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Abstract

This paper uses the test/retest data from the Holt and Laury (2002) experiment to

provide estimates of the measurement error in this popular risk-aversion task. Maximum-

likelihood estimation suggests that the variance of the measurement error is approxi-

mately equal to the variance of the number of safe choices. Simulations confirm that the

coefficient on the risk measure in univariate OLS regressions is approximately half of its

true value. Unlike measurement error, the discrete transformation of continuous risk-

aversion is not a major issue. We discuss the merits of a number of different solutions:

increasing the number of observations, IV and the ORIV method developed by Gillen

et al. (2019).
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1. Introduction

Economists explain individual heterogeneity in observed behavior by appealing to a num-

ber of key individual characteristics, such as risk attitudes or time preferences. A common

research practice is to elicit this kind of individual characteristic via an elementary task,

and then use the resulting value as an explanatory variable in subsequent regressions. One

example is the use of an elicitation method to measure risk attitudes, for example that pro-

posed by Holt and Laury (2002), and then including the outcome from the task in some OLS

regressions.

The potential issue here comes from the considerable within-individual variability in these

elicited measures. For example, the correlations between different measures of risk attitudes

for the same individual are typically small, even when the same task is repeated within a

short period of time (see, for instance, the discussion and references in Bardsley et al. (2010)).

From an econometric perspective, within-individual variability can be interpreted as mea-

surement error, which has well-known negative consequences: in OLS regressions, the coeffi-

cient on the explanatory variable measured with error is attenuated, and other variables that

are actually not significant in multivariate regressions may wrongly be estimated to be so,

as measurement error in one explanatory variable renders all of the estimates inconsistent.

Another difficulty comes from the fact that popular elicitation methods yield a discrete

approximation of a continuous variable (e.g. risk-aversion or the discount rate). Round-

ing or truncating elicited measures will mechanically produce some imprecision. Last, esti-

mated risk-aversion often comes from laboratory experiments with relatively small samples

(e.g. N=100 or 200). Many experimental-economics analyses then use small samples, with

variables that are plagued by measurement error arising from intra-subject variability and

rounding issues.

So far, little is known about the magnitude of this measurement error and rounding:

What is the degree of attenuation of the coefficients in OLS regressions? How often will

significant coefficients actually appear to be insignificant?

In this paper, we use test/retest information to gauge the size of the measurement error in

the extremely popular Holt and Laury (2002) (HL) task to measure risk-aversion.1 We here

appeal to the relevant original information in Holt and Laury (2002), as they implemented

a “return to baseline” task using the same group of participants in a standard test/retest
1In a relatively short period of time, this task has become the most popular risk-aversion elicitation method

in experimental economics, as mentioned for instance in Zhou and Hey (2018), Charness et al. (2019), Attanasi
et al. (2018), Crosetto and Filippin (2016). Google Scholar, accessed on 28.08.19, indicates 5400 citations for
this paper.
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design. We can therefore compare the choices made by the same individual in the same task,

repeated within a short period of time (in the same experimental session). As a robustness

check, we carried out a test/retest of the HL task at the ESSEC Experimental Lab in 2019

(see Appendix A).

Our analysis proceeds in three steps. (1) we carry out maximum-likelihood (ML) joint

estimations of the variance of the measurement error, as well as of the mean and variance

of the variable of interest (the number of safe choices in the Holt-Laury task; see the next

section for details). (2) We simulate a linear stochastic model and carry out a large num-

ber of univariate OLS regressions. We also vary the sample sizes (with N=100 being the

benchmark). This allows us to assess the respective impact of the measurement error and

rounding on the variance and significance of the estimated coefficient. (3) Finally, we use the

simulations to analyze and compare possible solutions to the measurement-error problem,

such as increasing the number of observations, using IV estimators or the Obviously Related

Instrumental Variables (ORIV) method developed by Gillen et al. (2019).

Two relevant contributions address the issue of measurement error in experimental data.

Gillen et al. (2019) replicate three classic experiments using an original data set (the Caltech

cohort survey), and show that the results can change dramatically when the measurement

error is correctly accounted for. Our analysis here addresses two important elements not

considered there: the impact of the sample size (in particular the small sample sizes typical

of laboratory experiments) and the rounding issue arising from the use of a discrete measure

of a continuous variable. Engel and Kirchakamp (2019) adopt an alternative method to

estimate the measurement error in the HL task. Their focus is on inconsistent answers,2

and they aim to estimate an individual-specific error term (while we here assume that the

error terms are independent between tasks, and are drawn from the same distribution for

all individuals). In contrast, we use test/retest data to evaluate the size of the measurement

error. Test/retest is a simpler way of evaluating the importance of measurement error, and

can be applied even when the number of inconsistent choices is small.

We find that:

(1) Assuming normal distributions, the maximum-likelihood (ML) estimated variance

of the measurement error is close to 1, similar to the variance of the latent risk-aversion

variable. In theory, the attenuation factor is close to 0.5, regardless of the size of the sample.

Our subsequent simulations indeed indicate that the typical amount of noise in the HL task
2Jacobson and Petrie (2009) record a large number of such mistakes in a different experiment, and argue

that they can provide information about the true population distribution of the risk-aversion coefficient.
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will roughly divide the coefficient of interest by 2.

(2) Our simulations also show that in this task the discrete transformation of the variable

of interest (i.e. rounding) does not much affect the attenuation bias, and only marginally

affects the variance of the estimators. By way of contrast, the measurement error arising from

within-subject variability is responsible for much of the effect on the estimated coefficient.

(3) Increasing the sample size does not alleviate the attenuation bias, but does increase

the significance of the estimated coefficient. Going up to N = 1000 suffices for the coefficient

to become significant almost 100% of the time, while smaller sample sizes (e.g.N = 100 or

N = 200) produce a large proportion of insignificant coefficients.

(4) As expected, the ORIV method almost completely removes the bias, although ORIV

estimates have larger variances than the true OLS estimates. ORIV may not suffice to solve

the significance issue resulting from measurement error for small samples.

(5) Using ORIV and increasing the sample size are powerful solutions to address the

estimation biases induced by measurement error in the Holt and Laury task (and probably

other tasks as well).

The remainder of the paper is organized as follows. The next section briefly describes the

HL task and the data. Section 3 provides ML estimates for the variance of the measurement

error, and the mean and variance of the variable of interest. Section 4 uses these parameters

to simulate a linear stochastic model, and then carries out 100000 regressions under different

assumptions about the properties of the explanatory variable. The last section concludes.

2. The Holt and Laury (2002) task: A primer

The Holt and Laury (2002) (HL) risk-aversion elicitation task consists in choosing between

a ”safe” (small-spread) lottery x

10
.2$ + (1 − x

10
).1.6$ and a ”risky” (wide-spread) lottery

x

10
.3.85$ + (1− x

10
).0.10$ for x ∈ J1, 10K.
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Table 1: The Holt and Laury (2002) risk-aversion elicitation task

Option A Option B

1/10 of $2.00, 9/10 of $1.60 1/10 of $3.85, 9/10 of $0.10

2/10 of $2.00, 8/10 of $1.60 2/10 of $3.85, 8/10 of $0.10

3/10 of $2.00, 7/10 of $1.60 3/10 of $3.85, 7/10 of $0.10

4/10 of $2.00, 6/10 of $1.60 4/10 of $3.85, 6/10 of $0.10

5/10 of $2.00, 5/10 of $1.60 5/10 of $3.85, 5/10 of $0.10

6/10 of $2.00, 4/10 of $1.60 6/10 of $3.85, 4/10 of $0.10

7/10 of $2.00, 3/10 of $1.60 7/10 of $3.85, 3/10 of $0.10

8/10 of $2.00, 2/10 of $1.60 8/10 of $3.85, 2/10 of $0.10

9/10 of $2.00, 1/10 of $1.60 9/10 of $3.85, 1/10 of $0.10

10/10 of $2.00, 0/10 of $1.60 10/10 of $3.85, 0/10 of $0.10

The data set comes from the initial article by Holt and Laury (2002), who elicited the risk

measure for their main treatment (Table 1) twice: once at the beginning of the experimental

session and once at the end, after having subjects perform variants of the same task with

higher stakes. Their sample included a total of 175 subjects from three US Universities;

half were undergraduate students, one third MBA students and the rest business-faculty

members.3

Assuming that subjects maximize their expected utility,4 and that their utility function

is twice-differentiable, the value x∗ (a continuous variable) for which the subject is indifferent

between the safe and the risky lottery is strictly increasing in the coefficient of risk-aversion.

x∗ is thus a valid variable to describe risk preferences, and is our variable of interest.

Subjects generally start by choosing the safe option when x = 1 and shift to the risky

option for a larger x, more precisely for ⌊x∗⌋ + 1. The number of times the safe option

chosen is therefore ⌊x∗⌋. This discrete variable is the standard measure of risk-aversion

recommended by Holt and Laury (2002).5 Using a discrete transformation to approximate

a continuous variable introduces some imprecision.

In the scatter diagram in Figure 1, the horizontal axis represents the number of times

an individual chose the safe option in the first test, and the vertical axis the same number
3We manually transcribed the data provided at the address http://www.people.virginia.edu

/ cah2k/highdata.pdf.
4The debates around this standard decision model are beyond the scope of the current paper; see

O’Donoghue and Somerville (2018) for a recent discussion.
5On average subjects choose the safe option six times out of ten.
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in the last (retest) test at the end of the session. The size of the circles reflects the number

of individuals making a given choice. The dispersion of the circles suggests that noise other

than discretization affects the risk-aversion measures. The observed variables with noise and

discrete transformation can be written as: x1 = ⌊x∗ + ϵ1⌋ and x2 = ⌊x∗ + ϵ2⌋, where ϵ1 and

ϵ2 are the noise or measurement errors.
0

2
4

6
8

10

0 2 4 6 8 10

Figure 1: Scatter plot of the number of safe choices in the two repetitions of HL 2002

Finally, as in all MPL tasks, it is not uncommon that some ”inconsistent” subjects switch

back from the risky to the safe option. Engel and Kirchakamp (2019) use the information

included in these multiple switches to obtain information about the noise. We will follow

an alternative path for three reasons. First, the number of multiple switches is only small

in the datasets we use (under 10% in the original HL experiment and under 5% in our

ESSEC replication). Second, most subjects seem to consider the whole task as one unique

choice, choosing the row from which they want to switch to the risky option, and not as

a multiple-choice task (Hey et al. (2009)). Third, the two repetitions of the task provide

us with enough information to determine the lower bound of the measurement error in this

risk-aversion elicitation task.
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3. Estimating the variance of the measurement error

Maximum-Likelihood Assumptions

We wish to estimate the mean and variance of our variable of interest x* and the variance

of the measurement error ϵi using standard maximum-likelihood procedures. To do so we

use the following notation and simplifying assumptions:

• Variable of interest x∗ ∼ N (m,σx
2) truncated over [0,10] (with a density function of

f).

• Measurement error for observation i ∈ {1, 2}, ϵi ∼ N (0, σϵ
2)6 (with a distribution

function of Φ).

• ϵ1, ϵ2 and x∗ are all independent of each other.

• We observe x1 = ⌊x∗ + ϵ1⌋ and x2 = ⌊x∗ + ϵ2⌋7.

• The unknown parameters are θ = {m,σx, σϵ} .

Figure 2 presents the number of safe choices in the test and retest conditions in Holt and

Laury (2002). Their shapes suggest that normality is a plausible assumption.

0
.1

.2
.3

D
en

si
ty

0 2 4 6 8 10
1st repetition

0
.1

.2
.3

D
en

si
ty

0 2 4 6 8 10
2nd repetition

Figure 2: Number of safe choices in the two repetitions of HL 2002
6We could assume that ϵ1 and ϵ2 are drawn from normal distributions with different variances.
7In extreme cases we can have x∗ + ϵ < 0 (resp x∗ + ϵ ≥ 11): in this case we observe x = 0 (resp x = 10)

and not ⌊x∗ + ϵ⌋. This is not an issue here as we never find that x∗ + ϵ<0 or >11 in our simulations.
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Likelihood function

Under our assumptions, we can determine for any θ the likelihood function that shows

how likely it is that the parameter θ is the correct one given the assumed model and the

observations.

L(θ) =
N∏
i=1

P (x1 = x1i
∩

x2 = x2i|θ)

=

N∏
i=1

∫ 10

0
P (x1 = x1i

∩
x2 = x2i|x∗ = u, θ)f(u|θ)du

=

N∏
i=1

∫ 10

0
P (x1i ≤ u+ ϵ1 < x1i + 1

∩
x2i ≤ u+ ϵ2 < x2i + 1|x∗ = u, θ)f(u|θ)du

=

N∏
i=1

∫ 10

0
(Φ(x1i + 1− u)− Φ(x1i − u))(Φ(x2i + 1− u)− Φ(x2i − u))f(u|θ)du

Calibrations

We maximize the log-likelihood function to obtain the maximum-likelihood estimator:

θM =
{
mM , σM

x , σϵ
M
}
.

Table 2: Maximum-Likelihood Estimates

mM σM
x σM

ϵ

5.743 1.028 0.899
(0.093) (0.082) (0.052)

The data we collected in a replication study carried out at the ESSEC Experimental Lab

in 2017 produce similar-sized estimates: see Appendix A.

4. Simulations

Fictive outcomes and assumptions

Now that we have estimated the variance of the measurement error, as well as the mean

and variance of the variable of interest x∗, we can use a simple linear stochastic model

to simulate an outcome variable y∗ in order to evaluate the size of the measurement-error

problem in simple OLS regressions, with particular emphasis on the value, significance and

variance of the estimated coefficient. The simulations are carried out using the following
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assumptions:

• y∗ = α+ βx∗ + u x∗ ∼ N (mM , σM
x

2
; [0, 10]) u ∼ N (0, σu

2) X∗⊥⊥u

• x = ⌊x∗ + ϵ⌋ with ϵ ∼ N (0, σϵ
2) X∗⊥⊥ ϵ ϵ⊥⊥u

• σ2
u = 1

Under these assumptions and for the β we consider, we have Corr(y∗,x∗) ≃ β.

Obviously Related Instrumental Variable

Gillen et al. (2019) argue convincingly that the test/retest design and the duplication

of a noisy measure can help to correct attenuation bias and improve the significance of the

estimated coefficients.

In a first step, they show that simple IV regressions (2SLS) using x1 as an instrument

for x2 (or the reverse) already improve the quality of the estimation.

To make the best use of all available information, and because there is no reason to prefer

x1 to instrument x2, or x2 to instrument x1, they combine the two IV regressions in one

convex combination, via a method they called Obviously Related Instrumental Variables.

This requires that the errors in the 1st and 2nd measures be independent.

We will implement both the IV and the ORIV methods, which will allow us to emphasize

the benefits of the latter. For ORIV, we estimate the stacked model:

y∗

y∗

 =

α1

α2

 + β

x1

x2

 + u (1)

instrumenting

x1

x2

 by W =

x2 0N

0N x1


Table 3 displays the coefficient estimates from 100 000 simulated experiments with 100

subjects, a sample size that is relatively common in laboratory experiments. We use in

the simulation five “actual” coefficients β = (0.15, 0.20, 0.25, 0.30, 0.35), of relatively small

size, as these can be more sensitive to the measurement-error problem. The table shows

the estimated mean, variances and frequencies of the significance of these estimators (at

three error levels). We stack the estimates by the method of generating the latent variable

(the true one, discretization, noise, and discretization and noise), and the estimation of the

coefficient when the latent variable is noisy and truncated (IV and ORIV).
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To help intuition, Figure 3 presents the distribution of the estimates for β = 0.25 in the

six relevant simulations (the true variable, discretization, noise only, discretization and noise,

simple IV and ORIV) for N=100; Table 4 displays the analogous estimates for a sample size

of 200.

In Appendix B we provide coefficient estimates for “large” samples (up to N=1000),

which appear much less frequently in laboratory experiments, but are common when using

internet data collection through specialized platforms, or in some field studies.
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Table 3: Simulations: Simple OLS and IV with N=100 (100 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ 0.1505 0.1998 0.2497 0.2999 0.3505
(St Dev) 0.0986 0.0985 0.099 0.099 0.0987

Sig 0.1 45.19% 64.69% 80.91% 91.40% 96.79%

Sig 0.05 32.88% 52.41% 71.03% 85.26% 93.70%

Sig 0.01 14.34% 28.42% 46.99% 66.17% 81.90%

⌊x∗⌋ Mean β̂ 0.1395 0.185 0.2314 0.2779 0.3248
(St Dev) 0.095 0.0951 0.0955 0.0958 0.0954

Sig 0.1 42.94% 61.59% 78.10% 89.26% 95.65%

Sig 0.05 30.94% 49.12% 67.64% 82.30% 91.77%

Sig 0.01 13.18% 25.83% 43.12% 61.79% 77.89%

x∗ + ϵ Mean β̂ 0.0855 0.1131 0.1415 0.1699 0.1987
(St Dev) 0.0749 0.0748 0.0753 0.0761 0.0765

Sig 0.1 30.87% 44.71% 59.18% 72.18% 82.63%

Sig 0.05 20.62% 32.53% 46.75% 60.70% 73.34%

Sig 0.01 7.50% 14.02% 23.84% 36.12% 50.11%

⌊x∗ + ϵ⌋ Mean β̂ 0.0818 0.1083 0.1355 0.1627 0.1902
(St Dev) 0.0732 0.0732 0.0737 0.0745 0.075

Sig 0.1 30.09% 43.24% 57.63% 70.61% 81.02%

Sig 0.05 19.93% 31.28% 45.02% 58.84% 71.28%

Sig 0.01 7.11% 13.35% 22.64% 34.32% 47.66%

IV Mean β̂ 0.1533 0.2028 0.2538 0.3057 0.3563
(St Dev) 0.1413 0.1427 0.1439 0.146 0.1478

Sig 0.1 28.69% 42.24% 56.78% 70.14% 81.03%

Sig 0.05 18.10% 29.42% 43.16% 57.65% 70.61%

Sig 0.01 5.14% 10.45% 19.08% 30.44% 43.78%

ORIV Mean β̂ 0.1521 0.2013 0.2518 0.3031 0.3536
(St Dev) 0.1218 0.1227 0.124 0.126 0.1273

Sig 0.1 36.52% 52.27% 67.80% 80.51% 89.32%

Sig 0.05 25.27% 39.92% 55.66% 70.52% 82.12%

Sig 0.01 10.17% 18.94% 31.75% 46.48% 61.58%

The first column indicates the variable or the estimation method used in the
univariate OLS regression. The first variable is the true x∗, the second the
discretization of the true variable, the third considers the effect of noise, the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estimations

the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. The last five columns indicate the

average value, standard deviation and significance of β for 100 000 simulations.
For instance the ORIV cell for Sig 0.1 and β = 0.15 is 36.52%, so that the
estimated β using ORIV is significant in 36.52% of the 100 000 regressions at
the 10% level when the true β is 0.15.
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Table 4: Simulations: Simple OLS and IV with N=200 (100 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ 0.15 0.1999 0.2501 0.3 0.3502
(St Dev) 0.0695 0.0692 0.0692 0.0695 0.0691

Sig 0.1 69.72% 89.26% 97.32% 99.58% 99.95%

Sig 0.05 57.98% 82.02% 94.66% 98.92% 99.85%

Sig 0.01 33.72% 61.36% 84.14% 95.50% 99.11%

⌊x∗⌋ Mean β̂ 0.139 0.1853 0.2318 0.278 0.3245
(St Dev) 0.0669 0.0666 0.0668 0.067 0.0668

Sig 0.1 66.91% 86.98% 96.35% 99.30% 99.90%

Sig 0.05 54.86% 78.99% 93.00% 98.41% 99.72%

Sig 0.01 30.83% 56.98% 80.64% 93.63% 98.51%

x∗ + ϵ Mean β̂ 0.085 0.1131 0.1415 0.1702 0.1984
(St Dev) 0.0526 0.0524 0.053 0.0535 0.0538

Sig 0.1 48.91% 69.35% 84.70% 93.64% 97.80%

Sig 0.05 36.78% 57.29% 76.02% 88.73% 95.59%

Sig 0.01 16.94% 33.08% 53.38% 72.42% 86.18%

⌊x∗ + ϵ⌋ Mean β̂ 0.0813 0.1083 0.1355 0.1629 0.1899
(St Dev) 0.0515 0.0513 0.0519 0.0524 0.0528

Sig 0.1 47.58% 67.61% 83.20% 92.67% 97.33%

Sig 0.05 35.35% 55.45% 74.18% 87.30% 94.73%

Sig 0.01 16.04% 31.49% 51.15% 69.91% 84.25%

IV Mean β̂ 0.1512 0.2018 0.2524 0.3026 0.3531
(St Dev) 0.097 0.0974 0.0986 0.1 0.1014

Sig 0.1 47.30% 67.63% 83.38% 92.93% 97.48%

Sig 0.05 34.58% 55.21% 74.10% 87.47% 94.87%

Sig 0.01 14.53% 29.60% 49.88% 69.18% 84.00%

ORIV Mean β̂ 0.1506 0.2008 0.2511 0.3015 0.3517
(St Dev) 0.0845 0.0847 0.0859 0.0871 0.0881

Sig 0.1 56.87% 77.65% 90.81% 97.16% 99.28%

Sig 0.05 44.24% 67.12% 84.60% 94.22% 98.38%

Sig 0.01 22.34% 42.88% 65.44% 82.94% 93.33%

The first column indicates the variable or estimation method used in the uni-
variate OLS regression. The first variable is the true x∗, the second the dis-
cretization of the true variable, the third considers the effect of noise, the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estimations

the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. The last five columns indicate

the average value, standard deviation and significance of β for 100 000 sim-
ulations. For instance the ORIV cell for Sig 0.1 and β = 0.15 is 56.87%, so
that the estimated β using ORIV method is significant in 56.87% of the 100
000 regressions at the 10% level when the true β is 0.15.
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Discussion of the results

(a) In line with theory, these simulations confirm that measurement error attenuates the

coefficient of the variable of interest in univariate OLS regression: the “true” coefficient is

approximately divided by 2. Increasing the size of the sample does not remove this bias, but

does improve the significance of the coefficients.

(b) In small samples (N=100), measurement errors substantially affect the significance

of the coefficients. For instance, with β = 0.25 the coefficient is significant at the 5% level

only 46.75% of the time. This helps explain why the coefficients of “meaningful” variables

by any theoretical standard are often insignificant in experimental research .

(c) The use of a discrete measure of a continuous variable of interest such as risk-aversion

does not appear to be a major problem. As we can see from the simulation tables, this

transformation only slightly reinforces the downward bias in the coefficients.

(d) For small samples (N=100) simple IV and ORIV estimations do not fully remove the

measurement problem: while the bias is virtually eliminated, the frequency of insignificant

coefficients is still very high (at 43 and 55 per cent, respectively, at the 5 per cent significance

level).

(e) In larger samples (N=200) the ORIV estimator performs relatively well. Not only is

the bias virtually eliminated, but significance is also improved (in particular as compared

to the IV estimates). The ORIV coefficients are slightly upward-biased due to the discrete

transformation of the observations. See Appendix B for an comparative performance analysis

of IV and ORIV in large samples (N=1000).

The frequency curves in Figure 3 depict the distribution of the estimated coefficients (for

beta=0.25, and N=100). These show that: (1) the main source of the bias is the measurement

error; (2) the discrete transformation of the continuous variable of interest does not much

shift the distribution; and (3) the ORIV method eliminates the bias but produces a higher

variance.
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Figure 3: The distribution of the estimators for β = 0.25 and N=100

5. Conclusion

By cutting the estimated coefficients in half and substantially reducing their significance,

the problem of measurement error appears too large to be ignored. For instance, the pro-

portion of regressions in which the coefficient of risk aversion appear significant is roughly

divided by two for N=200 for a significance level of 0.01. As a consequence, the external

validity of measures of risk-aversion is greatly undermined. While we here focus on the

Holt-Laury method - the most popular method - there is no reason to believe that different

elicitation methods would not lead to similar results.

Our results of course depend on simplifying assumptions that are made throughout the

text. While many of these are quite standard (such as assuming that the variable of interest

and the error terms are normally-distributed) others can be criticized. In particular, we

assumed that the errors in the two repeated tasks are orthogonal. We furthermore ruled out

the possibility of an individual switching back and forth in HL-like tasks, even though this

behavior is often observed in practice. However, we do not feel that alternative assumptions

would have dramatically changed our conclusions: intra-subject variability is too large to be

ignored as a cause of measurement error.

Our confidence in the robustness of our results derives from the large variability of within-
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subject measures in test/retest data, which is now well-documented. In particular, the task

used to elicit risk-aversion, as well as the delay between the test and the retest, have little

influence on the importance of intra-subject variability, which remains large in all instances.8

A second lesson from our work here relates to sample size. The problems arise when

the sample is of the size typical in experimental economics. Most of the significance issues

disappear with N = 1000. Since it may be too costly to systematically increase sample sizes

up to this value, we suggest the use of IV or ORIV estimation, which corrects most problems

for N over 200. Smaller samples are definitely prone to measurement errors, and the results

regarding the significance of the risk-aversion coefficient should be interpreted cautiously.

This requires eliciting two measures of the variable of interest (risk-aversion in our case),

which is probably less costly than doubling or tripling the sample size.

Within the framework of these simplifying assumptions, our study should be seen as a first

attempt to use test/retest data to determine the size of the measurement error in probably the

most popular risk-aversion elicitation task to date. It also provides new evidence supporting

the use of the ORIV method.
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Appendix A. A replication of HL

We replicated the HL test/retest procedure in 2019, with a total of 60 participants in

three experimental sessions organized at the ESSEC Experimental Lab (France). Subjects

made their decisions on a computer screen and could not establish eye contact with one

another; the instructions and data collection were computerized.
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The experiment included a first HL risk-elicitation task (Table 1), two attention-diversion

tasks (lasting for approximately 10 minutes) and a second HL risk-elicitation task, identical

to the first.

The first diversion was the CRT (cognitive-reflection task) introduced by Frederick (2005).

The second was a simple real-effort task (counting 7’s) that subjects had to carry out for

four minutes. These tasks were not incentivized.

Subjects also indicated their age, gender and major track in their Secondary education.

The payoffs for the session are based on the results from one randomly-selected risk task.

The session lasted approximately 20 minutes and participants earned on average 7 Euros.

Note that the frequency of multiple switches in these data is very low, at under 5 percent.
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Figure 4: The number of safe choices in the two repetitions of the HL task in the ESSEC
replication study

Table 5: Maximum-Likelihood Estimates for the ESSEC students

mM σM
x σM

ϵ

6.205 1.319 1.092
(0.199) (0.182) (0.103)

Appendix B. Simulations for “large” samples

In this Appendix we provide estimates for “large” samples: N=300, N=500 and N=1000

(over 10000 simulations).
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Table 6: Simulations: Simple OLS and IV with N=300 (10 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ 0.1495 0.1998 0.2499 0.3003 0.3499
(St Dev) 0.0564 0.0569 0.0563 0.0564 0.0569

Sig 0.1 84.31% 96.96% 99.71% 100.00% 100.00%

Sig 0.05 75.19% 93.99% 99.20% 99.95% 100.00%

Sig 0.01 52.27% 82.86% 96.53% 99.54% 99.97%

⌊x∗⌋ Mean β̂ 0.1385 0.1853 0.2318 0.2782 0.3242
(St Dev) 0.0543 0.0547 0.0545 0.0547 0.055

Sig 0.1 81.49% 95.82% 99.42% 99.97% 100.00%

Sig 0.05 71.97% 92.08% 98.70% 99.89% 100.00%

Sig 0.01 48.28% 79.29% 94.85% 99.24% 99.95%

x∗ + ϵ Mean β̂ 0.0848 0.1129 0.142 0.1701 0.1979
(St Dev) 0.0424 0.0432 0.0427 0.0435 0.0436

Sig 0.1 63.56% 83.87% 95.04% 98.76% 99.73%

Sig 0.05 51.34% 74.54% 90.80% 97.29% 99.42%

Sig 0.01 27.74% 51.99% 75.59% 90.28% 97.32%

⌊x∗ + ϵ⌋ Mean β̂ 0.0813 0.1081 0.1358 0.1628 0.1895
(St Dev) 0.0416 0.0423 0.0417 0.0427 0.0428

Sig 0.1 62.00% 82.38% 94.35% 98.37% 99.63%

Sig 0.05 49.69% 72.44% 89.23% 96.68% 99.24%

Sig 0.01 25.92% 49.49% 73.50% 88.82% 96.53%

IV Mean β̂ 0.1507 0.2006 0.2512 0.3014 0.3518
(St Dev) 0.0777 0.0794 0.0795 0.0806 0.0814

Sig 0.1 61.47% 82.43% 94.13% 98.46% 99.75%

Sig 0.05 48.32% 72.85% 89.58% 96.65% 99.23%

Sig 0.01 25.12% 48.69% 73.01% 88.88% 96.48%

ORIV Mean β̂ 0.1503 0.2001 0.2508 0.3011 0.3508
(St Dev) 0.0679 0.0697 0.0689 0.0705 0.0715

Sig 0.1 72.08% 89.90% 97.77% 99.64% 99.99%

Sig 0.05 60.35% 83.17% 95.75% 99.07% 99.90%

Sig 0.01 35.81% 63.94% 86.06% 96.03% 99.28%

The first column indicates the variable or estimation method used in the uni-
variate OLS regression. The first variable is the true x∗, the second the dis-
cretization of the true variable, the third considers the effect of noise, the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estimations

the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. The last five columns indicate

the average value, standard deviation and significance of β for 10 000 simu-
lations. For instance the ORIV cell for Sig 0.1 and β = 0.15 is 72.08%, so
that the estimated β using ORIV method is significant in 72.08% of the 10
000 regressions at the 10% level when the true β is 0.15.
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Table 7: Simulation: Simple OLS and IV with N=500 (10 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ 0.1506 0.1999 0.2504 0.3003 0.3498
(St Dev) 0.0435 0.0438 0.0438 0.0438 0.0441

Sig 0.1 96.46% 99.76% 99.99% 100.00% 100.00%

Sig 0.05 93.06% 99.51% 99.97% 100.00% 100.00%

Sig 0.01 80.32% 97.60% 99.90% 100.00% 100.00%

⌊x∗⌋ Mean β̂ 0.1394 0.1854 0.2321 0.2784 0.3242
(St Dev) 0.0421 0.0423 0.0425 0.0423 0.0425

Sig 0.1 95.16% 99.62% 99.98% 100.00% 100.00%

Sig 0.05 90.96% 99.22% 99.95% 100.00% 100.00%

Sig 0.01 76.32% 96.39% 99.79% 100.00% 100.00%

x∗ + ϵ Mean β̂ 0.0852 0.1134 0.1419 0.1704 0.198
(St Dev) 0.033 0.0331 0.0332 0.0337 0.0338

Sig 0.1 82.56% 96.21% 99.46% 99.98% 100.00%

Sig 0.05 72.80% 92.63% 98.74% 99.89% 100.00%

Sig 0.01 50.01% 79.99% 95.10% 99.29% 99.94%

⌊x∗ + ϵ⌋ Mean β̂ 0.0814 0.1086 0.1358 0.1631 0.1894
(St Dev) 0.0323 0.0324 0.0325 0.033 0.0331

Sig 0.1 80.73% 95.43% 99.34% 99.98% 100.00%

Sig 0.05 71.03% 91.49% 98.52% 99.87% 99.99%

Sig 0.01 47.48% 77.86% 94.08% 99.06% 99.89%

IV Mean β̂ 0.1513 0.2003 0.2508 0.3017 0.3505
(St Dev) 0.0607 0.0608 0.0614 0.0622 0.0639

Sig 0.1 80.87% 95.76% 99.40% 99.92% 100.00%

Sig 0.05 71.45% 91.74% 98.73% 99.82% 100.00%

Sig 0.01 47.63% 77.17% 94.30% 99.13% 99.94%

ORIV Mean β̂ 0.1506 0.2003 0.2506 0.3013 0.3499
(St Dev) 0.0528 0.0534 0.0536 0.0543 0.0556

Sig 0.1 89.45% 98.29% 99.86% 100.00% 100.00%

Sig 0.05 82.11% 96.84% 99.70% 99.99% 100.00%

Sig 0.01 61.75% 89.13% 98.42% 99.89% 100.00%

The first column indicates the variable or estimation method used in the uni-
variate OLS regression. The first variable is the true x∗, the second the dis-
cretization of the true variable, the third considers the effect of noise, the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estimations

the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. The last five columns indicate

the average value, standard deviation and significance of β for 10 000 simu-
lations. For instance the ORIV cell for Sig 0.1 and β = 0.15 is 89.45%, so
that the estimated β using ORIV method is significant in 89.45% of the 10
000 regressions at the 10% level when the true β is 0.15.
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Table 8: Simulation: Simple OLS and IV with N=1000 (10 000 simulations)

β 0.15 0.2 0.25 0.3 0.35

x∗ Mean β̂ 0.1501 0.2001 0.2497 0.3004 0.3497
(St Dev) 0.0305 0.0313 0.0308 0.0305 0.0308

Sig 0.1 99.97% 100.00% 100.00% 100.00% 100.00%

Sig 0.05 99.88% 99.99% 100.00% 100.00% 100.00%

Sig 0.01 99.11% 99.99% 100.00% 100.00% 100.00%

⌊x∗⌋ Mean β̂ 0.1392 0.1854 0.2316 0.2784 0.3242
(St Dev) 0.0293 0.0301 0.0295 0.0294 0.0296

Sig 0.1 99.92% 99.99% 100.00% 100.00% 100.00%

Sig 0.05 99.76% 99.98% 100.00% 100.00% 100.00%

Sig 0.01 98.59% 99.96% 100.00% 100.00% 100.00%

x∗ + ϵ Mean β̂ 0.0852 0.1136 0.1416 0.1702 0.1982
(St Dev) 0.0231 0.0236 0.0236 0.0233 0.0239

Sig 0.1 97.97% 99.91% 100.00% 100.00% 100.00%

Sig 0.05 95.67% 99.82% 100.00% 100.00% 100.00%

Sig 0.01 85.42% 98.61% 99.94% 100.00% 100.00%

⌊x∗ + ϵ⌋ Mean β̂ 0.0815 0.1086 0.1355 0.163 0.1896
(St Dev) 0.0227 0.023 0.023 0.0229 0.0234

Sig 0.1 97.56% 99.89% 100.00% 100.00% 100.00%

Sig 0.05 95.04% 99.65% 100.00% 100.00% 100.00%

Sig 0.01 83.69% 98.32% 99.91% 100.00% 100.00%

IV Mean β̂ 0.1505 0.2006 0.2502 0.3009 0.3499
(St Dev) 0.0422 0.0435 0.0433 0.0436 0.0441

Sig 0.1 97.20% 99.85% 100.00% 100.00% 100.00%

Sig 0.05 94.53% 99.61% 100.00% 100.00% 100.00%

Sig 0.01 83.84% 98.26% 99.97% 100.00% 100.00%

ORIV Mean β̂ 0.1504 0.2005 0.2501 0.3006 0.3498
(St Dev) 0.037 0.0379 0.0378 0.0379 0.0388

Sig 0.1 99.27% 99.96% 100.00% 100.00% 100.00%

Sig 0.05 98.34% 99.93% 100.00% 100.00% 100.00%

Sig 0.01 93.27% 99.67% 99.99% 100.00% 100.00%

The first column indicates the variable or estimation method used in the uni-
variate OLS regression. The first variable is the true x∗, the second the dis-
cretization of the true variable, the third considers the effect of noise, the
fourth combines noise and discretization. For the IV estimations, the discrete
noisy measure ⌊x∗

1 + ϵ⌋ is instrumented by ⌊x∗
2 + ϵ⌋. For the ORIV estimations

the stack model uses
⌊
x∗
j + ϵ

⌋
for j ∈ {1, 2}. The last five columns indicate the

average value, standard deviation and significance of β for 10 000 simulations.
For instance the IV cell for Sig 0.1 and β = 0.15 is 97.20%s, so that the esti-
mated β using ORIV method is significant in 97.20% of the 10 000 regressions
at the 10% level when the true β is 0.15.
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