 0.4 0.4 42.7 0.2 0.5 0.5 0.6

1.5 0.7 0.3 0.4 0.3 0.4 6.2 0.2 0.5 0.5 0.5

n = 15

0.25 32.9 0.8 2.6 2.5 3.5 576.8 0.9 7.8 8.1 10.0

0.5 23.6 0.8 2.2 2.1 2.7 9803.0∗ 0.9 5.9 8.0 7.5

0.75 28.2 0.9 1.9 1.7 1.7 5471.0 0.9 4.6 6.7 7.4

1 10.8 0.8 1.9 1.8 1.4 1724.4 0.9 4.4 4.7 6.4

1.5 13.7 0.9 1.8 2.0 2.1 173.9 0.9 4.7 3.4 2.9

n = 20

0.25 507.2 4.2 12.2 10.8 15.5 10800∗ 3.7 46.3 46.5 50.1

0.5 225.1 4.2 11.8 10.4 10.1 10800∗ 3.8 43.3 54.0 50.6

0.75 164.9 4.1 9.8 6.7 8.2 10800∗ 4.0 30.1 50.2 37.4

1 87.2 4.0 8.9 12.4 11.8 10513.5∗ 3.8 23.4 19.5 31.4

1.5 111.7 4.0 7.5 8.4 6.7 3805.0∗ 3.7 19.1 18.1 15.5

n = 25

0.25 6462.6∗ 17.0 51.1 49.8 81.2 10800∗ 21.8 253.1 340.5 260.3

0.5 2743.9 17.4 51.2 30.0 47.1 10800∗ 22.6 146.3 210.1 185.0

0.75 2531.1 15.6 48.4 52.2 57.6 10800∗ 20.4 135.4 137.4 146.0

1 2558.3 16.0 39.3 45.8 45.6 10800∗ 22.2 100.7 99.6 100.0

1.5 1639.4 14.9 34.7 34.4 43.6 7763.1∗ 19.4 102.7 87.1 77.2
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n = 10

0.25 3.2 24.4 0.7 0.7 0.8 22.0 1.7 1.0 1.0 0.9

0.5 5.4 24.7 0.6 0.7 0.7 28.1 1.6 0.9 0.8 0.8

0.75 53.3 25.5 0.6 0.6 0.6 224.3 1.7 0.9 1.5 0.8

1 83.8 24.6 0.6 0.6 0.8 221.3 1.7 1.0 1.3 1.1

1.5 430.6 25.2 0.6 0.6 0.7 264.0 1.8 1.1 1.2 2.2

n = 15

0.25 54.3 3647.4∗ 5.1 5.5 6.3 755.9 824.7 12.9 13.3 16.9

0.5 1276.7 3644.3∗ 5.2 5.4 5.7 10800∗ 817.8 12.3 17.4 13.9

0.75 4647.2∗ 3636.1∗ 4.8 5.2 5.3 10800∗ 844.5 17.0 20.6 32.6

1 7643.4∗ 3627.2∗ 5.2 4.9 4.6 10800∗ 820.0 13.5 16.7 17.3

1.5 10800.0∗ 3629.7∗ 5.4 5.6 5.8 10800∗ 816.3 15.3 10.7 12.3

Table 4: Average computational time in seconds
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As we can see in Table 4, in the absence of direct shipments, GLC0 provides the lowest computational

time, while there is no significant difference between GLC1 to GLC3, that use linear functions with non-zero

intercept. Note that the negative impact of increasing p on the efficiency of GLC1 to GLC3 is stronger

than that on GLC0. Not surprisingly, all formulations with a linear cost function outperform the MHLP

in terms of computational time.

Allowing for direct shipments, however increases the computational time for all formulations, although

its negative impact is outstanding for GLC0
1. The same holds true for the MHLP formulation, where in

most cases, the optimal solutions could not be found within the 3 hours time limit for n ≥ 20.

Based on our discussions on Tables 2 to 4, we can come to a conclusion regarding the choice of the

cost function. First and foremost, the solving approach is a key determinant. A compact formulation with

less integer variables is usually preferred for exact solving, although in practice the use of exact methods

is limited to small networks (for MHLP, the compact formulation tested solved problems with size up to

n = 25, whereas problems of size n = 40 could be solved by the taylored branch-and-bound algorithm

of (Tanash et al. 2017)). As for methods that explore the feasible space with neighborhood search (e.g.

metaheuristics) –which constitute a large part of the HLP literature (Farahani et al. 2013)– the choice of

the cost function does not usually make a difference in computational time; therefore, with these solution

approaches, a stepwise function for the modular HLP may be preferred.

If one wishes to directly solve the problem to optimality by a standard solver such as Cplex, the

MHLP formulation is not recommended even for medium size problems, given the large computational

time required. In such cases, GLC1, GLC2 and GLC3 cost functions are preferred, as they usually offer a

low solution gap with a reasonable computational time. The GLC0 formulation could be used either if β

is large enough (resulting in small solution gaps), or when n and p are too large to be addressed by other

GLC functions. However, in general, GLC0 is outperformed by other formulations.

If charging a unique transportation cost on every c/d (or direct) link is not necessary, GLC3 is preferred

over GLC2 and GLC1 as it provides the lowest solution gap with similar computational time. Otherwise,

between GLC1 and GLC2, which both offer a single cost function for each family of links, the latter provides

smaller solution gaps in average, while the former is simpler to use, as it only depends on the vehicles type.

Figure 2 shows the tradeoff between different cost functions for a specific problem, which is somehow a

representative of the above discussions.

1The long average computational time of GLC0 with direct shipment, is mainly due to the large computational time for
the Turkish dataset, however, even the CAB and AP datasets reported a larger computation time under GLC0 than GLC1

to GLC3.
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Figure 2: Stepwise cost of optimal GLC solutions (a) and computational time (b) for n = 25, p = 2,
β = 0.5, for CAB data set in the absence of direct shipments

5.2 Measurement deviations ε̃ for various slopes and intercepts of the linear

cost function

In Section 5.1 we saw that the solution gap has a positive correlation with the magnitude of measurement

deviation, highlighting the importance of studying the latter. Since Proposition 1 provides an approx-

imation of the relative measurement deviation ε̃, in this subsection, we analyze the behavior of ε̃ using

simulations, and test the robustness of the prediction of Proposition 1.

Similarly to Section 3, we assume a MHLP with no possibility of direct shipments, and two transporta-

tion modes, with the smaller vehicle for c/d links and larger vehicle for h/h links. We generate networks of

n demand points, with coordinates x and y randomly distributed following a uniform distribution. Loads

Lij between each O-D pair i and j also follow a uniform distribution from 0 to Q2, although in Figure 5,

we try different load distributions in order to test the robustness of the predictions.

As we do not need the optimal solution to study the measurement deviation, we use a fast heuristic to

generate solutions so as to make conclusions based on a large number of instances. We use the K-clustering

heuristic of Lloyd (1982), where n nodes are allocated among p clusters, and the closest node to the weight-

center of each cluster is chosen as the hub. Given the location/allocation decisions, we compute the total

transportation cost of the resulting solution using both linear and stepwise cost functions, and compute the

relative measurement deviation ε̃ for the problem. On the other hand, we use Equation (22) to predict the

measurement deviation ε̂ for the same problem. We estimate the value of ρ in Equation (22) as a function

of p, using Figure 9 in Appendix B.

For all simulations, we set Q1 = 4500, Q2 = 1000, C1 = 2 and C2 = 1 as the stepwise cost function’s

coefficients, while different scenarios on GLCs are examined. Each simulation is done with 50 replications,
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Figure 3: The effect of GLC slope and intercept on the relative measurement deviation ε̃ (n = 100, p = 2,
and β = 2.5)

i.e., we generate 50 different networks with random coordinates and loads, and calculate the average relative

measurement deviation over 50 instances.

Figure 3 reports the measurement deviation under different GLC parameters. As expected, the linear

cost function with at = Ct
Qt

and bt = Ct
2 , with t ∈ {1, 2} proposed by Corollary 2, results in a very small

relative measurement deviation. However, other linear cost functions with different slopes and intercepts

may offer small measurement deviations as well, if their parameters are chosen properly.
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Figure 4: The effect of β on ε̃ (n = 200 and p = 8)

Figure 4 shows that a larger β (which could be associated with a lower shipment frequency or smaller

vehicles for the c/d links) results in smaller measurement deviations. This result is intuitive; as an example,

if the total load on a c/d link is Ll = 0.5Q2, we observe a 100% measurement deviation on that link (since

the stepwise function considers the cost of a full vehicle for this load, while the linear function only pays for

half of the vehicle’s capacity), however for Ll = 10.5Q2, this deviation decreases to 5%. Although in both

cases, one truck is dispatched half empty, the difference comes from the relative emptiness of the vehicles.

This explains why in Table 2, the relative measurement deviations of the GLC0 are small for larger values

of β.
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Figure 5: The effect of distributions of Lij on the measurement deviation , with n = 100, p = 3, and
β = 1.5

Finally, Figure 5 implies that the prediction of Proposition 1 is robust regardless of the load distri-

butions. We tested Uniform, Normal and Pareto distributions, with the same mean and variance. This

finding also confirms the robustness of our assumption on approximation of the flow on c/d and h/h links

by a Normal distribution, regardless of the distribution of the loads on O-D pairs.

There are other factors that can impact the measurement deviation. For example, a higher economy

of scale of the large vehicle comparing to the small one, leads to larger relative measurement deviations.

However for conciseness purposes, we skip analyzing all effective factors on the measurement deviation.

5.3 Impact of shipment frequency

Determining the optimal location of distribution centers generally requires a trade-off among inventory

costs, transportation costs, customer responsiveness, etc. (Nozick and Turnquist 2001). Daskin et al.

(2005) and Shen (2007) provide overviews of the research that study facility location in an integrated

supply chain design. Similarly, when locating hubs in a supply chain network, we may consider other

factors such as inventory policies and shipment frequency. In this section, we analyze the ability of MHLP

and the various GLC formulations to capture the impact of shipment frequency on the optimal cost over

a given time period.

To that purpose, we solve a number of problems from the CAB dataset, under different values of

n and β, using three formulations: MHLP, HLP-GLC0 and HLP-GLC3. We remind from Subsection

5.1 that parameter β reflects the shipment frequency; a larger β (i.e. higher average load per vehicle)

can be associated with a lower shipment frequency throughout the supply chain, and therefore a smaller

overall transportation cost is expected due to consolidation of loads. Our goal is to see how the overall

transportation cost in a sufficiently long period of time is impacted by the shipment frequency, and how
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Figure 6: Impact of β on the overall aggregated transportation cost, with p = 2 for the CAB dataset when
direct shipment is not allowed.

the different formulations for the modular HLP can take it into account.

To that purpose, we consider different values of β as different shipment frequencies, with β = 1.5

representing the lowest shipment frequency. Smaller βs refer to more shipments in the same unit of time.

For example, if β = 1.5 refer to the shipment frequency of once every 6 days, β = 0.25 would refer to a daily

shipment pattern. To compare these scenarios, we need to compute the overall aggregated transportation

cost in a longer period, e.g. 6 days, for all β. This is simply done by multiplying the transportation

cost under each βi by 1.5/βi. For our computations, we use the assumptions presented in Subsection 5.1

regarding the stepwise and linear functions.

We can see in Figure 6 that both stepwise cost (Figure 6a) and GLC with non-zero intercept (Figure

6b) reflect the variation of the transportation cost when shipment frequency changes. The reason is the

fixed costs incurred by these cost functions for every single transportation. However GLC0, having no fixed

cost or intercept, is unable to model this consolidation effect (Figure 6c). This could help to enlighten

future research on the HLP in an integrated supply chain design.

5.4 Impact of direct shipment

Next, we study the advantages of allowing direct shipments in a hub and spoke network under the modular

framework. To measure the cost reduction due to the possibility of direct shipments, we compare the

total transportation cost calculated by the MHLP formulation, in the presence and absence of direct

shipments. In order to study the impact of vehicles’ types, we consider two different types of vehicles for

direct shipments: (i) the same vehicle used for c/d links, as in Section 5.1, i.e. Q3 = Q2 = 1 tonne, and

C3 = C2 = 1.45 dollars per kilometer; (ii) a pickup truck specific to direct shipments, with Q3 = 0.5 and

C3 = 1.2. To have robust results, we compute the cost reduction in % for all three datasets and report the
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Figure 7: Average cost reduction under MHLP due to using direct shipments, with p = 2.
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Figure 8: Share of direct shipments in the overall transportation cost, with p = 2 (Results for MHLP).

average cost reductions.

Figure 7 shows that the advantage of using direct shipments increases in n and β. Moreover, it implies that

by using specific vehicles for direct shipments, the resulting cost saving could be even higher. Obviously,

by tailoring the transportation mode used for direct shipments, to the loads’ distribution, one can achieve

further cost reductions.

Figure 8 demonstrates the share of direct shipments in the total transportation cost. As we can see,

under larger values of β, direct shipments account for a considerable fraction of the total transportation

costs, highlighting the importance of having direct shipments beside the through-hub transportations.

6 Conclusion

In this paper, we studied the modular hub location problem, where the transportation cost is a stepwise

function of the number of vehicles. Since the MILP formulations with stepwise cost functions are compu-

tationally demanding, we approximated the stepwise cost with a linear function with non-zero intercept,

based on a probabilistic analysis to minimize the expected measurement deviation between the two cost
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functions. We showed empirically that this measurement deviation is positively correlated with the gap

between the optimal solutions of the two formulations. We also provided a prediction of the average mea-

surement deviation between a stepwise cost function and any given linear approximation different from

the best-approximation one. The accuracy and ronbustness of this prediction is confirmed by numerical

experiments. Finally, our results show that allowing for direct shipments within a modular HLP can result

in significant cost reduction, which could not be properly measured by using a simple linear cost function.

We finish by highlighting avenues for future research. In this paper we solved small size problems

due to the computational limitation of solving the MILP formulations to optimality by a standard solver.

However, efficient solution algorithms are required to solve medium and large size MHLP or their HLP-GLC

approximations. While we calibrated the GLC function to approximate the stepwise function for a given

problem, a similar approach might be used to approximate nonlinear or piecewise linear cost functions.

Furthermore, using a stepwise cost function allows for better modeling of some extensions of the problem,

such as allocation of multiple hubs to a terminal node, simultaneous intermodal transportation, limited

fleet size and transportation capacity, HLP with routing in a dynamic setting, etc. Finally, the link with

fleet management in a supply chain could be explored further. The type and number of required vehicles,

or limitations in using them, could impact the location/allocation decisions. Having a holistic approach to

handle these issues, though complicated, could result in significant cost savings for companies.
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Appendix A Proofs

Proof of Theorem 1: Since the load on a c/d or a h/h link includes the load of several O-D pairs, and can

be approximated by a Normal distribution with mean µl, which implies P(0 ≤ Ll ≤ 2µl) ' 1, as Ll > 0.

Moreover, since the Normal distribution is symmetric around its mean value µl, we have for any u < v:

P(u ≤ Ll ≤ v) = P(2µl − v ≤ Ll ≤ 2µl − u) (35)

We have:

E(coststp(L)) = C

∫ ∞
0

⌈
L

Q

⌉
f(L)dL = C

∞∑
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∫ tQ
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d 2µl
Q e∑
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t
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As E(Costlin(Ll)) = aE(Ll) + b = aµl + b, we deduce that for having E(Costlin(Ll))−E(Coststp(Ll)) = 0,

we need to have a = C
Q and b = C( 1

2 + δl
2Q −∆l).

Proof of Corollary 1: If µl is a multiple of Q2 we have

δl = 0 =⇒ ∆l = 0 =⇒ Costlin(Ll) =
C

Q
Ll +

C

2
.

Proof of Corollary 2: Using the approximation
∫ tQ
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Q

∫ tQ
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,

the approximation holding when 2µl/Q is large, which results in b = C
2 . This ends the proof.
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Proof of Proposition 1: From Equations (1) and (11) we can compute the expected measurement

deviation on a given link l as:

E(δl) = E(Coststp(l)− Costlin(l)) = dlAt, t ∈ {1, 2}, with At = CtE
(⌈

Ll
Qt

⌉)
− atµl − bt

where t = 1 refers to h/h links and t = 2 refers to c/d links.

Let d denote the average length of a c/d link in the hub and spoke network, while ρd represents the

average length of a h/h link. We first show that the expected measurement deviation ε under cluster

symmetry is:

E(ε) = ρp(p− 1)A1d+ 2(n− p)A2d (36)

Indeed, the number of c/d links in the network is 2(n − p), while there exist p(p − 1) h/h links, given

the cluster symmetry assumption, as the network among the p hubs is a complete graph. The expected

measurement deviation can be written as:

E(ε) = E

 ∑
l∈Lh/h

dl

(
C1

⌈
Ll
Q1

⌉
− (a1Ll + b1)

)
+
∑
l∈Lc/d

dl

(
C2

⌈
Ll
Q2

⌉
− (a2Ll + b2)

)
=

∑
l∈Lh/h

dlA1 +
∑
l∈Lc/d

dlA2 = ρp(p− 1)A1d+ 2(n− p)A2d

Moreover we have:

E(TClin) = E

 ∑
l∈Lh/h

dl(a1Ll + b1) +
∑
l∈Lc/d

dl(a2Ll + b2)


= b1

∑
l∈Lh/h

dl + a1
∑

l∈Lh/h

dlE(Ll) + b2
∑
l∈Lc/d

dl + a2
∑
l∈Lc/d

dlE(Ll)

= b1ρdp(p− 1) + a1ρdn
2 p− 1

p
µ̂+ 2b2d(n− p) + 2a2d(n− p)(n− 1)µ̂

which concludes

E(TClin) = d

[
b1ρp(p− 1) + a1ρn

2 p− 1

p
µ̂+ 2b2(n− p) + 2a2(n− p)(n− 1)µ̂

]
(37)

Notice that in the last equation, p−1p refers to the average fraction of the load originated from one demand

point that have destinations outside of the source cluster. Dividing Equation (36) by (37) provides an

approximation of the relative measurement deviation, ε̂ 1.

1Note that we also calculated E( ε
TClin

) directly, using numerical methods. However, Equation (22) is preferred, as it

revealed to provide empirically the same level of precision of the prediction, with a closed-loop formula that is analytically
explicit and much faster to compute.
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Appendix B Estimation of ρ

In order to estimate ρ in Equation (22), we use the K-means clustering approach (Lloyd 1982). This

heuristic divides n data points into K clusters so as to minimize the sum squared error between the

empirical mean of a cluster and the points in that cluster. Similarly to K-means, the HLP partitions the n

demand points into K = p clusters, with a hub that resembles the centroid in the K-means clustering. To

estimate ρ, we generate n = 400 nodes spread over the x-y space according to a Uniform distribution, and

construct p clusters using K-means clustering with K = p. We consider the centroid of each cluster as the

location of the hub, and calculate ρ as the ratio of the average distance between the centroids of different

clusters, divided by the average distance from each node to its cluster’s centroid.

We solve this problem for different values of p ranging from 2 to 20, with 30 replications for each p.

Figure 9 shows the 95% confidence interval for the values of ρ. We can see that by increasing p, ρ increases

as well. We tried different values for n as well, however the problem size does not have a significant effect

on ρ.

p
2 4 6 8 10 12 14 16 18 20

;

1

2

3

4

5

6

7

8

Lower bound
Mean
Upper bound

Figure 9: 95% confidence interval for ρ as a function of p when n = 400
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