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Abstract
We study a two-stage, winner-takes-all, R&D race, in which, at the outset, firms are
uncertain regarding the viability of the project. Learning through experimentation
introduces a bilateral (dynamic) feedback mechanism. For relatively low-value prod-
ucts, the equilibrium stopping time coincides with the socially efficient stopping time
although firms might experiment excessively in equilibrium; for relatively high-value
products, firms might reduce experimentation and stop rather prematurely due to the
fundamental free-riding effect. Perhaps surprisingly, a decrease in the value of the
product can spur experimentation.
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1 INTRODUCTION

Research and Development (R&D) exhibits at least three characteristics. First, it is a dy-
namic, risky process. This is well documented in the pharmaceutical industry where the
development of a new drug requires several phases to be completed.1 It has been esti-
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1Research usually begins in the lab where researchers identify promising compounds

for development. If a compound passes this stage, it moves to pre-clinical (tests in ani-
mals) and clinical (tests in humans) research that are prerequisites for FDA approval. See
https://www.fda.gov/ForPatients/Approvals/Drugs/default.htm.
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mated that less than 1% of the compounds examined in pre-clinical trials make it into
clinical trials and only 20% of the compounds entering clinical trials survive the devel-
opment process and gain FDA approval.2 The pre-clinical and clinical testing phases
generally take more than a decade to complete. Second, firms (or research teams) usually
compete with one another for being the first to cross the finish line. Winners are usually
allocated a patent which provides exclusive rights to market the product and/or enter-
tain a first-mover advantage. Last, given its dynamic nature, R&D entails learning as
firms continuously update their beliefs regarding the viability of the project. As is well
known, information (i.e., learning) has the characteristics of a public good; a discovery by
one firm has a positive impact on other firms that experiment on a similar project.

In this paper, we study a model of dynamic R&D competition that encompasses all the
characteristics described above. Two firms engage in a two-stage winner-takes-all race.
The first firm that completes the two stages first is allocated a patent and monopoly prof-
its for a given period. In the example given above on the development of a new drug,
the research stage may refer to research in the lab whilst the development stage may refer
to pre-clinical and clinical trials. Both firms start the race equipped with similar bandit
technologies on which they can experiment. The technologies are perfectly correlated;
they are either both armed in good or in a bad state. A technology that is armed in a good
state generates a success with positive probability; a technology that is armed in a bad
state never generates a success. This implies that with some positive probability a stage is
never completed successfully as is evident, for instance, in the pharmaceutical industry.
Firms independently and simultaneously decide on the intensity of experimentation with
every unit spent on experimentation having an opportunity cost that arises from exploit-
ing an existing certain project. Crucially for our analysis, firms decide on their intensity
of experimentation on a period by period basis; a firm might stop experimenting for some
time but restart at any point in the future.

Uncertainty is gradually resolved as firms experiment on a given technology. Every
failure is a signal that the technology is armed in a bad state; hence, it makes firms more
pessimistic regarding its viability to generate the required breakthrough. An important
assumption is that firms observe one another’s actions and outcomes which introduces a
bilateral (dynamic) feedback mechanism. On the one hand, a failure of one firm imposes
a negative information externality to the rival as is now more likely that the technology is
armed in a bad state; a success imposes a positive information externality as it now becomes
commonly known that advancement to the next stage is feasible. On the other hand,
success by one firm imposes a negative competition externality on the rival as the latter
needs to catch up in the race. In other words, the rival has a lag in the race arising from the
fact that it still needs to invest resources and successfully pass the research stage before
competing head-to-head with the leader. Our goal is a detailed study of the interplay
between these two countervailing externalities.

We characterise the unique symmetric subgame perfect Nash equilibrium of the game

2Discontinuation of research can result from toxicity, carcinogenicity or any other manufacturing diffi-
culties that researchers discover during pre-clinical or clinical trials. See DiMasi (1995), DiMasi, Hansen,
and Grabowski (2003) and DiMasi, Grabowski, and Hansen (2016).
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by partitioning the set of parameters into two sets. For relatively low-value products, ad-
vancement of one firm to the development stage discourages the rival from remaining in
the race; the negative competition externality offsets the positive information externality.
This result is in line with early papers in the patent races literature (e.g., Fudenberg et al.
(1983), Harris and Vickers (1985)), who argue that an early advantage is sufficient for the
race to degenerate into a monopoly.

Perhaps the most interesting case arises for relatively high-value products. In this case,
the positive information externality offsets the negative competition externality; hence,
the laggard finds it profitable to stay in the race. We show that at the switching point
(i.e., the cutoff value above which the positive externality offsets the negative external-
ity), there is a downward jump discontinuity in the payoff of the leader. Intuitively, the
leader would prefer the race to degenerate into a monopoly instead of competing with
the laggard even if the former enjoys a first-mover advantage.

We characterise the equilibrium stopping time as a function of the value of the prod-
uct. We find that the stopping time is everywhere continuously decreasing in the value
of the product but exhibits an upward jump discontinuity at the switching point. This
discontinuity arises from the discontinuity in the continuation payoff of the leader; ad-
vancement by one firm to the development stage is accompanied by an increase in experi-
mentation by the rival which has a negative impact on the continuation payoff of the firm
that advanced first. The model implies that (i) the intensity of experimentation decreases
in the belief, and, (ii) around the discontinuity, a decrease in the product’s value can spur
experimentation.

We study the welfare properties of the symmetric equilibrium. The symmetric equilib-
rium is everywhere inefficient: when at least one firm has advanced to the development
stage, firms experiment excessively because they do not internalise the negative external-
ities they impose on one another (e.g., Loury (1979), Lee and Wilde (1980)); when both
firms are in the research stage, firms might either experiment excessively or insufficiently.
The latter is a result of the free-riding effect and is particularly prevalent in the strategic
experimenation literature (e.g., Keller, Rady, and Cripps (2005)).

Casual observation suggests that the dynamic feedback mechanism can be important
in real-world races. When Bednorz and Müller (1986) announced that they had discov-
ered superconductivity in ceramic materials at 35o Kelvin - a temperature that seemed
impossible before - physicists realised that other high-temperature superconducting ma-
terial are feasible. Following a conference that took place in New York, during which Wu
et al. (1987) presented superconducting materials at much higher temperature (around
90o Kelvin), “...hundreds of scientists, Nobel laureates as well as the greenest graduate students,
went on a work rampage. It was indeed a race, a race to obtain fame and patents.3 As it is evident
in this example, discovery by one firm might result in an increase of effort by rivals to be
the first to cross the line.

� Related Literature. The paper is related to several strands in the literature. Early
papers by Loury (1979), Lee and Wilde (1980) and Dasgupta and Stiglitz (1980) analyse

3Vidali (1993).
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(effectively static) patent races in which firms invest in R&D only at the outset and in-
vestment determines the speed of innovation. All papers show that R&D investment is
socially excessive. We also find that R&D investment is excessive but this is more preva-
lent either in more advanced stages or for relatively low-value products.

Reinganum (1981, 1982), Fudenberg et al. (1983) and Harris and Vickers (1985, 1987)
allow for dynamic models in which firms can only increase their investments (i.e., once a
firm drops out, it can never re-enter the race). In Reinganum (1981, 1982), firms accumu-
late knowledge; when knowledge has the characteristics of a private good (i.e. it can only
be used by the firm that accumulates it), then R&D investment is excessive; when knowl-
edge has the characteristics of a public good, then investment is insufficient. Fudenberg
et al. (1983) analyse a multistage race and provide conditions under which a race will be
characterised by vigorous competition or will degenerate into monopoly. Key is whether
the laggard has time to “leapfrog”. Harris and Vickers (1987) show that the leader ex-
erts higher effort than the laggard, and effort increases as the gap between competitors
decreases. A similar result in obtained in Grossman and Shapiro (1987) who extend the
model of Lee and Wilde (1980) to two stages. They find that (i) when both firms are in
the development stage, competition is the most intense; (ii) the leader invests more than
the laggard. Although in our model the investment decision is binary (i.e., invest or not
invest), we also find that for relatively low-value products, the leader stays active whilst
the follower drops out.

Closely related are the papers by Choi (1991), Malueg and Tsutsui (1997), Mason and
Valimaki (2010) and Moscarini and Squintani (2010) who also study related model of dy-
namic R&D competition. Similarly to our paper, Choi (1991) studies a model with hazard
rate uncertainty and identifies the different externalities that might affect R&D invest-
ment. Unlike our paper, he assumes that once firms exit the race, they are unable to re-
enter.4 In our model firms are free to exit and re-enter anytime. Re-entry is the underlying
mechanism of the discontinuity in the stopping times. Unlike Choi (1991), we proceed to
a welfare analysis and discuss asymmetric equilibria. Malueg and Tsutsui (1997) study a
one stage race with hazard rate uncertainty. One of their main results is that as firms be-
come more pessimistic, they reduce investment and possibly exit the race. In our model
the interesting insights arise only due to the two stages.

This paper draws insights from the strategic experimentation literature. Bolton and
Harris (1999) study two-armed bandit models with several agents and Keller, Rady, and
Cripps (2005) extend their framework to exponential bandits. Building on Keller, Rady,
and Cripps (2005), Bimpikis, Ehsani, and Mostagir (2015) and Halac, Kartik, and Liu
(2017) study dynamic contest design in which the planner commits to a disclosure policy
and reward scheme. Our paper takes the R&D game as given and analyses its equilibria.5

4In p. 608, Choi (1991) writes: “... But in models of hazard rate uncertainty, the payoff structure of the race
could be that of a waiting game. Every firm might prefer the other firms to enter the race first. After observing the
performance of other firms, it will enter if the other firms do well and the race is considered to exhibit a high enough
hazard rate. Another possibility is that both firms enter the race, and after some time without success by either firm,
one of them drops out. The firm that drops out could reenter once the remaining firm succeeds in the intermediate-stage
discovery...”

5Related are the paper by Kremer, Mansour, and Perry (2014) Che and Horner (2015), Heidhues, Rady,
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The remainder of the paper is organised as follows. In Section 2, we present the model.
In Section 3, we analyse the unique symmetric subgame perfect Nash equilibrium. In Sec-
tion 4, we study the welfare properties of the unique symmetric equilibrium. In Section
5 we discuss the relevance of the model, the robustness of our results as well as further
potential extensions. Section 7 concludes the paper. All formal proofs are provided in the
appendix.

2 THE MODEL

There is a potentially infinite number of periods. Two symmetric, risk-neutral firms are
engaged in a race to launch a new product (e.g., a new drug). Development of the new
product requires a firm to successfully complete two stages: research and development. Let
s denote the stage, where s = r, d. The first firm that successfully completes both stages
receives a patent and monopoly profits equal to v.6 Advancement to the development
stage requires a firm to successfully complete the research stage, which implies that the
two stages are consecutive steps in the production process. Although a firm that com-
pletes the research stage qualifies to the development stage, the rival could potentially
qualify to the development stage by also successfully completing the research stage. We
call a firm that qualified first to the development stage the leader and the firm that is still at
the research stage the laggard. In case both firms complete the two stages simultaneously,
then the patent is allocated to one of them with equal probability.7 For simplicity and
to highlight the potential inefficiencies, we assume that firms do not discount the future.
However, all our results remain valid even under discounting. We discuss this point at
the end of the paper.

In every stage, firms each have symmetric bandit technologies on which they can ex-
periment. Firms choose their intensity of experimentation x ∈ [0, 1]. Every dollar spent
on experimentaion has an opportunity cost c. This cost can be interpreted as the the profit
that the firm can earn by operating an alternative project of certain returns. An important
assumption is that each firm decides on its intensity of experimention on a period by pe-
riod basis. In particular, we assume that a firm that has stopped experimenting for some
time can freely re-commence at any future point.

Every technology is armed either in a good or a bad state. As is standard in the strate-
gic experimentation literature, the two technologies are perfectly correlated; either both
are in a good or a bad state. The common prior belief that the technology is in a good state
is α0 < 1. A technology generates a success or a failure. One success is required for a firm
to advance from the research to the development stage and two successes are required for
a firm to be allocated the patent. We assume that successes occur independently in the
two technologies. If a technology is armed in a good state and a firm chooses an intensity
x, then the probability of a firm generating a success is px, where p < 1; if a technology

and Strack (2015) and Bimpikis and Drakopoulos (2018), who analyse how information disclosure can im-
prove learning.

6This corresponds to the sum of the profits from the effective life of the patent.
7One can consider different patent allocation rules without substantially change the results. This alloca-

tion rule is chosen for simplicity.
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Figure 1

is armed in a bad state the correspondng probability of generating a success is zero re-
gardless of the intensity of experimentation.8 Therefore, only if the technology is armed
in a good state, success is ever possible; if the technology is armed in a bad state, success
is never possible. The two states represent the potential uncertainty that firms face when
undertaking R&D; firms do not know if the product can ever be developed.

Uncertainty is resolved gradually if firms experiment; if at least one firm succeeds in
the research stage, both firms become certain that the technology is in a good state; a
failure delivers bad news and both firms become more pessimistic about the viability of
the technology to generate the breakthrough. In particular, suppose that the belief is α
and only one firm experiments at intensity x, then, following a failure, the belief that the
technology is in a good state is downgraded to

α′ =
α(1− px)

(1− α) + α(1− px)
(1)

The posterior belief deteriorates faster the higher is p and/or x; i.e., the higher is the
probability of success if the technology is in a good state, the more informative is a failure.
Figure 1 represents two cases for α0 = 0.9. In Panel 1a, p = 0.1, x = 1 and in Panel 1b,
p = 0.01, x = 1. One can see that the posterior belief deteriorates considerably faster in
Panel 1a.

3 THE UNIQUE SYMMETRIC EQUILIBRIUM

� Symmetric Equilibrium and Notation. We assume that firms each simultaneously
and independently take actions every period by having observed one another’s actions
and outcomes in the previous periods; therefore, we study a dynamic game of complete
information. We characterise the unique symmetric subgame perfect Nash equilibrium.

8We assume that the intensity of experimentation cannot exceed an upper bound; hence, there is always
an upper bound in the probability a firm can generate a success. Because experimentation is costly, firms
will never choose an intensity greater than one.
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v Value of the product
p Marginal probability of success if the state is good
c Marginal cost of experimentation
α0 Prior that the state is good
xi Firm i’s intensity of experimentation
x̄ss′ Symmetric equilibrium intensity of experimentation of the firm that is in

stage s, conditional on the rival being in stage s′, where ss′ ∈ {rd, dr, dd}
x̄rr(α) Symmetric equilibrium intensity of experimentation when both firms are in

research and the belief is α
V̄ss′ Symmetric equilibrium continuation payoff of a firm that is in stage s con-

ditional on the rival being in stage s′, where ss′ ∈ {rd, dr, dd}

Table 1: Notation

A strategy for each firm defines the intensity of experimentation every period for any
history of play. To simplify notation, let x̄ss′ and V̄ss′ denote the equilibrium intensity of
experimentation in stage s, conditional on the other firm being in stage s′, and the equi-
librium continuation payoff of a firm that is in stage s if the rival firm is in stage s′, where
ss′ ∈ {rd, dr, dd}. By definition, in a symmetric equilibrium in which both firms are in the
same stage, the intensities of experimentation and continuation payoffs of the two firms
are equal. Note also that if at least one firm qualifies to the development stage, the prob-
lem becomes stationary; hence, if a decision is optimal in one period, it remains optimal
every period. Let also x̄rr(α) denote the intensity of experimentation conditional on both
firms being in the research stage and the posterior belief is α.

� Both Firms in the Development Stage. Suppose first that both firms have qualified to
the development stage. We impose the following assumption which implies that experi-
mentation is always profitable for a sufficiently high belief.

Assumption 1. v ≥ 2c
p

The equillibrium intensity of experimentation depends on the relative value of the
product. Given Assumption 1, it is relatively straightforward to see that firms each choose
a strictly positive intensity. Suppose that in every period, firm i chooses (constant) inten-
sity xi and firm j chooses (constant) intensity xj ; then, the (static) expected payoff of firm
i is {p2xixj

2
+ pxi(1− pxj)

}
v − cxi =

{
p(1− pxj

2
)v − c

}
xi (2)

Due to Assumption 1, it is clear that Eq. (2) is strictly increasing in xi for every xj . This
implies that in the unique symmetric equilibrium, both firms will choose to experiment
at a maximum intensity in every period. We summarise the analysis in the following
lemma.
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Lemma 1. Suppose that both firms have qualified to the development stage; then, in the unique
symmetric equilibrium x̄dd = 1 and

V̄dd =
1

2

(
v − v̄dd

)
(3)

where
v̄dd =

2c

p(2− p)
(4)

Proof. See the Appendix.

It is insightful to consider the effect of changes in parameters on the continuation
value. It is straighforward from inspection of Eq. (4) that v̄dd is strictly increasing in c and
p; hence, by inspection of Eq. (3), one can straightforwardly deduce that (ceteris paribus)
an increase in c or an increase in p decrease V̄dd. The effect of p on v̄dd and V̄dd is a conse-
quence of a strategic effect: an increase in the probability of success of both firms makes
experimentation less attractive for each firm conditional on the rival experimenting at a
maximum intensity.

� One Firm in the Research and One in the Development Stage. Having characterised
the equilibrium behaviour of the two firms if both have advanced to the development
stage and the corresponding equilibrium continuation payoffs, we can now study the
subgame in which one firm is in the research stage and the rival is in the development
stage.

It is relatively straightforward that the leader exploits its position and, given Assump-
tion 1, always experiments at a maximum intensity. For relatively low-value products,
the leader remains a monopolist; for relatively high-value products, the laggard stays in
the race and also experiments at a maximum intensity.9

Given stationarity, the necessary and sufficient condition for the laggard to be active
is

p(1− p)V̄dd − c ≥ 0 (5)

where p(1 − p) represents the probability that the laggard succeeds and the leader fails
(conditionally on both experimenting at a maximum intensity) in which case both firms
find themselves in the development stage and each earns a continuation payoff equal to
V̄dd.10 Straighforward algebra reveals that the laggard remains active if and only if the
value of the product is greater than

v̄rd ≡ v̄dd +
2c

p(1− p)
(6)

9Conventionally, we assume that, conditionally on the rival’s strategy, when a firm is indifferent between
staying active or not it remains active.

10The (static) expected payoff of the laggard if it experiments at intensity xrd whilst the leader experi-
ments at intensity xdr is: {

p(1− pxdr)V̄dd − c
}
xrd

Because, as we argued above, the leader always experiments at maximum intensity xdr = 1; hence, the
necessary and sufficient condition for the laggard to experiment is given in Eq. (5).
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Eq. (6) implies that, conditionally on the leader experimenting at a maximum inten-
sity, a markup over v̄dd is required to incentivise the laggard to remain active given that
this needs to catch up in the race. From inspection of Eq. (6), one can see that v̄rd is strictly
increasing in c and p – i.e., an increase in the cost of experimentation or an increase in
the probability the breakthrough occurs both decrease the threshold value of the product
above which the laggard experiments.

We summarise the unique symmetric equilibrium in the following lemma.

Lemma 2. Suppose that one firm is in the research stage and the other firm is in the development
stage; then, in the unique symmetric equilibrium x̄dr = 1 and

x̄rd =

{
0, if v ≤ v̄rd

1, otherwise
(7)

The equilibrium continuation payoffs of the two firms are respectively

V̄rd =

{
0, if v ≤ v̄rd
1
2

(
(1−p)V̄dd

1− p
2
− v̄dd

)
, otherwise

(8)

and

V̄dr =

{
v − c

p
, if v < v̄rd

1
2

(
(1−p)V̄dd+v

1− p
2
− v̄dd

)
, otherwise

(9)

Proof. See the Appendix.

From inspection of Eqs. (8) and (9), one can see that an increase in the cost of ex-
perimentation or an increase in the probability the breakthrough occurs all decrease both
continuation payoffs. We complete the section with a remark that is key for the remainder
of the paper.

Lemma 3. (i) V̄dd and V̄rd are continuous and increasing in v with V̄rd being strictly increasing
for v ≥ v̄rd, (ii) V̄dr is continuous everywhere, strictly increasing for v < v̄rd and v > v̄rd but
exhibits a (downward) jump discontinuity at v = v̄rd.

Proof. See the Appendix.

Lemma 3 states that although V̄dd and V̄rd are continuous and increasing in v, V̄dr ex-
hibits a downward jump discontinuity at v = v̄rd. Intuitively, when the value of the
product exceeds the threshold above which the laggard enters the race, competition re-
duces the continuation payoff of the leader. As we show below, this result has significant
implications on the equilibrium stopping times and welfare.

� Both Firms in the Research Stage. The next and last step in the characterisation of the
symmetric equilibrium is to study the subgame in which both firms are in the research
stage. We have shown above that, once a firm succeeds in the research stage, there exists

9



a unique symmetric equilibrium for all parameter values, which we have characterised in
Lemma 1 and Lemma 2.

Suppose therefore that both firms are in the research stage. We first characterise the
equilibrium stopping time of any of the firms experimenting. The expected (static) payoff
of firm i by experimenting at intensity xi in a period when the belief is α, provided that
firm j does not experiment, is {

αpV̄dr − c
}
xi (10)

which defines a unique cutoff in the posterior belief below which experimentation is not
profitable.11 This cutoff is given by

ᾱ = min
{

1,
c

pV̄dr

}
(11)

We now study the behaviour of ᾱ as a function of v and obtain the following result.

Proposition 1. The equilibrium stopping time ᾱ is continuous and strictly decreasing for v < v̄rd
and v > v̄rd; it exhibits an upward jump discontinuity at v = v̄rd.

Proof. Note that for v < v̄rd,
c

pV̄dr
=

c

pv − c
which, given Assumption 1, is less than one. The discontinuity in ᾱ is an immediate
consequence of the discontinuity in V̄dr.

Proposition 1 is one of the main results of the paper. It states that the equilibrium
stopping time is everywhere continuous and strictly decreasing but exhibits an upwards
jump discontinuity at v = v̄rd. This discontinuity arises from the discontinuity of V̄dr as
discussed in Lemma 3.

A natural question that arises concerns the characterisation of equilibrium intensity of
experimentation for α > ᾱ.12 To study this, let us write the (static) expected payoff of firm
i by experimenting at intensity xi in a period when the belief is α, provided that firm j
experiments at intensity xj :

α(pxi(1− pxj)V̄dr + (1− pxi)pxjV̄rd + p2xixjV̄dd)− cxi (12)

To explain Eq. (12), note that if the state is good, with probability pxi(1 − pxj) firm i suc-
ceeds and firm j fails, in which case the corresponding continuation payoff is V̄dr; with
probability (1 − pxi)pxj firm i fails and firm j succeeds in which case the corresponding
continuation payoff is V̄rd; with probability p2xixj , both firms succeed and the correspond-
ing continuation payoff is V̄dd. The last term is the cost of experimentation.

11Note that, for a given α, this is the maximum “static” payoff a firm can attain, i.e., the payoff if the firm
was a “monopolist”, where “static” refers to the fact the the continuation payoff is not taken into account.

12For α = ᾱ, the unique symmetric equilibrium intensity of experimentation is zero.
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To characterise the symmetric equilibrium intensity of experimentation, let us re-write
Eq. (12) as {

α[pVdr − p2xj(V̄dr + V̄rd − V̄dd)]− c
}
xi︸ ︷︷ ︸

Expected Payof from xi,xj≥0

+ apxjV̄rd︸ ︷︷ ︸
Expected Payoff from xi=0

(13)

If α(pV̄dr − p2(V̄dr + V̄rd− V̄dd)) ≥ c, Eq. (13) is increasing in xi for every xj (and strictly
increasing if the inequality is strict); if α(pV̄dr−p2(V̄dr+V̄rd−V̄dd)) < c, Eq. (13) is increasing
in xi for xj ≤ (pV̄dr− c

α
)/p2(V̄dr+ V̄rd− V̄dd) (and strictly increasing if the inequality is strict)

and strictly decreasing for xj > (pV̄dr − c
α

)/p2(V̄dr + V̄rd − V̄dd). In the latter case, in the
unique symmetric equilibrium, the two firms experiment at a strictly-less-than-maximum
intensity; each firm experiments at an intensity that makes the rival indifferent between
experimenting or not.

We summarise the unique symmetric equilibrium in the following proposition.

Proposition 2. Suppose that both firms are in the research stage; then, in the unique symmetric
equilibrium, for every α ≥ ᾱ:

x̄rr(α) = min
{

1,
pV̄dr − c

α

p2(V̄dr + V̄rd − V̄dd)

}
(14)

By inspection of Eq. (14), one can see that an implication of Proposition 2 is that exper-
imentation is higher the higher is α and the lower is c. This implies that firms might start
the race by experimenting at a maximum intensity but might reduce their intensities as
they become more pessimistic regarding the viability of the project. Furthermore, the in-
tensity of experimentation crucially depends on whether v ≶ v̄rd. In particular, we know
from Lemma 2 that for v < v̄rd, V̄rd = 0 as the laggard finds it unprofitable to continue ex-
perimenting; for v > v̄rd, V̄rd = 0 and hence reduces equilibrium experimentation as each
firm expects the other firm to suffer the cost of experimentation.13 This is a consequence
of the fundamental free-riding effect that has been highlighted in the strategic experimenta-
tion literature (e.g., Bolton and Harris (1999), Keller, Rady, and Cripps (2005)): the benefit
of any of the firms from not experimenting might be positive since, conditional on the
rival experimenting, there is a positive externality from a potential release of good news.

The equilibrium stopping time is depicted in Figure 2: the horizontal axis represents v;
the vertical axis represents α. The stopping time is everywhere continuously decreasing
but exhibits an upward discontinuity at v = v̄rd.

Another implication of Propositions 1 and 2 is that the intensity of experimentation is
not always increasing in the value of the product. To see this, consider a (α, v) combina-
tion in the shaded region A in Figure 2. In this region firms will stop experimenting as we
explained above. Suppose now that during a recession the value of the product falls. For
the same posterior belief, such a fall will be accompanied by an increase in experimenta-
tion as firms find it profitable to enter the race knowing that the leader will also be the
winner of the race.

13Note that V̄rd appears only in the denominator, which means that a higher V̄rd decreases x̄rr(α).
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4 WELFARE

We now describe the socially optimal policy and discuss in what ways the equilibrium
differs from it and thus we examine the potential inefficiencies that might arise during
the race.

First, note that, due to the assumption of no discounting, it is never socially optimal
to invest in both technologies in the same period, in any of the stages. This is because the
social cost of operating one technology, given that the other technology is active, is pos-
itive, whereas the social benefit is zero, i.e., the incremental value of succeeding in one
technology is zero if the other technology succeeds. In fact, if both technologies are oper-
ated by a benevolent social planner, it is strictly dominant to experiment at a maximum
intensity in at most one technology. Therefore, our objective is to examine the conditions
under which it is socially optimal to operate one technology.

Suppose first that the research stage has been successfully completed. Whilst in the
development stage, Assumption 1 implies that it always is socially optimal to experiment
at a maximum intensity in exactly one technology.

The expected value of the product if one technology has advanced to the development
stage is

V ∗d = v − c

p
(15)

Now suppose that no technology has advanced to the development stage. We wish
to characterise the optimal stopping time, i.e., specify the unique threshold belief below
which it is socially optimal to stop experimenting.

If the belief is α, the expected payoff of commiting to a plan of experimentation {xω}Tω=t

12



from period t till period T is given by the value function:

V ∗t (α) = αpxtV
∗
d − cxt + (1− αpxt)V ∗t+1(α′) (16)

where α′ is given in Eq. (1). It is only straightforward that if αpV ∗d −c > 0, the planner will
choose to experiment at a maximum intensity in period t, or xt = 1. The optimal stopping
time is characterised if in Eq. (16) one imposes that V ∗t (α) ≥ 0 and V ∗t+1(α′) < 0. In other
words, the optimal stopping time is the last experiment such that the payoff is positive.
The optimal stopping time is given by

α∗ = min
{

1,
c

pV ∗d

}
(17)

In fact, one can characterise the unique threshold in the value of the product above
which experimentation is socially optimal for a sufficiently high belief. This is specified
in the following proposition.

Proposition 3. The socially optimal stopping time α∗ is everywhere continuously strictly de-
creasing. Moreover, α∗ = ᾱ for v < v̄rd and α∗ > ᾱ for v ≥ v̄rd.

Proposition 3 states that the optimal stopping time is decreasing in v. Furthermore, it
coincides with the equilibrium stopping time for v < v̄rd but is strictly greater than the
equilibrium stopping time for v ≥ v̄rd. The latter is a result of the fundamental free-riding
effect: even if it is socially optimal to continue experimenting firms stop prematurely.

Given the analysis thus far, it is not difficult to see that equilibrium experimentation is
always inefficient. Nonetheless, different types of inefficiencies arise based on (i) the stage
at which firms are, and, (ii) parameter values. To be more precise, we analyse the different
types of inefficiencies by starting from the end and moving backwards. The following
corollary summarises the possible inefficiencies when both firms have advanced to the
development stage.

Corollary 1. Suppose that both firms have qualified to the development stage; then both firms
experiment at maximum intensity in equilibrium whilst it is socially optimal to experiment at a
maximum intensity only in one technology.

Corollary 1 is in line with the early contributions by Loury (1979), Lee and Wilde (1980)
who show that firms may undertake excessive R&D because they do not internalise the
negative externalities they impose on one another.

We can now study the subgame starting after one firm advances to the development
stage while the rival firm is still in the research stage. We saw in Lemma 2 that there is
a critical cutoff below which the firm in the research stage exits the race. The following
corollarly highlights the possible inefficiencies.

Corollary 2. Suppose that one firm has qualified to the development stage while the rival is still in
the research stage; then, (i) for v < v̄rd only the firm that is in the development stage experiments
at a maximum intensity in equilibrium as is socially optimal, (ii) for v ≥ v̄rd, it is socially optimal
for only the firm that is in the development stage to expiriment at a maximum intensity but both
firms experiment at a maximum intensity in equilibrium.
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Corollary 2 states that for products that are not sufficiently lucrative, advancement to
the development stage by one firm is sufficient for the race to degenerate into a monopoly;
for sufficiently lucrative products, duplication of investment arises as firms do not inter-
nalise the negative externalities they impose on one another. The former results is in line
with early papers in the patent races literature (e.g., Fudenberg et al. (1983), Harris and
Vickers (1985));14 the latter result is similar to that obtained in Corollary 1.

Suppose now that both firms are in the research stage. As we argued in Proposition 3,
ᾱ ≥ α∗ as V̄dr ≤ V ∗d with the inequality being strict for v ≥ v̄rd.

Corollary 3. Suppose that both firms are in the research stage; then, it is socially optimal to exper-
iment in at most one technology at maximum intensity but in equilibrium both firms experiment.

Corollary 3 states that apart from over-investment a potential under-investment might
arise when both firms are in the research stage: for relatively high belief and/or value
products, both firms experiment at a maximum intensity although it is socially optimal
to experiment at a maximum intensity at most in one technology; for relatively low belief
and/or value products, firms might experiment too little.

All the inefficiencies that characterised in Corollaries 1 and 2 are essentially static in
the sense that they do not arise from the dynamics of the model. Unlike Corollaries 1
and 2, the inefficiency described in Corollary 3 is a dynamic inefficiency. The dynamic
inefficiency is the result of the dynamics of the model: firms might under-invest due to
the fundamental free-riding effect.

5 DISCUSSION

� Model Relevance. The model applies in innovation races in which completion of at
least two stages is a prerequisite for a patent to be allocated and, at the outset, firms are
uncertain about the overall feasibility of the project. For instance, if only one stage is com-
pleted, the requirements of the Patent Granting Authority are not satisfied. For instance
in the pharmaceutical industry, the allocation of a patent is granted after a significant pe-
riod has lapsed and several stages have been completed. One can assume that more than
two stages (i.e., N > 2) are required before the product is successfully marketed but suc-
cessful completion of the first two stages is sufficient for a firm to file an application for
the allocation of a patent. In that case v denotes the expected monopoly profit minus the
cost required to complete the N − 2 remaining stages.

� Asymmetric Equilibria. Although we focus on the unique symmetric equilibrium,
asymmetric equilibria exist. For instance, an asymmetric equilibrium entails only one
firm experimenting at a maximum intensity for relatively low α instead of both firms
experimenting. This equilibrium is more efficient than the symmetric equilibrium as it
avoids the duplication of investment.

14This is sometimes called “ε-preemption”.
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� Robustness. Although, we have imposed a number of simplifying assumptions, our
results are robust in various alternative specifications. Below we discuss some:

- Discounting: Throughout, we have assumed that firms do not discount the future.
This assumption was only for simplicity; all our results are valid even if firms discount
the future. The most important implication of discounting regards the socially efficient
stopping time. In particular, under discounting, the planner faces an inter-temporal trade-
off: experimenting at maximum intensity in both technologies is costly but increases the
probability of success. Hence, an impatient social planner would prefer to invest at a
maximum intensity in both technologies. For the reasons explained above, under no
discounting the planner faces no inter-temporal trade-off and hence would operate at
most one technology at a time.

-Continuous vs. discrete time: Following Bolton and Harris (1999), most of the litera-
ture on strategic experimentation employs a continuous time framework.15 Instead, we
study a discrete-time counterpart of Keller, Rady, and Cripps (2005) exponential model,
although our results are robust even in continous time.

-Other issues: We have assumed that the same bandit technology is used in both stages.
This implies that (i) conditionally on the technology being armed in a good state, the prob-
abilities of success in both stages are the same and (ii) the development stage is certain.
Extension to an environment in which firms have different (symmetric) technologies in
the two stages is straightforward and would not alter the results.

� Avenues for Future Research. One interesting avenue for future research is to study
a game in which firms do not perfectly observe the actions and outcomes of one another
but they can voluntarily disclose the intermediate breakthrough as in Yildirim (2005),
Gill (2008), Rieck (2010) and Akcigit and Liu (2015). In our model, when v < v̄rd, firms
have strong incentive to disclose any intermediate breakthrough as soon as possible to
discourage the rival from continuing; when v ≥ v̄rd, firms would like to hide intermediate
breakthroughs to protect themselves from competition. Nonetheless, in either case, the
equilibrium intensity of experimentation depends on the beliefs firms entertain regarding
the relative position of the rival which makes the analysis considerably more complicated.

Another interesting extension is to assume that firms do not disclose intermediate
breakthroughs but receive a private information signal –perhaps due to espionage– re-
garding the state of the rival. This would also introduce different incentives for experi-
mentation.

6 CONCLUSION

In this paper we studied a winner-takes-all R&D race as a two-armed bandit model. Two
firms that competed on the development of a new product had to pass two stages (Re-
search & Development) before acquiring a patent. Firms possessed identical bandit tech-
nologies able to provide them with the breakthrough that was required to complete a
stage. Nonetheless, at the outset, firms were uncertain whether their technologies were

15For an exception see Heidhues, Rady, and Strack (2015).
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armed in a good state, in which case the required breakthrough could occur with a strictly
positive probability, or in a bad state, in which case the breakthrough could never occur.
We assumed that firms observed one another’s actions and outcomes.

We analysed the unique symmetric equilibrium of this dynamic game. We showed
that for relatively low-value products firms experimented at a maximum intensity and
the equilibrium stopping time coincided with the socially efficient stopping time; for rel-
atively high-value products, free-riding could reduce experimentation and firms stopped
experimenting prematurely. Perhaps surprisingly, we showed that a decrease in the value
of the product could spur experimentation.

APPENDIX

� Proof of Lemma 1. To find V̄dd, note that if both firms experiment at a maximum
intensity every period, the continuation payoff of each firm is

V̄dd =
{
p(1− p

2
)v − c

}
+ (1− p)2V̄dd

Solving for V̄dd, one obtains that

V̄dd =
p(1− p

2
)v − c

1− (1− p)2
=

1

2

(
v − v̄dd

)
where v̄dd = 2c/p(2− p).

� Proof of Lemma 2. To find V̄rd, note that, as we argued in the text, for v < v̄rd, the
laggard exits the race; for v ≥ v̄rd, the laggard continues in the race and experiments at a
maximum intensity. The laggard’s continuation payoff is given by

V̄rd =
{
p(1− p)V̄dd − c

}
+ (1− p)2V̄rd

which is equivalent to

V̄rd =
p(1− p)V̄dd − c

1− (1− p)2
=
p(1− p)V̄dd − c

2p(1− p
2
)

=
1

2

((1− p)V̄dd
1− p

2

− v̄dd
)

Regarding the leader’s continuation payoff, for v < v̄rd, it is a monopolist and earns a
continuation payoff

V̄dr = pv − c+ (1− p)V̄dr
which is equivalent to V̄dr = v − c

p
; for v ≥ v̄rd, the laggard continues in the race and the

leader’s payoff is
V̄rd =

{
pv + p(1− p)V̄dd − c

}
+ (1− p)2V̄dr

which is equivalent to

V̄rd =
pv + p(1− p)V̄dd − c

1− (1− p)2
=

1

2

((1− p)V̄dd + v

1− p
2

− v̄dd
)
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� Proof of Lemma 3. To show that V̄dr is discontinuous in v at v̄rd, it suffices to show
that

v − c

p
>

1

2

((1− p)V̄dd + v

1− p
2

− v̄dd
)
⇔

v − c

p
>

(1− p)V̄dd + v

2− p
− 1

2
v̄dd ⇔(

1− 2

2− p

)
v >

(1− p)V̄dd
2− p

+
c

p

(
1− 1

2− p

)
⇔

v > V̄dd +
c

p
⇔

v − c

p
>

1

2
v − c

(2− p)p
⇔

v >
c

p
· 2(1− p)

2− p
⇔

which is always satisfied.

REFERENCES

Akcigit, Ufuk, and Qingmin Liu, “The role of information in innovation and competi-
tion,” Journal of the European Economic Association, 14 (2015), 828–870.

Bednorz, J George, and K Alex Müller, “Possible high Tc superconductivity in the Ba- La-
Cu- O system,” Zeitschrift für Physik B Condensed Matter, 64 (1986), 189–193.

Bimpikis, Kostas, and Kimon Drakopoulos, “Disclosing information in strategic experi-
mentation,” Manuscript, Grad. School of Bus., Stanford Uni., (2018).

Bimpikis, Kostas, Shayan Ehsani, and Mohamed Mostagir, “Designing Dynamic Con-
tests,” Manuscript, Grad. School of Bus., Stanford Uni., (2015).

Bolton, P., and C. Harris, “Strategic experimentation,” Econometrica, 67 (1999), 349–374.

Che, Yeon-Koo, and Johannes Horner, “Optimal design for social learning,” Manuscript,
Dept. Econ., Columbia University, (2015).

Choi, J., “Dynamic R&D competition under” hazard rate” uncertainty,” RAND Journal of
Economics, (1991), 596–610.

Dasgupta, P., and J. Stiglitz, “Uncertainty, industrial structure, and the speed of R&D,”
Bell Journal of Economics, (1980), 1–28.

DiMasi, J. A., “Success rates for new drugs entering clinical testing in the United States,”
Clinical Pharmacology & Therapeutics, 58 (1995), 1–14.

17



DiMasi, J. A., H. G. Grabowski, and R. W. Hansen, “Innovation in the pharmaceutical
industry: new estimates of R&D costs,” Journal of health economics, 47 (2016), 20–33.

DiMasi, J. A., R. W. Hansen, and H. G. Grabowski, “The price of innovation: new esti-
mates of drug development costs,” Journal of health economics, 22 (2003), 151–185.

Fudenberg, D., R. Gilbert, J. Stiglitz, and J. Tirole, “Preemption, leapfrogging and compe-
tition in patent races,” European Economic Review, 22 (1983), 3–31.

Gill, David, “Strategic disclosure of intermediate research results,” Journal of Economics &
Management Strategy, 17 (2008), 733–758.

Grossman, G., and C. Shapiro, “Dynamic R & D competition,” The Economic Journal, 97
(1987), 372–387.

Halac, Marina, Navin Kartik, and Qingmin Liu, “Contests for experimentation,” Journal
of Political Economy, 125 (2017), 1523–1569.

Harris, C., and J. Vickers, “Perfect Equilibrium in a Model of a Race,” The Review of Eco-
nomic Studies, 52 (1985), 193–209.

——, “Racing with uncertainty,” Review of Economic Studies, 54 (1987), 1–21.

Heidhues, Paul, Sven Rady, and Philipp Strack, “Strategic experimentation with private
payoffs,” Journal of Economic Theory, 159 (2015), 531–551.

Keller, G., S. Rady, and M. Cripps, “Strategic experimentation with exponential bandits,”
Econometrica, 73 (2005), 39–68.

Kremer, Ilan, Yishay Mansour, and Motty Perry, “Implementing the “wisdom of the
crowd”,” Journal of Political Economy, 122 (2014), 988–1012.

Lee, T., and L. Wilde, “Market structure and innovation: a reformulation,” Quarterly Jour-
nal of Economics, 94 (1980), 429–436.

Loury, G., “Market structure and innovation,” Quarterly Journal of Economics, (1979), 395–
410.

Malueg, D., and S. Tsutsui, “Dynamic R&D competition with learning,” RAND Journal of
Economics, (1997), 751–772.

Mason, Robin, and Juuso Valimaki, “Learning in Contests,” Manuscript, Grad. School of
Bus., Uni. of Exeter, (2010).

Moscarini, Giuseppe, and Francesco Squintani, “Competitive experimentation with pri-
vate information: The survivor’s curse,” Journal of Economic Theory, 145 (2010), 639–660.

Reinganum, J., “Dynamic Games of Innovation.” Journal of Economic Theory, 25 (1981),
21–41.

18



——, “A dynamic game of R and D: Patent protection and competitive behavior,” Econo-
metrica, (1982), 671–688.

Rieck, Thomas, “Information disclosure in innovation contests,” Bonn Econ Discussion
Papers, (2010).

Vidali, Gianfranco, Superconductivity: the next revolution? (Cambridge university press,
1993).

Wu, Maw-Kuen, Jo R Ashburn, ClJ Torng, Ph H Hor, Rl L Meng, Lo Gao, Z Jo Huang,
YQ Wang, and aCW Chu, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O
compound system at ambient pressure,” Physical review letters, 58 (1987), 908.

Yildirim, Huseyin, “Contests with multiple rounds,” Games and Economic Behavior, 51
(2005), 213–227.

19



 

 

C ON T AC T  

Centre de Recherche 
Tel. +33 (0)1 34 43 30 91 
research.center@essec.fr 

 
 

 




