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1 Introduction

According to the standard labour market theory, wage rates tend to re�ect marginal productivity

of labour services. Consequently, they should coincide for workers performing the same task with

the same ability. Labour market observations however, in many instances, tend to challenge this

view. To explain the di¤erences between the neoclassical expected equality and facts, the relevant

literature has often resorted to the notion of discrimination. Labor market discrimination has

been de�ned as "a situation in which persons who provide labor market services and who are

equally productive in a psychical or material sense are treated unequally in a way that is related

to an observable characteristic such as race, ethnicity, or gender" (Altonji and Blank, 1999).1

Genuine discrimination can take place at least under two independent su¢ cient conditions: if

prejudices or stereotypes about productivity for di¤erent pro�les of workers prevail, employers

make suboptimal contracting decisions, based on biased estimates and their discriminating policy

is in fact detrimental to their own interest. Another more perverse origin could be found when

employers, although possibly not biased in their perceptions of the workers abilities have a non

conventional conduct, discrimination itself, for instance some gender supremacy, being included

in their own objective (Cain, 1986; Altonji et Blank, 1999; Cahuc et al., 2014). Such behaviors,

consistently driving a �rm out of its pro�t maximization track, are hardly compatible with intense

competition (Becker, 1957), but could be sustainable in monopsonistic conditions and in markets

with trade frictions (e.g., Borjas and Bronars, 1989; Black 1995; Barth and Dale-Olesen, 2009).

Bertrand et al. (2010) show that the gender gap among graduates of a single prestigious MBA

increases with seniority; this trend can be explained almost entirely by di¤erences in hours worked

due to a combination of women working fewer hours per week, conditional on working, and also

being more likely to have gaps in their careers which can, in turn, be explained by child rear-

ing (OECD, 2018). In such cases, actual productivity is "path dependent" and is not perfectly

captured by standard proxies mainly related to education. Compensation di¤erences in such sit-

1 One discrimination topic that received signi�cant attention in the last few years, is the gender wage gap.
Despite convergence in educational attainments (in the US) and in other relevant explanatory variables, unexplained
di¤erences still exist between male and female wages, and particularly so at the top of the wage distribution
(Gunderson, 1989; Blau and Kahn, 2017; Cahuc et al., 2014; OECD, 2018; Neumark, 2018).
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uations do not re�ect a particular failure of the labour market, but a more encompassing feature

of the social system.

It is well known however, that some observed di¤erences in wages obtained by equally compe-

tent workers may be explained without resorting to discrimination. The theory of compensating

di¤erentials, originating in Adam Smith�s celebrated seminal works, argues that wage gaps can be

grounded in di¤erences in preferences for job attributes (Thaler and Rosen, 1975; Rosen, 1986).2

Some other explanations recede in fact to a productivity argument: in her Presidential address,

Goldin (2014) pointed out that in some quali�ed occupations (legal services, business, �nance)

a convex hours-earnings relationship prevails, longer hours as provided by men in general, being

rewarded at a higher wage rate.3 She explains this outcome by productivity increasing in hours,

as �rms and their clients value "temporal �exibility": on-site presence, intensive client contact,

face-to-face time, etc. If men are more available than women for such jobs, then a gender wage

gap could result.

Our text aims at providing a particular theoretical interpretation of the stylized facts men-

tioned by this literature in introducing a model of paying pattern determination completely free of

productivity di¤erences and in which all workers of di¤erent types have equal access to all contracts

proposed by the employer. Our model contributes to show how this "ex-ante" non-discrimination

may be compatible with "ex-post" discrimination, conceived as di¤erent prices paid for identical

labour services. Ex-ante non-discrimination is interpreted as the impossibility for the employer to

assign speci�c contracts to the various types. This equal access of the employees to the full set

of contracts may be a consequence of either e¢ cient legislation or of the simple impossibility of

distinguishing types. Therefore, optimal contracts are confronted with participation and incentive

compatibility constraints as emphasized in contract theory (inter alia, Bolton and Dewatripont,

2005; Salanié, 2005; La¤ont and Martimort, 2009), each type freely choosing the contract that

2 For a recent illustration, Cook and al. (2018) study the wages earned by Uber drivers, and detect a 7% gap
in favor men. Since longer working schedules apparently have in this case little impact on the wage rate, it is
suggested that male drivers earn a compensating di¤erential for their willingness to drive in areas with higher crime
rates and more drinking establishments. It must be noticed that in such a case, male and female labour services
are not perfect substitutes.

3 See also Goldin (2015). Cortés and Pan (2019) bring empirical evidence documenting a positive relationship
between the demand for long hours and the wage gap for high-skilled employees, while Denning et al. (2019) �nd
no such relationship.
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was designed for him/her. In monopoly pricing theory, the situation in which consumers with

unobservable preferences have access to all available price-quantity bundles posted by the �rm is

analyzed within the framework of non-linear pricing (or second-degree price discrimination).4

To keep the analysis as simple as possible, we consider that workers are of only two types,

workers of the �rst type always demanding less compensation for any given working time than

workers of the second type. The �rm in our analysis needs a predetermined amount of hours to

achieve its production target. The total labour cost includes worker compensation and a �xed

cost per worker (Rosen, 1968; Hart, 1987; Contensou and Vranceanu, 2001). The goal of the �rm

is to minimize the cost of hiring the required amount of hours.5 In such a case, if workers of both

types are available in any quantity, cost minimization would generally induce labour demand to

concentrate on the "cheaper" type; the more demanding workers being crowded out, they do not

appear in data. But if workers of the �rst type are in scarce supply, the employer may be induced

to hire workers of both types.

In this case, if contract discrimination is allowed (the �rm assigning a di¤erent contracts to

each type), then it is shown that the cost minimizing contracts may imply lower wage rates and

longer working hours for the less demanding type. However, and this is the key point of our

analysis, if contract discrimination is not possible, hiring available workers of the more demanding

type creates an externality in�uencing the contract o¤ered to the less demanding type, through

an incentive compatibility constraint. Our text aims at solving this more involved problem.

The main consequences of the proposed analysis are:

a) It is shown that ordering the worker types by non-crossing compensation functions is not

su¢ cient to predict the ordering in optimally contracted working times, compensations and im-

plicit hourly wages. Therefore the model makes possible to bring out the crucial role played by

speci�c assumptions concerning the sensibility of the worker compensation di¤erential with re-

spect to working time itself. Di¤erences between compensation functions while constant in sign,

may be time increasing, constant or time decreasing. It the di¤erence is time increasing, the less

4 See for surveys of this literature: Varian (1986), Wilson (1993) or Armstrong (2016).

5 This setting is not a situation of monopsony hiring labor. While the latter decides on the labor contract taking
into account its market power in the labor market, in our framework the �rm has no market power.
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demanding workers do longer hours, like in the discriminating case; however, they will do less

hours under the opposite assumption.

b) The analysis reveals the fact that the employer minimizes labour cost by o¤ering con-

tracts generally exhibiting di¤erent (implicit) hourly wages. We refer to these wage di¤erences as

"pseudo-discrimination", since these wage-rates di¤erences between workers doing the same job

with the same craft exist, but are not explained by wrongly perceived productivity di¤erences or

by a biased objective function of the employer. In particular, the model reveals the possibility of

a paradoxical situation in which the less demanding workers are granted a higher wage rate, in

stark contrast with the case in which discrimination is possible.

c) Finally, in formalizing and interpreting the labour cost function, the model explains the

demand for the more exacting workers and predicts local discontinuity. For some threshold in

needed working services, the cost minimizing policy switches from employing the less demanding

workers only, to a mixed labour force, including a minimum number (quantum) of the more

demanding type. This is compatible with some form of mass redundancy in case of economic

slowdown.

Our analysis is abstract and does not address gender discrimination in particular, but can in-

clude it as a superimposed interpretation. Indeed, consumption/leisure preferences can be speci�c

to the gender of the employee. In this case, the model brings out possible gender wage di¤erentials

in the absence of any biased information about their productivity or of non-conventional objective

of the employer.

The paper is organized as follows: In Section 2, we introduce the main assumptions and de�ne

the possible mixed employment regimes. Section 3 analyses the cost minimization problem in

the general case. In section 4, we provide a more precise de�nition of the optimal contracts

introducing a more speci�c preference structure, the compensation di¤erential being a linearly

increasing function in working hours. In section 5 more precision is obtained from adopting

a quadratic compensation functions hypothesis and numerical simulations are used to buttress

analytical results. The minimum number of type 2 workers is made explicit from parameters.

Section 6 is our conclusion.
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2 The model

2.1 General assumptions

We analyze the cost minimizing labor contracts designed by an employer who needs a given amount

of labour services H per time unit.

Homogeneous working services measured by hours

Technology is such that H can be expressed by a sum of hours considered as perfect substitutes

in production. The objective of the employer consists in minimizing the total cost of the H hours.

Working hours are not only homogeneous in terms of productivity but also in terms of working

conditions, as applying to the same task. Di¤erences related to the intrinsic disutility of work, as

considered by the theory of compensating di¤erentials, are therefore ruled out.

Two types of workers:

There are two types of workers, i = (1; 2); demanding di¤erent compensations for a given

working time. The utility function of the worker i is represented by s = ui(c; h); where c is the

obtained purchasing power and h stands for hours worked in the same time interval. Identity

�si � ui [c; vi(h)] de�nes vi(h) the compensation function, indicating the minimum compensation

required by type i individual to supply h hours of work. The participation constraint for type i is

thus satis�ed if c � vi(h):

In line with the standard neoclassical assumptions, the function vi(h) is supposed convex

v00i (h) > 0 and such that vi(0) � 0; v0i(h) > 0:6

Ordered compensation requirements

We assume that type 2 workers are always demanding more compensation than type 1 workers

for any given working time :

v2(h) > v1(h); 8h > 0: (1)

The two types are consequently unequivocally ordered in this respect, the two compensation func-

tions do not cross.

Fixed non-wage cost per worker

6 If vi(0) > 0; such minimal compensation may be interpreted as an indivisible cost of the job for the worker,
such as having to commute to the working place.
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The cost of labour includes a per individual, �xed, non-wage expense (cost of a working

place, non related to worked hours), denoted by � > 0 (Rosen, 1968; Hart, 1987; Contensou and

Vranceanu, 2001). This �xed cost is supposed independent upon type i.

Non-discrimination assumption as free access of all workers to all contracts

The employer proposes two labor contracts P1 = (h1; c1) and P2 = (h2; c2) determining pay-

ment ci and hours hi:

A basic assumption is that the employer cannot discriminate, i.e., cannot prevent workers from

choosing their preferred contract. This can be interpreted as a consequence of either legal or social

constraints banning discrimination if types can be observed, or just of imperfect information, the

employer not being able to distinguish the types.

Scarcity of type 1 workers

Type 2 workers are abundant, i.e. they are available in any number n2. The less demanding

type of workers (type 1) is in limited supply. Let �n1 denote the number of type 1 workers available

in the labour market, n1 � �n1 and therefore cost minimization may induce the employer to hire

simultaneously type 2 workers in order to keep with its production objective.

Su¢ ciency or scarcity of the less demanding workers, pure and mixed regimes

If the numberH of needed hours is low enough, the employer could hire only the less demanding

type 1 workers. Hiring both types will take place if the demand for hours is high enough. A

comparison of the cost functions (minimum costs) associated to di¤erent hiring possibilities will

allow us to present the conditions in which the non-trivial case of a mixed employment regime

can prevail; we �rst formalize the cost minimizing decision in the simple case when one type is

employed.

2.2 Cost functions working with one type exclusively

We �rst consider the elementary problem in which cost is minimized by hiring only one type of

workers, supposed available in any number.

Minimizing the cost ofH hours with one type of workers only, under the saturated participation

6



constraint ci = vi(hi) and with the per worker �xed cost � is equivalent to minimizing:

Ci(H) = ni [vi(hi) + �] , with nihi = H; for i = (1; 2): (2)

The �rst order condition implies:

v0i(ĥi) =
vi(ĥi) + �

ĥi
; (3)

where ĥi is the �rst-best, or notional working time. We show in Appendix 1 that the solution ĥ

to equation (3) is unique.7 Equation (3) re�ects equality of marginal and average cost of hours.

The corresponding notional employment is n̂i =
H

ĥi
workers.

The resulting minimized cost function noted Ĉi(H) is therefore linear in H:

Ĉi(H) = H
vi(ĥi) + �

ĥi
= Hv0i(ĥi): (4)

The two di¤erent cost functions (4) for type 1 or type 2 workers independently employed are

clearly ordered by assumption (1) and, 8H > 0:

Ĉ1(H) = H
v1(ĥ1) + �

ĥ1
< H

v2(ĥ2) + �

ĥ2
= Ĉ2(H): (5)

To formally prove (5) we write:
v2(ĥ2) + �

ĥ2
>
v1(ĥ2) + �

ĥ2
(by assumption 1) and

v1(ĥ2) + �

ĥ2
>

v1(ĥ1) + �

ĥ1
(from uniqueness of notional working time ĥ1).

Obviously, as long as type 1 workers are available, the �rm would hire them only and not the

more demanding type 2 workers.

For n̂1 =
H

ĥ1
� �n1 the minimized labour cost function is:

Ĉ(H) = Ĉ1(H) = H
v1(ĥ1) + �

ĥ1
= Hv01(ĥ1): (6)

As long as n̂1 � �n1, the �rm would hire and attract only type 1 workers by posting the contract

P̂1 =
h
ĥ1; v1(ĥ1)

i
. From the limit �n1; the validity domain of (6) is bounded above by

H � H1 = �n1ĥ1 (7)

7 For instance, with a quadratic compensation function �(h) = h2; the notional working time is ĥ =
p
�; and

the notional employment is n̂ = H=
p
�:
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For H � H1, the employer must compensate the type 1 workers for longer hours, and since

h1 =
H

�n1
> ĥ1; the relevant cost function becomes:

C1(H) = �n1

�
v1

�
H

�n1

�
+ �

�
; (8)

an increasing and convex function of H:

2.3 Cost minimization employing both types

For some value of H; the employer can minimize cost, switching from type 1 not to type 2 exclusive

employment, but to a mixed regime, hiring type 2 workers and still taking advantage of the less

demanding type 1 workers.

If contract discrimination is feasible, Appendix 2 solves an example (with quadratic compen-

sation functions) in which the cost minimizing contracts involve longer working hours and a lower

wage rate for the less demanding type.

Without contract discrimination, the behavior of the cost minimizing employer is di¤erent.

Indeed, introducing type 2 workers with contract P2 has two opposite e¤ects on the determining

elements of labour cost:

- on the �rst hand, it enables to reduce type 1 working time h1 and its compensation.

- on the other hand, discrimination being ruled out, opening a P2 contract introduces a costly

new constraint on contract P1; which must be at least as attractive as P2 for type 1 workers. This

supplementary constraint is in fact a "�xed cost" which must be paid whatever small the number

of hired type 2 workers, suggesting the possible necessity of hiring simultaneously a minimum

amount of type 2 workers.

Opening a contract P2 in order to minimize labour cost is justi�ed by H when the optimal

choice of contracts P1 and P2, i.e., P �1 and P
�
2 ; induces a labour cost C

�(H) smaller than C1(H)

as de�ned in expression (8). The switching value of H is noted �H:

This brings out the necessity of understanding optimal contract determination, employing the

two types simultaneously.

In this case, the employer has to post two contracts Pi = (ci; hi) for i = (1; 2) and determine
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the number n2 of hired type 2 workers. The cost to be minimized is:

C(H) = n1(c1 + �) + n2(c2 + �); (9)

the control variables being fc1; h1; c2; h2; n1; n2g, with n1 � �n1; with participation and incentive

compatibility constraints for the two types, and with the quantity constraint:

n1h1 + n2h2 = H: (10)

The solution (c�1; h
�
1; c

�
2; h

�
2; n

�
1; n

�
2) entails a cost function:

C�(H) = n�1(c
�
1 + �) + n

�
2(c

�
2 + �): (11)

As will be illustrated in the following (section 4.3), a switch from the type 1 exclusive employ-

ment to the mixed labour force regime is optimal only in introducing a quantum, i.e., a minimum

number of type 2 workers.

As an upshot of this cost analysis, H1 being de�ned in (7) the cost function C(H) takes the

form:

C(H) =

8>>>>>><>>>>>>:

Ĉ1(H) = Hv
0
1(ĥ1) for 0 < H � H1 (Type 1 only, notional hours)

C1(H) = �n1

�
v1

�
H

�n1

�
+ �

�
for H1 < H � �H (Type 1 only, longer hours)

C�(H) = n�1(c
�
1 + �) + n

�
2(c

�
2 + �): for �H < H: (Non-discriminating mixed regime)

(12)

In the following, the analysis will focus on the non-trivial case in which the demand for hours

is large enough (H > �H) to justify the non discriminating mixed regime.

2.4 The non-discriminating mixed regime

We follow the standard resolution steps taken in contract theory analysis (La¤ont and Martimort,

2001); we �rst determine the feasible allocations taking into consideration both participation and

incentive compatibility constraints, then analyze the �rm�s optimization problem (cost minimiza-

tion here) within the set of feasible allocations.

2.4.1 Participation and incentive compatibility constraints: �rst consequences

If both types are employed, taking the hour constraint (10) into consideration, total cost mini-

mization does not consist in minimizing independently the cost of hours supplied by the two types
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since existence of a (ci; hi) contract modi�es the terms of the incentive compatibility constraint

applying to type j workers. The set of constraints comprises:

1) Participation constraints:

c1 � v1(h1) (13)

c2 � v2(h2) (14)

2) Incentive compatibility constraints:

Type 1 workers being eligible to contract P2 = (c2; h2); they prefer or accept the contract

P1 = (c1; h1) only if:

c1 � v1(h1) � c2 � v1(h2) (15)

Similarly, type 2 prefer or accept the contract P2 to contract P1 only if:

c2 � v2(h2) � c1 � v2(h1) (16)

Consequently, we can state a �rst property of the contracts compatible with the two types of

workers.

Proposition 1 If compensation di¤erences [v2(h)� v1(h)] are time increasing, then h1 � h2; if
they are time decreasing, then h2 � h1:

Proof. Adding (15) and (16) :

v2(h1)� v1(h1) � v2(h2)� v1(h2): (17)

If compensation di¤erences [v2(h)� v1(h)] are increasing in h; the inequality (17) is not compatible

with h1 < h2: If they are decreasing in h, the inequality (17) is not compatible with h1 > h2:

This rule being a consequence of the incentive constraints, it applies not only to optimum

values of working hours (cost minimizing values), but also to all feasible values.

In our context, the general set of constraints admits particular properties. We emphasize here

the redundancy of the system of constraints, as well as the necessary and unnecessary surpluses.

1) From the IC condition (15), c1 � v1(h1) � c2 � v1(h2): Participation condition for type 2

(14) requires c2 � v2(h2): Thus c1 � v1(h1) � v2(h2)� v1(h2); and from our basic assumption (1)

10



v2(h2)� v1(h2) > 0. Consequently:

c1 � v1(h1) � v2(h2)� v1(h2) > 0:

This makes the participation constraint for the type 1 redundant and indicates the necessity of a

positive surplus v2(h2)� v1(h2) for the type 1.

2) Type 2 workers being supposed available in any quantity, they obtain no surplus in the

solution; their participation constraint must be saturated:

c2 = v2(h2): (18)

Limiting c2 to its minimum value v2(h2) decreases the cost of workers of type 2 directly, and the

cost of workers of type 1 indirectly, by mitigating the cost of the relevant incentive compatibility

constraint.

If c2 = v2(h2); the incentive compatibility constraint for type 1 (condition 15) becomes :

c1 � v1(h1) � v2(h2)� v1(h2): (19)

In this expression, v2(h2)�v1(h2) is the surplus obtained by type 1 choosing contract P2: Therefore:

3) In its saturated form , the type 1 incentive compatibility constraint implies:

c1 = v1(h1) + v2(h2)� v1(h2): (20)

4) It must be noticed that in our assumptions, the incentive compatibility constraint for type

2 is satis�ed if type 2 workers have no surplus in accepting contract P1 = [c1; h1] : This condition

is ful�lled if: c2�v2(h2) = 0 � c1�v2(h1) for c1 = v1(h1)+v2(h2)�v1(h2), i.e., v1(h1)+v2(h2)�

v1(h2)� v2(h1) � 0 or v2(h1)� v1(h1) � v2(h2)� v1(h2):

From the rule induced by Proposition 1 , inequality (17) holds and (18), (20) imply (16).

This last result will enable us to omit explicit treatment of condition (16) in the constrained cost

minimization problem.

2.4.2 Cost minimization: �rst order conditions

Let C(n1;n2; h1; h2;H) stand for the explicit form of the cost function C(H) :

C(n1; n2; h1; h2;H) = n1(c1 + �) + n2(c2 + �): (21)
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We apply the substitutions introduced in (18) and (20), and obtain the cost function:

C(n1; n2; h1; h2;H) = n1 [v1(h1) + v2(h2)� v1(h2) + �] + n2 [v2(h2) + �] : (22)

The total hours constraint is:

n1h1 + n2h2 �H = 0: (23)

Limited supply of type 1 workers imposes n1 � �n1: We show (Appendix 3) that this constraint is

necessarily binding in our assumptions (H > �H), and substitute n1 with �n1:

The corresponding Lagrangian is:

L = �n1 [v1(h1) + v2(h2)� v1(h2) + �] + n2 [v2(h2) + �]� � [�n1h1 + n2h2 �H] (24)

First-order conditions applying to interior solutions are:

@L

@n2
= v2(h

�
2) + � � �h�2 = 0 (25)

@L

@h1
= �n1v

0
1(h

�
1)� ��n1 = 0 (26)

@L

@h2
= �n1 [v

0
2(h

�
2)� v01(h�2)] + n�2v02(h�2)� �n�2 = 0 (27)

@L

@�
= �n1h

�
1 + n

�
2h
�
2 �H = 0 (28)

Once the system solved for (��; n�2; h
�
1; h

�
2), the compensations associated to each contract are

c�1 = v1(h
�
1) + v2(h

�
2)� v1(h�2); and c�2 = v2(h�2):

We can further notice that condition (26) implies:

v01(h
�
1) = �: (29)

Thus conditions (25) and (26) imply:

v2(h
�
2) + �

h�2
= v01(h

�
1): (30)

Equation (30) indicates the equality of the marginal cost of hours obtained from the two possible

sources: increasing the number of type 2 workers at constant working time or increasing the

working time of type 1 workers in constant number.

Finally, conditions (26) and (27) imply:

�n1 [v
0
2(h

�
2)� v01(h�2)] + n�2 [v02(h�2)� v01(h�1)] = 0: (31)
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The corresponding labour cost function is:

C�(H) = C(n�2; h
�
1; h

�
2;H); with H > �H: (32)

It can be checked, after relevant substitutions, that the Lagrangian multiplier �� re�ects marginal

cost of hours, from type 1 or from type 2:

dC�(H)

dH
= �� = v01(h

�
1) =

v2(h
�
2) + �

h�2
: (33)

2.4.3 Optimal hours and the structure of preferences

Proposition 1 revealed that the properties of the contracts (the hours ordering) depend in a

signi�cant way on whether the di¤erence [v2(h)� v1(h)] is increasing, constant or decreasing in h.

A time increasing di¤erence [v2(h)� v1(h)], v02(h)� v01(h) > 0; 8h: In this case, Proposition

1 implies that h1 > h2; regardless on whether working hours are optimal or not. Thus:

Proposition 2 If di¤erence in demanded compensations is time increasing, type 2 workers are
assigned a shorter working time than type 1 workers, i.e. h�2 < h

�
1.

Also,

Proposition 3 If di¤erence in demanded compensations is constant, type 1 and type 2 workers
are assigned the same working time, corresponding to the notional value i.e. h�2 = h

�
1 = ĥ2 < ĥ1

Proof. Proof: in this case, v02(h) = v
0
1(h) and equation (27) �n1 [v

0
2(h

�
2)� v01(h�2)]+n�2v02(h�2)��n�2 =

0 may be written: 0 + n�2 [v
0
2(h

�
2)� v01(h�1)] = n�2 [v01(h�2)� v01(h�1)]) h�1 = h

�
2:

3 The case of linearly increasing di¤erence in compensa-
tions

We suggest in the following to scrutinize the consequences of the following simple preference

structure:

v2(h) = v1(h) + �h; (34)

where � is a positive constant. Under this assumption, not only the type 2 worker is more

demanding than the type 1 (see condition 1), but the di¤erence [v2(h)� v1(h)] is linearly increasing

in h:
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3.1 Coincidence of notional working times

We �rst notice that in this case, the notional working time ĥ de�ned by equation (3) i.e., the

working time the employer would choose if the contracts were independently determined thanks

to discrimination, is the same for the two types:

ĥ1 = ĥ2 � ĥ (35)

We �rst notice that equation (34) implies v02(h) = v01(h) + �: It can be checked that if v
0
1(h) =

v1(h) + �

h
; v02(h) =

v2(h) + �

h
implying: h = ĥ = ĥ2 = ĥ1:

It is now possible to predict the ordering of contracted working times in the non-discriminating

case.

3.2 Working time ordering

Proposition 4 Non-discriminating optimal policy shifts the working times included in the two
contracts from their common notional value ĥ in opposite directions: h�2 < ĥ < h

�
1:

Proof. From assumption 34: v02(h
�
2) = v

0
1(h

�
2) + �. Then condition (31) becomes:

�n1� + n
�
2 [v

0
1(h

�
2)� v01(h�1) + �] = 0 (36)

or equivalently:

v01(h
�
1)� v01(h�2) = �

(�n1 + n
�
2)

n�2
(37)

Since � > 0; then v01(h
�
1) > v01(h

�
2): From strict convexity of v1(h); we have v01(h

�
1) > v01(h

�
2) )

h�1 > h
�
2:

We can further compare these working times with the notional common working time, ĥ, and

prove the following inequality:

h�2 < ĥ < h
�
1: (38)

We �rst demonstrate that h�1 > ĥ:

We start from the de�nition of the notional working time ĥ2 = argmin

�
v2(h) + �

h

�
and use

equality (35) ĥ1 = ĥ2 = ĥ: Uniqueness of ĥ2 (Appendix 1) implies:

v2(h
�
2) + �

h�2
� v2(ĥ2) + �

ĥ2
= v02(ĥ2): (39)
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But from equation (30),
v2(h

�
2) + �

h�2
= v01(h

�
1) and inequality (39) implies v

0
1(h

�
1) � v02(ĥ2):

Since ĥ1 = ĥ2 = ĥ and v02(h) = v01(h) + �; equation (39) implies v
0
1(h

�
1) > v01(ĥ) and (from

strict convexity), h�1 > ĥ.

We next demonstrate that h�2 < ĥ.

From equation (37), v01(h
�
2) = v

0
1(h

�
1)�

(�n1 + n
�
2)

n�2
�:

By assumption, v2(h) = v1(h) + �h, and from equation (30):
v1(h

�
2) + �

h�2
+ � = v01(h

�
1): Then

equation (37) implies:

v01(h
�
2) =

v1(h
�
2) + �

h�2
+ � � (�n1 + n

�
2)

n�2
�: (40)

Therefore, v01(h
�
2) <

v1(h
�
2) + �

h�2
:

Considering simultaneously v01(h
�
2) <

v1(h
�
2) + �

h�2
and v01(ĥ) =

v1(ĥ) + �

ĥ
; implying:

v1(h
�
2)� h�2v01(h�2) > �� and v1(ĥ)� ĥv01(ĥ) = ��: (41)

As shown in the Appendix 1 (see equation 60), the function '(h) � v(h)�hv0(h) is monotonously

decreasing, thus equation (41) implies: h�2 < ĥ:

In this solution the employer is "deteriorating" on purpose the terms of the contract o¤ered

to the most demanding type, to cut down the surplus o¤ered to the least demanding type, along

the lines of the classic damaged goods analysis by Deneckere and McAfee (1996).

3.3 The consequence of increasing demand for hours

From necessary �rst order conditions applying to (24), it is possible to predict the e¤ect of indef-

initely increasing needed hours on optimally contracted working times.

Proposition 5 When the total demand for hours H inde�nitely increases, for constant �n1, hours
h�2 in the optimal contract P

�
2 tend to the notional value ĥ.

Proof. From equation (23), we notice that when the demand for hours increases (H !1), since

n1 � �n1 is �xed and since h1 and h2 cannot increase inde�nitely, necessarily n2 ! 1: From

equation (37) v01(h
�
1)� v01(h�2) = �

(�n1 + n
�
2)

n�2
: If n�2 !1; then [v01(h�1)� v01(h�2)]! �:

From equation (30),
v2(h

�
2) + �

h�2
= v01(h

�
1) and since by assumption, v2(h

�
2) = v1(h

�
2) + �h

�
2,

v2(h
�
2) + �

h�2
=
v1(h

�
2) + �h

�
2 + �

h�2
=
v1(h

�
2) + �

h�2
+ � = v01(h

�
1): Since v

0
1(h

�
1) ! v01(h

�
2) + �; equation
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(30) implies:
v1(h

�
2) + �

h�2
! v01(h

�
2). The limit of this equation is only compatible (uniqueness)

with the notional cost minimizing working time for type 1 workers (and for type 2 in our special

assumption). Therefore,

H !1) n�2 !1) h�2 ! ĥ2 = ĥ: (42)

As intuitively predictable, when the proportion of type 2 workers inde�nitely increases, the

external in�uence on their contract by type 1 preferences dwindles, type 2 working time tends

towards its notional optimal value.

Proposition 6 When the total demand for hours H inde�nitely increases, hours h�1 in optimal
contract P1 always exceed the notional hours ĥ.

Proof. With respect to the evolution of contract P �1 we notice that from equation (37) [v
0
1(h

�
1)� v01(h�2)]!

� and simultaneously, h�2 ! ĥ = ĥ1 implying: v01(h
�
1)! v01(ĥ) + � and therefore h

�
1 > ĥ:

The working time for type 1 is kept above its notional value under the in�uence of �, i.e., this

parameter standing for the higher sensibility of type 2 with respect to hours.

3.4 Ordering wage rates

The �rst order conditions (25) to (28) are a priori compatible with any wage rate ordering.

The wage rate of the type 2 worker is w2 = c�2=h
�
2, and, since no surplus is needed for the

participation of type 2, c�2 = v2(h
�
2): The wage rate can be written w2 = v2(h

�
2)=h

�
2: From (30),

v2(h
�
2) + �

h�2
= v01(h

�
1),

v2(h
�
2)

h�2
= v01(h

�
1)�

�

h�2
: Thus:

w2 = v
0
1(h

�
1)�

�

h�2
: (43)

The wage rate of the type 1 is w1 = c�1=h
�
1; where according to IC constraint (20), c

�
1 = v1(h

�
1) +

v2(h
�
2)�v1(h�2):With v2(h) = v1(h)+�h; the compensation of type 1 workers is c�1 = v1(h�1)+�h�2:

The wage rate is:

w1 =
v1(h

�
1) + �h

�
2

h�1
=
v1(h

�
1)

h�1
+ �

h�2
h�1
: (44)

Therefore:

w1 7 w2 if �
h�1
h�2
+ �h�2 7 v1(h�1) [�(h�1)� 1] with �(h�1) =

h�1v
0
1(h

�
1)

v1(h�1)
: (45)

16



As mentioned in the introduction, several scholars (Goldin, 2014; Cortés and Pan, 2019) brought

evidence according to which in some high-skilled occupations long hours of work are associated

with higher hourly wages, and explained this di¤erence by the higher productivity of the longer

hours, de�ned as a better service to clients and customers who require "temporal �exibility".

Combining contract theory and asymmetric quantitative limits on labour services supply, our

model proposes an alternative explanation to such facts. Indeed, depending on the parameters,

it is possible to show that the cost minimizing contracts sometimes provide a higher wage rate

to the less demanding type 1 workers (who work longer hours) not resorting to any productivity

argument.

In order to bring out the possibility and the necessary conditions for this "paradoxical" wage

rate ordering, and to obtain more details with employers behavior, we introduce the supplementary

assumption quadratic utility compensation function.

4 The case of quadratic compensation functions

The speci�c compensated consumption structure used before allowed us to better characterize

the optimal hours in contracts P1 and P2 when compensation di¤erences are time increasing.

Introducing a even more precise structure of the compensation functions enables to entirely solve

the model for the endogenous variables and reveal a possible paradoxical ordering of hourly wage

rates. We will also resort to a numerical simulation to provide additional intuition about the

properties of the solution.

The quadratic function v(h) = h2 has the required property of strict convexity and involves

existence of a notional working time. Our compensating consumption functions become:

v1(h) = h
2 and consequently v2(h) = h2 + �h: (46)
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4.1 The solution to the cost minimization problem

4.1.1 First order conditions

With this assumption, the new forms of equations (31) and (30) are:

(h�2)
2 + �h�2 + � = 2h�1h

�
2 (47)

� (�n1 + n
�
2) + 2n

�
2 (h

�
2 � h�1) = 0 (48)

To which we add the hours constraint:

�n1h
�
1 + n

�
2h
�
2 = H (49)

Equations (47), (48) and (49) form a non-linear system with three endogenous variables.

Linearity of the subsystem (48 and 47) for a given value of n�2 enables however to express h1

and h2 as functions of the endogenous employment of type 2 workers n�2, yielding a feature of the

solutions in comparison with average working time �h =
H

�n1 + n�2
:

h�1 = �h+
�

2
(50)

h�2 = �h� �
2

�n1
n�2

(51)

Equation (49) has distinct real roots only if its determinant (� � 2h�1)2 � 4� > 0; implying

� � 2h�1 > 2
p
� or � � 2h�1 < �2

p
�: The �rst case is not compatible with (50) since �h > 0; the

second case implies: h�1 >
p
� +

�

2
and with (50) �h >

p
�. Since notional working time for both

types is ĥ =
p
�, �rst order conditions imply �h > ĥ:

4.1.2 Second order conditions

We show in Appendix 4 that second order necessary conditions for cost minimization imply:

�
n�2
�n1

�3
>
�2

4�
(52)

indicating that the non-discriminating mixed regime is only compatible with a minimum employ-

ment of type 2 workers (denoted by no2), determined by parameters in inequality (52).

The model accounts for the local discontinuity of the demand for type 2 workers as a function

of H:
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Proposition 7 The optimal number n�2 of P2 contracts o¤ered by the employer (n
�
2) is the superior

root of:
H2

(�n1 + n�2)
2 = � +

�
�

2

�n1
n�2

�2
(53)

Proof. See Appendix A.5 for the formal proof.

Numerical simulations also show that the lower root corresponds to a local maximum of the

cost (of no interest for us), while the superior root corresponds to the minimum of the cost function

(i.e., our solution). See Figure 6 in Appendix 5.

Proposition 8 For interior solutions, n�2 i.e., the optimal number of P2 contracts (demand for
type 2 workers), is increasing in H:

Proof. See Appendix A.5 for the proof.

This comparative static rule could appear intuitively trivial; in fact, it is not, since for an

increased hours constraint, the employer also controls the two working times h1 and h2:

In Figure 1 we represent how n�2 varies with H, for n1 = 10; � = 0:10 and � = 0:20: We chose

H > 7:5 and verify later that for this amount of hours the mixed employment regime prevails (the

regime shift was presented in Section 2.3).

Figure 1: Demand for type 2 workers, depending on H

For the optimal n�2; equations (50) and (51) de�ne the optimal working hours. Figure 2 presents

how working hours vary when H increases. The red (lower) curve represents h�1 and the blue

(upper) curve h�2: The horizontal line corresponds to the notional working time, ĥ =
p
� = 0:45:
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Figure 2: Contract hours by worker type, depending on H

4.2 Wage rate inequality

Once we determined the working hours speci�c to each contract, we can determine the wage rate

for each type.

Type 2 workers get no surplus, thus w2 = v2(h�2)=h
�
2 = h

�
2+�: According to equation (44), the

wage of type 1 workers is: w1 =
v1(h

�
1) + �h

�
2

h�1
=
v1(h

�
1)

h�1
+ �

h�2
h�1
= h�1 + �

h�2
h�1
:

We analyze the paradoxical situation where the least demanding type 1 workers (who also do

long hours) will earn a higher hourly wage than the more demanding type 2 workers (who do

shorter hours). It can be shown that:

Proposition 9 The hourly wage inequality w1 > w2 holds if the average working time �h >
�

2
:

Proof. w1 > w2 , h�1 + �
h�2
h�1

> h�2 + � or h
�
1 (h

�
1 � h�2) > � (h�1 � h�2). It has been proven

(Proposition 4) that h�1 > h
�
2; therefore the condition for w1 > w2 is simply h

�
1 > �; or, replacing

h�1 by its expression (50) by �h >
�

2
:

Notice that inequality �h >
�

2
is based on the endogenous value n�2 included in the de�nition

of �h:

Proposition 10 When the number of demanded hours increases inde�nitely (H !1), the hourly
wage inequality w1 > w2 holds if

p
� >

�

2
:

Proof. If H ! 1; n2 ! 1 and from its de�nition �h =
H

(�n1 + n�2)
! H

n�2
= h�2: But when
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n2 ! 1, it has been shown (42) that h�2 ! ĥ2: The notional working time ĥ2 is the solution

of: v0(h) =
v(h) + �

h
; in our assumptions, ĥ2 =

p
�: The limit of condition �h >

�

2
is therefore:

p
� >

�

2

Figure 3 shows the evolution in hourly wages as the demand for hours H increases. Both wages

increase in H; however, the less demanding type 1 workers, who also work long hours (blue, upper

curve), receive a higher hourly wage than type 2 workers (red, lower curve).

Figure 3: Contract wage rates by worker type, depending on H

4.3 Cost analysis

Finally, we would like to check that our simulations match well the case in which the employer

prefers to use both type of workers rather than to use only the less demanding type 1.

In Section 2.3 we analyzed the cost functions associated to the di¤erent employment regimes,

depending on the total demand for hours H; and given the bounded number of type 1 workers,

�n1:

In the quadratic compensation case, v1(h) = h2; the notional working time of these least

demanding workers is ĥ1 =
p
�: As long as H < H1 = �n1

p
� (in our simulation, H1 = 10

p
0:20 �

4:5); the �rm should o¤er only the notional contract of type 1 workers and hire only them.

For H > H1; the cost of hiring only type 1 workers becomes convex. The �rm might want to

hire both type of workers, provided that the cost of doing so is lower than using only type 1. To
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determine which of the two employment regimes is preferred by the �rm, we compare the cost of

using only type 1 workers C1(H) = �n1

��
H
�n1

�2
+ �

�
and the cost of labor in the mixed regime,

given the optimal values as resulting from the cost minimization problem, C�(H):

C�(H) = (�n1 + n
�
2)� + �n1h

�
1w

�
1 + n

�
2h
�
2w

�
2

= (�n1 + n
�
2)� + �n1h

�
1

�
h�1 + �

h�2
h�1

�
+ n�2h

�
2 (h

�
2 + �)

= (�n1 + n
�
2)� + �n1

h
(h�1)

2
+ �h�2h

�
1

i
+ n�2

h
(h�2)

2
+ �h�2

i
: (54)

Numerical simulations show that for H > �H = 7:5 the mixed employment regime is indeed less

expensive than employing only type 1 workers.

In Figure 4 we represent these two cost functions (C1(H) in black, the upper curve; and C�(H)

in green, the lower curve):

Figure 4: Cost functions

In the numerical example, the cost function (12) becomes:

C(H) =

8>>>>>><>>>>>>:
Ĉ1(H) for 0 < H � 4:5 (Type 1 only, notional hours)

C1(H) for 4:5 < H � 7:5 (Type 1 only, longer hours)

C�(H) for 7:5 < H (Non-discriminating mixed regime)

: (55)

This analysis reveals the emergence of a discontinuity in the demand for type 2 workers. Indeed,

for H < 7:5; n�2 = 0; for H = 7:5; n�2 = 6:53 > 0; and for H > 7:5; n�2 > 6:53: This consequence
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of the model can be extremely problematic in periods of economic crisis, as smooth downward

changes in the total demand for hours can translate into massive cuts in the employment of type

2 workers.

5 Conclusion

Confronted with a wealth of data exhibiting frequent discrepancies in labour contracts, especially

consisting in compensation di¤erences for apparently equivalent workers, many researchers have,

often successfully, attempted explanations involving discriminating policies practised by employers.

Our text does not contradict the relevance of the abundant resulting literature, but suggests the

existence of alternative possibilities. It shows that the framework of contemporary contract theory,

providing more comprehensive tools to analyze labour relations, is able to bring out situations in

which technically perfectly substitutable workers, freely choosing their contracts may be given

di¤erent working compensations including di¤erent hourly wage rates. In particular, our analysis

shows how to formalize the external e¤ects of preferences of one type of worker, on the contract

o¤ered to the other type.

Our analysis focuses on the non-trivial case in which the less demanding workers are in scarce

supply. If contract discrimination were possible, these workers would work long hours and be

paid lower hourly wages than the more demanding type worker. Our results revel the necessary

conditions for that a minority of less demanding workers can be o¤ered higher wage rates than

their more exacting competitors. It enables to explain wage di¤erentials "from nothing", their

origin being an invisible scarcity constraint impossible to trace by econometrics from individual

data. If one agrees that women have better work alternatives outside the labor market (Cain,

1986; OECD, 2018)8 , and demand higher compensation than men for any working time, in our

model the (hourly) wage gender gap in favour of male workers would only reveal these di¤erences

in preferences and the scarcity of male workers, and not di¤erences in productivity, negative

perceptions or women penalizing stereotypes.

We have also shown how in the non-discrimination case, contract hours depend on the structure

8 Related to child rearing, for instance, as indicated by the OECD (2018).
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of the preferences; for time increasing compensation di¤erences, the less demanding workers will

do longer hours than the more demanding workers, yet the opposite di¤erence prevailing in the

(maybe less plausible) situation of time decreasing di¤erences.

Finally, the model allowed us to analyze how working time, hourly wages and employment

respond in a somewhat unconventional way to changes in the total demand for hours. In par-

ticular, we show that the demand for type 2 workers is being exposed to discontinuities. In a

macroeconomic perspective, the discontinuity in the demand for type 2 workers can explain why

small �uctuations in global demand are sometimes associated to large �uctuations in some type

of employment.

These results do not rely on extremely restrictive assumptions; the use of the quadratic form for

the compensation function just allowed us to provide explicit solutions and numerical simulations

to better guide our intuition. The cost minimization assumption is quite general, as any �rm, be it

a pro�t maximizer or not, should address it as a �rst stage decision. In this paper, we studied the

case of a single �rm, with no market power, seeking to hire hours from a pool of available workers

in which the less demanding are in scarce supply. Our results would not change if we consider the

case of several �rms, each aiming to hire a predetermined amount of hours, in a competitive labor

market. While any employer would prefer to hire only the least demanding type of worker, some

�rms in consequence of their scarcity, have no choice but to attract the more demanding workers,

by posting a contract tailored for them. In this case, the problem that we have analyzed at the

�rm level would be identically transposed at the sector level.
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A Online Appendix

A.1 Independent cost minimization: uniqueness

Assumptions related with compensation function v(h) are: v0(h) > 0 and v00(h) > 0 implying

strict convexity. The saturated participation constraint takes the simple form c = v(h). The

non-wage �xed cost of a working place is � labor and n is the number of hired workers. The

objective consists in minimizing the cost of H, cost noted C(H) = n [v(h) + �] with H = nh; or

after substitution:

C(H) =
H

h
[v(h) + �] : (56)

The cost minimizing working time or "notional working time" is:

ĥ = argmin
h

�
v(h) + �

h

�
: (57)

Let ĥ � argmin f
(h)g where 
(h) =
�
v(h) + �

h

�
: From de�nition of 
(h) , its �rst derivative is


0(h) =
hv0(h)� [v(h) + �]

h2
: (58)

First order condition 
0(h) = 0 is therefore hv0(h)� [v(h) + �] = 0; implying:

v0(ĥ) =
v(ĥ) + �

ĥ
: (59)

(If 
0(h) = 0;the second order condition 
00(h) > 0 is simultaneously satis�ed).

De�ne:

'(h) = v(h)� hv0(h): (60)

Condition (59) is equivalent to:

'(̂h) = ��: (61)

Convexity of v(h) implies '0(h) = �hv00(h) < 0; therefore '(h) is monotonously decreasing in

h;8h > 0: Therefore, if the solution of (59) exists, it is unique, de�ning a function ĥ(�):

A.2 Mixed employment: an example of discriminating solution

With perfect discrimination, contracts may be determined independently, and the minimized cost

of hours from type 2 is constant (4).
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The cost of hours from the limited number of type 1 workers, given by the function (8) is

monotonously increasing. The employer starts to hire type 2 workers when C 01(H) � Ĉ 02(H), the

hours from type 2 becoming cheaper.

The marginal cost of hours from the two types are equal if:

C 01(H) = v
0
1

�
H

�n1

�
= v02(ĥ2) =

v2(ĥ2) + �

ĥ2
: (62)

Equation (62) has a unique solution indicating the relevant switching point when discrimination

is feasible.

We show that when discrimination is possible, and if v1(h) = h2 and v2(h2) = h2 + �h, cost

minimization of H hours implies the wage rate ordering:

w�2 =
v2(h

�
2)

h�2
> w�1 =

v1(h
�
1)

h�2
: (63)

Without incentive compatibility constraints,the relevant Lagrangian is:

L (h1; h2; n2;�) = �n1 [v1(h1) + �] + n2 [v2(h2) + �]� � [�n1h1 + n2h2 �H] : (64)

First order conditions:

L1 = �n1 [v
0
1(h

�
1)� �] = 0 (A.65)

L2 = n2 [v
0
2(h

�
2)� �] = 0 (A.66)

Ln2 = v2(h
�
2) + � � �h�2 = 0 (A.67)

L� = � (�n1h�1 + n�2h2 �H) = 0 (A.68)

Since v02(h
�
2) = �; then Ln2 = 0 implies

v2(h
�
2) + �

h�2
= v02(h

�
2) or h

�
2 = ĥ2:

From assumptions pertaining to compensation functions: v2(h) = h2 + �h,

v2(h
�
2) + �

h�2
= v02(h

�
2),

(h�2)
2
+ �h�2 + �

h�2
= 2h�2 + � ) h�2 = ĥ2 =

p
�:

From L1 = L2 = 0, v01(h
�
1) = v

0
2(h

�
2)) 2h�1 = 2h

�
2 + � = 2

p
� + � ) h�1 = h

�
2 +

�

2
=
p
� +

�

2
:

We can determine the optimal wage rates:

w�1 =
v1(h

�
1)

h�1
=
(h�1)

2

h�1
= h�1 =

p
� +

�

2
:

w�2 =
v2(h

�
2)

h�2
=
v2(ĥ2)

ĥ2
=
(ĥ2)

2 + �ĥ2

ĥ2
where ĥ2 =

p
� implying: w�2 =

p
� + �:
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We verify that:

w�2 =
p
� + � > w�1 =

p
� +

�

2
: (69)

The wage rate of the more demanding type is higher than the wage rate of the least demanding

type.

A.3 Binding limitation of type 1 workers

Considering the problem:

min fn1 [v1(h1) + v2(h2)� v1(h2) + �] + n2 [v2(h2) + �]g (70)

with [n1h1 + n2h2 �H] and n1 � �n1.

Control variables are (n1; n2; h1; h2); the corresponding Lagrangian is:

L(n1; n2; h1; h2; �) = n1 [v1(h1) + v2(h2)� v1(h2) + �] + n2 [v2(h2) + �]� � [n1h1 + n2h2 �H] :

(71)

If 0 < n�1 < �n1, �rst order necessary conditions imply:

@L

@n1
= [v1(h1) + v2(h2)� v1(h2) + �]� �h1 = 0 (A.72)

@L

@n2
= v2(h2) + � � �h2 = 0 (A.73)

@L

@h1
= n1v

0
1(h1)� �n1 = 0 (A.74)

and therefore:

v1(h1) + v2(h2)� v1(h2) + �
h1

=
v2(h2) + �

h2
= � = v01(h1): (75)

This equality indicates that if the availability constraint is not binding, the cost of hours obtained

from each type should coincide.

But (75) implies:

v1(h1)� v1(h2)
h1 � h2

= � = v01(h1): (76)

Convexity of v1(h) implies v1(h2)� v1(h1) > (h2�h1)v01(h1)) v1(h1)� v1(h2) < (h1�h2)v01(h1)

or
v1(h1)� v1(h2)

h1 � h2
< v01(h1); contradicting (76).
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A.4 Second order conditions for cost minimization

We consider the case of quadratic compensation functions and use the constraint to reduce the

problem to a form of free variables minimization. Since for n1 = �n1, n2 is explicitly determined

by the hours constraint and the choice of h1 and h2; the objective function to be minimized is:

m(h1; h2) = �n1 [v1(h1) + v2(h2)� v1(h2) + �] +
H � �n1h1

h2
[v2(h2) + �] : (77)

First order derivatives are:

m1(h1; h2) = �n1v
0
1(h1)�

�n1
h2
[v2(h2) + �] (A.78)

m2(h1; h2) = �n1 [v
0
2(h2)� v01(h2)]�

H � �n1h1
h22

[v2(h2) + �] +
H � �n1h1

h2
v02(h2): (A.79)

After substitutions, since v1(h) = h2, v2(h) = h2 + �h and
H � �n1h1

h2
= n2:

First order conditions are:

m1(h1; h2) = 2�n1h1 � �n1h2 � ��n1 � �n1
�

h2
= 0 (A.80)

m2(h1; h2) = �n1� + n2h2 � n2
�

h2
= 0: (A.81)

From (80) and (81), the elements of the Hessian matrix

0BB@ m11 m12

m21 m22

1CCA are:

0BB@ m11 m12

m21 m22

1CCA =

0BB@ 2�n1 �n1

�
�

h22
� 1
�

�n1

�
�

h22
� 1
�

2n2
h22
�

1CCA : (82)

Second order necessary conditions for minimization are: m11 > 0 and m22 > 0 (always ful�lled),

and det

0BB@ m11 m12

m21 m22

1CCA > 0 which is ful�lled i¤:

4�n1n2
h22

� > �n21

�
�

h22
� 1
�2
, 4�n2 > �n1

�
�

h2
� h2

�2
: (83)

From (80)
�

h2
= 2h1�h2�� and

�

h2
�h2 = 2(h1�h2)�� and from (80) and (81) 2(h1�h2)�� =

�n1
n2
�:

Thus det

0BB@ m11 m12

m21 m22

1CCA > 0 i¤ 4�n2 > �n1

�
�n1
n2
�

�2
:
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This condition amounts to a minimum relative participation of type 2, as determined by:�
n2
�n1

�3
>
�2

4�
; (84)

and a minimum amount of total hours.

A.5 The demand for type 2 workers

The computed values of working times for a given (endogenous) number of type 2 workers:

h�1 = �h+
�

2
(A.85)

h�2 = �h� �
2

�n1
n2

(A.86)

where �h =
H

(�n1 + n2)
.

Introducing these expressions in equation (49): h22 + �h2 + � = 2h2h1 we obtain:

H2

(�n1 + n2)
2| {z }

l(n2)

= � +

�
��n1
2n2

�2
| {z }

r(n2)

(87)

or, equivalently,

n22H
2

(�n1 + n2)
2| {z }

L(n2)

= �n22 +

�
��n1
2

�2
| {z }

R(n2)

(88)

The demand for type 2 workers is the implicit solution to the former equation.

Derivatives with respect n2 are:

L0(n2) =
2�n1n2

(�n1 + n2)
3H

2 (A.89)

R0(n2) = 2�n2 (A.90)

From (graphic) analysis of L(n2) and R(n2), the root of (88) is real and unique if L(n2) = R(n2)

and L0(n2) = R0(n2):

L0(n2) = R0(n2) ) H2 = �
(�n1 + n2)

3

�n1
and with (87), the condition implies:

�n1 + n2
�n1

� =

� +

�
��n1
2n2

�2
and �nally: �

n2
�n1

�3
=
4�

�2
: (91)

The possible unique positive root, denoted by n02; is de�ned by (91)
�
n02
�n1

�3
=
4�

�2
and correspond-

ing to the switching value of �H:
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For H > �H there are two real positive roots for equation (88), but the smaller one is smaller

than n02 implying
�
n2
�n1

�3
<
4�

�2
and thus contradicting the second order condition for cost mini-

mization (84).

Application:
dn�2
dH

> 0

From �rst order conditions, equation (88) (in the main text) obtains.

In the neighborhood of an interior solution, n�2 is a continuous and di¤erentiable function of

H; noted g(H) and (88) is written:

H2 [�n1 + g(H)]
�2
= � +

�
��n1
2

�2
g�2(H) (92)

After derivating both members with respect to H :

g0(H) =
H [�n1 + g(H)]

H2 [�n1 + g(H)]
�3 �

�
��n1
2

�2
g�3(H)

: (93)

The condition for
dn�2
dH

= g0(H) > 0 is:

H2 [�n1 + g(H)]
�3
>

�
��n1
2

�2
g�3(H) (94)

or equivalently:

H2 [�n1 + g(H)]
�2
>

(�
��n1
2

�2
g�3(H)

)
[�n1 + g(H)]; and from (92):

� +

�
��n1
2

�2
g�2(H) > �n1

�
��n1
2

�2
g�3(H) +

�
��n1
2

�2
g�2(H)

Therefore:
dn�2
dH

> 0 i¤ : � > �n1

�
��n1
2

�2
g�3(H) i.e. i¤ � >

�2

4

�
�n1
n�2

�3
:

From second order necessary condition (84), this condition is necessarily ful�lled.

Numerical simulations

Figure 5 represents the functions l(n2) and r(n2) for H = 7:5, which is the downward bound

for existence of the mixed employment regime. The other parameters are similar to those used in

the main text numerical simulation (� = 0:10; � = 0:20; �n1 = 10). As we can see, in this case,

equation (88) has two positive roots, nl2 = 0:96 and n
h
2 = 6:53:

We study the cost of producing H hours for varying n2 (including the two roots). We recall

that in the mixed employment regime, the cost of producing a predetermined amount of hours
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Figure 5: The two positive solutions to Equation 88

(H = 7:5) can be written as a function of n2 only (see equation 54), all other variables being set

at their optimal level (depending on n2):

C�(H = 7:5; n2) = (�n1 + n2)� + �n1

h
(h�1)

2
+ �h�2h

�
1

i
+ n�2

h
(h�2)

2
+ �h�2

i
(95)

where h�1 = h
�
1(n2) and h

�
2 = h

�
2(n2): Figure 6 represents the cost of producing H = 7:5 depending

on n2:As revealed by the analysis of the second order conditions, the graph corroborates that

Figure 6: Cost as a function of n2; for optimal hours and wage rates

that the larger root (nh2 = 6:53) is the solution to the cost minimization problem, the lower one
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corresponding to a local maximum.
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