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Abstract

The Variance Risk Premium (VRP) is estimated directly from synthetic vari-

ance swap payoffs. Since variance swap payoffs are highly volatile, the VRP is

extracted by using signal extraction techniques based on a state-space repre-

sentation of the model in combination with a simple economic constraint. The

proposed approach, only requiring option implied volatilities and daily returns

for the underlying asset, provides measurement error free estimates of the part

of the VRP related to normal market conditions, and allows constructing vari-

ables indicating agents’ expectations under extreme market conditions. The

latter variables and the VRP generate different return predictability on the ma-

jor US indices. A factor model is proposed to extract a market VRP which

turns out to be priced when considering Fama and French portfolios.

Keywords: Variance risk premium; Variance swaps; Return predictability;

Factor Model; Kalman filter; CAPM

1. Introduction

Financial markets trade several products with exposure only to the volatility

of a given underlying asset. In particular, variance swaps, i.e. contracts in which

one party pays a fixed amount at a given maturity in exchange for a payment
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equal to the sum of squared daily returns of the underlying asset occurring

until that maturity, have become increasingly popular to trade variance. Other

popular instruments when the underlying is the S&P500 index are futures and

options on the VIX, iPath S&P500 VIX Short-Term Futures ETNs being an

important example. See [1] for the use of this type of data for estimating an

affine asset pricing model. The prices and payoffs of variance swaps contain

useful information on the variance risk premium (VRP), which is defined as the

difference between the risk neutral and physical expectations of an asset’s total

return variation. The empirical features of the VRP are used for validation and

development of new asset pricing models, and seem to generate market return

predictability. [2] estimate no-arbitrage term structure models for the VRP

using proprietary variance swap data and show that the expectation hypothesis

does not hold. [3] show that the empirical features of proprietary and synthetic

variance swap data are difficult to reconcile with existing structural models for

the VRP. See also [4] for a link with higher order moments and the variance

term structure. Though clear conceptually, the estimation of the VRP requires

multiple sources of data as well as assumptions on the latent volatility processes,

rendering its dynamic properties difficult to pinpoint.

This paper proposes a state space model which allows decomposing syn-

thetic variance swap payoff time series into the latent VRP and measures of

investors’ ability to predict large shocks to the market. Variance swap payoffs

are highly noisy series, with time varying variance levels and extreme absolute

payoffs occurring during market turmoil and generated by fears or unexpected

extreme volatility shocks. To incorporate these features, we allow for regime

switching dynamics accounting for normal and extreme market conditions. In

fact, expected and realized volatility extremes appear as short lived clusters of

volatility bursts in the variance swap series. This feature, if not isolated, dis-

torts the estimation of the continuous component. A particular additive regime

structure together with opportunely designed identification constraints allows

us to devise a model framework suited to separate the systematic component of

the VRP from the discontinuous part. In its simplest specification, e.g. [5], this
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is achieved by assuming that the measurement error comes from either one of

two Normal distributions, and that the transition between these distributions

is governed by a Markov Chain. By inflating the measurement error variance,

such filter shrinks observations towards their one-step-ahead prediction when a

volatility burst occurs neutralising the impact of outlying measurements on the

filtered state. A similar result, suggested by [6], is achieved by bounding the

effect of the information carried by a new observation according to an influence

function. See also [7] for other methods of the state estimation which are ro-

bust against unknown outlier measurements. The advantage of our approach

is that the model can be written in a linear state space form and estimated by

maximum likelihood using the Kalman-Hamilton filter. Since financial theory

predicts positivity of the VRP, i.e. risk adverse agents dislike the fact that

variance is stochastic, we impose this economic constraint when estimating the

model by bounding the signal to noise ratio. Our framework requires data on

option implied volatility, e.g. the VIX index for the S&P500, and returns for the

underlying, the sources of which are free and readily available for many assets.

The literature has proposed two alternative ways to approximate the VRP

directly. First, the variance swap payoff itself has been used as a proxy for the

VRP, as e.g. in [8], [9] and [10]. Although this is a model free VRP estimate,

it does not constitute an ex-ante expectation as a risk premium should be.

Second, the VRP has been estimated as the difference between a option implied

variance and a model based forecast of the realized variance, e.g. see [11] and

[12]. However, different variance model assumptions can profoundly impact the

VRP times series as shown by [13]. While both ways to compute VRP estimates

are simple to implement, their drawback stands in an extremely noisy VRP time

series, often violating the positivity constraint. Our framework models directly

the VRP and is therefore flexible compared to an approach which parametrises

the underlying prices and variance dynamics, see for example [14] and [15].

Our setup relates to the expectation hypothesis regressions in [8]. While we

allow for idiosyncratic dynamics and stochastic behaviour for the VRP, their dy-

namics of the variance risk premium reduces to an affine transformation of the
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risk neutral variance expectations. Combined with an economic constraint on

the premium, see [16] and [17] for analogous positivity constraints on the equity

premium forecasts, our approach allows to precisely estimate the VRP asso-

ciated with normal market activity and generates positive and smooth VRPs.

The difference between the variance swap payoff and the estimated VRP gives,

together with the identification of unusual and extreme episodes of market con-

ditions, rise to two variables related to fear and surprise.

Separating the smooth part of the VRP from the part related to extreme

market conditions is first done by [18]. They decompose the VRP in a compo-

nent that reflects compensation for continuous price moves and a second compo-

nent that is related to compensation for disaster risk. [19] provide evidence that

essentially the second component contributes to explain future return variation.

The reported results are for the S&P500 index only and require a large panel of

liquidly traded options to estimate nonparametrically jump tails, and intraday

high frequency future prices to obtain realized variation measures and the VRP.

Our method, on the other hand, only requires option implied volatilities and

daily returns for the underlying.

In our empirical application, we consider four major US indices, the S&P500,

DJIA, NASDAQ and RUSSELL. We build our dataset of variance swap payoffs

by rolling on a weekly basis a synthetic contract with a one month maturity

traded at the fair variance swap rate. For all indices, our proposed model pro-

vides a good fit to the data, clearly identifies regimes with low and high volatility,

and identifies clusters of short-lived extreme market events. The filtered smooth

part of the VRP from our model has a high degree of persistence for all indices.

Our proposed methodology has implications for market return predictability

and for asset pricing. Although the VRP significantly predicts future market

returns at short horizons, sizeable increases in predictability are found when the

fear and surprise indicators are included in the predictive regressions. Though

predictability is improved at all horizons, the largest improvements are found

at longer horizons of up to one year.

As expected, for all indices the estimated VRPs move closely together and
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the episodes of fear and surprise largely overlap in terms of occurrences and

duration, and they correspond to and clearly align with well known historical

events. We use the four markets in a joint model to filter out a common fac-

tor which we interpret as the market variance risk premium (MVRP). When

compared to other well-known asset pricing factors, the MVRP is significantly

correlated only with the market factor and is priced when considering the re-

turns on most of the five Fama and French (2015) portfolio sorts.

The rest of the paper is organized as follows. Section 2 details the model.

Section 3 provides estimation results for four US indices. Section 4 documents

predictive return regressions. Section 5 estimates a joint model for retrieving

the market VRP. Section 6 concludes.

2. Model

2.1. Variance swaps

We denote by St the spot price at time t of an asset defined on a probability

space (Ω,F ,m), m = P,Q, with continuous time dynamics described by the

stochastic differential equation

dSt = St−(rft + λt1{m=P})dt+ St−σtdW
m
t +

∫
IR

St−(ex − 1) (µ(dt, dx)− νmt (x)dtdx) , (1)

where P andQ represent, respectively, the physical and risk neutral measures, rft

is the instantaneous risk-free rate, λt is the equity risk premium, σt is the instan-

taneous volatility, Wm
t is a standard Brownian motion, (µ(dt, dx)− νmt (x)dtdx)

is a compensated counting process with µ(dt, dx) a measure which takes nonzero

values when jumps occur, and νmt (x) a jump compensator which gives the arrival

rate of jumps of size x.

The quadratic variation of the return, i.e. d logSt, in the interval [t, t+ τ ] is

QVt,t+τ =

∫ t+τ

t

σ2
sds+

∫ t+τ

t

∫
IR

x2µ(ds, dx), (2)

where the first integral represents the portion of quadratic variation due to diffu-

sive price increments (denoted by CVt,t+τ ) and the second integral is associated

with the jump component (denoted by JVt,t+τ ).
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The total VRP at time t for a given maturity τ is defined as

Π̃t,t+τ = EQt [QVt,t+τ ]− EPt [QVt,t+τ ]. (3)

Given that QV in (2) can be decomposed in diffusive and jump parts, it can be

written as

Π̃t,t+τ =
(
EQt [CVt,t+τ ]− EPt [CVt,t+τ ]

)
+
(
EQt [JVt,t+τ ]− EPt [JVt,t+τ ]

)
= Πt,t+τ +

(
EQt [JVt,t+τ ]− EPt [JVt,t+τ ]

)
, (4)

where Πt,t+τ is the premium associated with the risk of variance fluctuations

under normal market activity.

A consistent and unbiased estimator of QVt,t+τ is given by the realized vari-

ance of [20] and [21], i.e. the sum of squared log returns over [t, t + τ ] and

denoted as RVt,t+τ . The riskneutral expectation EQt [QVt,t+τ ], represents the

fair strike of a variance swap, and can be represented by a continuum of Euro-

pean call and put options, see [22], [23] and [24]. An estimator is the squared

VIX, see [25], and is dentoted VIX2
t,t+τ .

The payoff generated by a variance swap contract entered at t and held to

maturity t+ τ is computed as

Pt,t+τ = VIX2
t,t+τ −RVt,t+τ , (5)

where the fixed leg VIX2
t,t+τ is calculated at inception and the floating leg

RVt,t+τ is calculated at maturity. In practice, the variance swap payoff is con-

verted in dollar units using a variance notational. Without loss of generality,

the variance notional is normalised to one.

2.2. Disentangling the variance swap payoff

The variance swap is designed to hedge against sudden variance fluctua-

tions. As shown in the empirical application, its payoff Pt,t+τ , while stable and

slow moving in periods of calm markets, exhibits large and short lasting posi-

tive/negative peaks when extreme variance events occur over the life span of the

contract. We argue that short lasting expected or unexpected sudden extreme
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variance events can heavily distort the estimation of the VRP if not adequately

identified and measured, giving raise to some contradicting results found in the

literature, see e.g. [13] for a discussion.

The variance swap payoff contains relevant information about the latent

ex-ante variance risk premium Π̃t,t+τ with differences identifiable as the predic-

tion error in computing variance expectations under the physical measure and

measurement errors. More explicitly, we can rewrite the variance swap payoff

as

Pt,t+τ = V IX2
t,t+τ −RVt,t+τ

= EQt [CVt,t+τ ] + EQt [JVt,t+τ ]− (CVt,t+τ + JVt,t+τ ) + at

= EQt [CVt,t+τ ]− EPt [CVt,t+τ ] + (EPt [CVt,t+τ ]− CVt,t+τ ) + EQt [JVt,t+τ ]− JVt,t+τ + at

= Πt,t+τ + (EQt [JVt,t+τ ]− JVt,t+τ ) + et+τ

= Πt,t+τ + FSt,t+τ + et+τ , (6)

where the zero mean innovation term et+τ reflects measurement error at intro-

duced by using VIX and RV plus the prediction error (EPt [CVt,t+τ ]−CVt,t+τ ).

In equation (6), Πt,t+τ represents the part of the VRP related to normal

market conditions, also referred to as the systematic or continuous component

of the VRP, while FSt,t+τ = EQt [JVt,t+τ ]−JVt,t+τ represents the discontinuous

component, and more precisely, the extent of fear (> 0) or surprise (< 0) that

a realized extreme variance event generates. In particular, fear refers to the

situation where agents were expecting an extreme variance event which does not

occur or which realises to a limited extent. This can be caused by sudden rumors,

sharply increasing market instability or as a reaction to a large unanticipated

shock. Surprise refers to an unexpected or underestimated extreme shock which

hits the market in the period between t and t+τ . In this sense, FSt,t+τ represents

the compensation or the extra cost with respect to the “normal” price of hedging

against variance fluctuations for the long side of the variance swap contract. The

term FSt,t+τ can be easily understood by considering the decomposition

FSt,t+τ = (EQt [JVt,t+τ ]− EPt [JVt,t+τ ]) + ηt+τ ,
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where EQt [JVt,t+τ ]−EPt [JVt,t+τ ] represents the jump risk premium and ηt+τ =

(EPt [JVt,t+τ ]−JVt,t+τ ) represents the jump prediction error under the physical

dynamics, which we assume to be Gaussian.

It is well known that variance swap payoffs are subject to different volatil-

ity states. To account for this form of heteroskedasticity, we allow different

volatility states driven by the realization of a N-state Markov chain st+τ with

transition probability matrix with elements pij , i, j = 1, . . . , N . Assuming first

order autoregressive dynamics for Πt,t+τ , the model can be written as

Pt,t+τ = Πt,t+τ + FSt,t+τ + et+τ , (7)

Πt,t+τ = Π + φ(Πt−1,t+τ−1 −Π) + εt+τ , (8)

The innovations et+τ (measurement equation) and εt+τ (state-propagation equa-

tion) are assumed to be mean zero Gaussian with state dependent variance σ2
e,st

and σ2
ε,st respectively. Both innovations are defined under the identifying restric-

tions σ2
e,1 < ... < σ2

e,N−1 = σ2
e,N and σ2

ε,1 < ... < σ2
ε,N−1 = σ2

ε,N , respectively.

The equality restriction imposed on the N-th regime allows to device a modeling

strategy suited to identify and capture features of the discontinuous component

of the VRP, i.e. the episodes of fear and surprise generated by variance bursts.

An alternative way of incorporating time dependence in σ2
e,st and σ2

ε,st is the

stochastic volatility framework, e.g. [26] and [27].

In practice, to exploit the level of decomposition in equation (6), we face

limitations due to the heterogeneity, rarity and sparsity of the extreme variance

events making it difficult to identify the dynamic properties of the jump risk

premium. For these reasons, we opt for an agnostic approach which assumes

FSt,t+τ to be a realization of a non-zero mean Gaussian process, centered around

the unconditional jump risk premium, with occurrence driven by the realization

of the Markov chain st+τ . The measurement equation becomes Pt,t+τ = Πt,t+τ+

Ist=Nµ + ẽt+τ where Ist=N is an indicator function which takes value one if

st = N and zero otherwise, µ represents the unconditional jump risk premium,

ẽt+τ = et+τ + Ist=Nηt+τ is a Gaussian noise with state dependent variance

σ2
ẽ = σ2

e,st + Ist=Nσ
2
η. Thus, given the restrictions imposed above, the variance
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of FSt,t+τ is identified as a marginal increase from the high volatility regime.

This modeling strategy allows us to model variance bursts as the realisations of

a random occurrence and size process the persistence of which is generated by

the state variable st.

Despite the fact that the ex-post payoff, Pt,t+τ , must be negative for some

t, as postulated by financial theory we require Πt,t+τ to be positive for all t.

This positivity constraint is analogous to [16] and [17] who impose positivity on

their equity premium forecasts. The main idea is that in periods where data

are very noisy it becomes hard to extract the underlying quantity of interest.

Imposing economic constraints alleviates this identification problem. The posi-

tivity constraint is implemented by bounding the signal to noise ratio such that

Πt,t+τ > 0 point-wise. The linear state space form in (7) and (8) is estimated

by maximum likelihood using the Kalman-Hamilton filter, see [28] and [29] for

more details. See also [30] for a similar estimation technique to fit a VRP term

structure model.

3. Empirical application to four US indices

3.1. Data

We consider four US stock market indices: S&P500, Dow Jones Industrial

Average (DJIA), NASDAQ and RUSSELL 2000 (RUSSELL). For each market,

we compute variance swap payoffs using realized variance computed from daily

squared returns, and we obtain the risk neutral variance expectations which

we denote respectively by VIX2
t,t+τ , VXD2

t,t+τ , VXN2
t,t+τ and RVX2

t,t+τ from

CBOE. In this paper, we consider τ to be equal to the one month horizon.

Following [31] and [32], the data is sampled weekly every Wednesday and starts

according to availability on February 1, 1990, for S&P500, November 26, 1997,

for DJIA, August 26, 2003, for NASDAQ, and February 3, 2004, for RUSSELL.

The sample ends on July 29, 2016, for all indices. A weekly frequency allows

for new information to update the measures, especially the RV, and avoids local
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over-smoothing due to the rolling of the variance swap contract over overlapping

30-day windows.

Table 1 reports descriptive statistics. We find that on average the risk neutral

variance expectation is higher than the realized variance implying a positive

average variance swap payoff, the latter ranging between 8.33 for the NASDAQ

and 10.73 for the S&P500, respectively. All time series are highly volatile, in

particular the payoff series have standard deviations which are at least three

times larger than their respective averages. In fact, variance swap payoffs have

a range of at least 600, an example being the RUSSELL with a minimum of

-432.66 and a maximum 216.58. All time series are highly persistent, with the

highest autocorrelation in the realized variance series, equal to about 0.96 for

all indices, which is expected given the overlapping nature of the data.

Table 1: Properties of the risk-neutral, physical variances and unconditional VRP

Index Variable Mean Stddev Minimum Maximum AR(1) N

S&P500
VIX2

t,t+τ 37.184 35.781 7.926 376.04 0.919 1354
RVt−τ,t 26.452 47.928 1.850 579.09 0.959 1354
Pt,t+τ 10.733 34.465 -450.81 212.2 0.852 1354

DJIA
VXD2

t,t+τ 37.823 35.04 7.418 324.77 0.929 956
RVt−τ,t 28.264 47.309 0.986 526.15 0.955 956
Pt,t+τ 9.559 34.722 -413.31 194.77 0.863 956

NASDAQ
VXN2

t,t+τ 45.536 44.127 11.796 383.53 0.932 664
RVt−τ,t 37.207 61.084 3.759 582.02 0.960 664
Pt,t+τ 8.3286 43.851 -466.71 190.16 0.859 664

RUSSELL
RVX2

t,t+τ 59.703 58.773 17.52 478.62 0.935 641
RVt−τ,t 51.226 81.697 5.9827 661.34 0.960 641
Pt,t+τ 8.4777 52.065 -432.66 216.58 0.822 641

Notes: This table reports descriptive statistics for implied variance, e.g. VIX2
t,t+τ , realized variance,

RVt−τ,t, and variance swap payoff Pt,t+τ with τ equal to one month. Stddev means standard deviation,
AR(1) is the sample autocorrelation of order one and N denotes the number of observations. The sample
frequency is weekly and starts on February 1, 1990 for S&P500, November 26, 1997 for DJIA, August 26,
2003 for NASDAQ, and February 3, 2004 for RUSS. The sample ends on July 29, 2016 for all indices.

Figure 1 displays realized variances, risk neutral variance expectations, and
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variance swap payoffs respectively over the available time span for each mar-

ket. From February 2004, when data for all indices is available, we see that

the time series share the same patterns. The realized variances have upward

peaks around the same dates for all indices. The risk neutral variance expec-

tation series also have large positive jumps around the same periods of the

realized variance but at different dates as can be seen from the payoff series.

Interestingly, the payoff series have peaks up and down with similar amplitude

noting that the left tail events of an absolute size larger than the observed

maximum occur with frequency lower than one percent. These tail episodes

coincide mainly with events related to the peak of the global financial crisis. To

stress the weight of these extreme negative points on the overall sample imply-

ing a downward bias in the unconditional variance risk premium estimated by

sample means, we re-compute the mean and standard deviation of the variance

swap-payoffs excluding the months of October and November 2008. We ob-

tain respectively (standard deviation between brackets), S&P500 12.52 (23.01),

DJIA 11.08 (25.57), NASDAQ 11.56 (26.18), RUSSELL 13.37 (21.31), i.e. a sen-

sible increase in the average coupled with a striking reduction of the standard

deviation.

3.2. Estimation results

In this section, we provide results for the model described by (7) - (8) in

a three regime specification, i.e. st+τ ∈ [l (low), h (high), j (jump)]. In fact,

the first regime refers to low (l) noise and signal variance, the second to high

(h) noise and signal variance while the third regime (j) identifies the occurrence

and, up to measurement error, size of fear/surprise episodes. Using standard

likelihood ratio tests, we reject specifications with additional regimes.

Table 2 provides parameter estimates for the four indices. The heterogene-

ity in the prediction error deriving from heteroskedasticity is clear for all the

indices. In the high volatility regime, the estimated standard errors are ho-

mogenous among indices and about four times higher than the base regime for

the S&P500, DJIA and NASDAQ, and two times higher for the RUSSELL. The
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Figure 1: RVt,t+τ , implied variance, e.g. V IX2
t,t+τ , and Pt,t+τ . S&P500 (grey), DJIA (red),

NASDAQ (blue) and RUSSELL (green). The vertical dashed lines mark the beginning of the
sample of each market.
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Table 2: Quasi-maximum likelihood estimates of (7) - (8)

Parameter S&P500 DJIA NASDAQ RUSSELL

σe,l 2.71 3.56 3.28 7.34
σe,h 11.27 12.00 12.14 14.06
ση 43.27 69.27 52.64 51.41

σε,l 1.66 0.25 1.38 2.31
σε,h 1.87 1.41 1.54 3.03
Π 13.72 8.09 14.03 16.79
φ 0.94 0.97 0.97 0.94

pll 0.82 0.85 0.75 0.84
plh 0.18 0.15 0.25 [0.01]
plj [0.00] [0.00] [0.00] 0.15
phl 0.17 0.16 0.11 0.06
phh 0.58 0.71 0.76 0.84
phj 0.25 0.13 0.13 0.10
pjl 0.35 0.01 0.34 [0.00]
pjh 0.29 0.34 0.35 0.73
pjj 0.36 0.65 0.31 0.27

LLF -2.8261 -2.9326 -3.1656 -3.2929
N 1354 956 664 641

Steady-state probability
l 0.55 0.45 0.37 0.24
h 0.32 0.40 0.53 0.62
j 0.13 0.15 0.10 0.14

Expected duration
l 5.68 6.74 3.95 6.43
h 2.39 3.42 4.20 6.06
j 1.56 2.86 1.44 1.36

Notes: LLF denotes the average loglikelihood and N the number of observations. Steady state probabil-

ities are computed according to (4.49) in [29]. Expected duration is computed as 1/(1−pii), i ∈ [l (low),

h (high), j (jump)]. The [ ] brackets indicate insignificant parameters at the five percent significance

level. The parameter µ is set to zero as it turns out to be insignificant for all indices. The sample

frequency is weekly and starts on February 1, 1990 for S&P500, November 26, 1997 for DJIA, August

26, 2003 for NASDAQ, and February 3, 2004 for RUSSELL. The sample ends on July 29, 2016 for all

indices.
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large marginal increase in the measurement error variance between the second

and third regime, measured by ση, together with transition probabilities which

imply relatively short expected durations for the third regime, proves that the

latter identifies rare and short-lived extreme market events. The parameter µ

is not reported in Table 2 as it turns out to be insignificant for all indices. This

indicates that fears and surprises tend to compensate on average.

The implied expected durations for extreme payoff events range between

1.36 (RUSSELL) and 2.86 (DJIA) weeks. The transition probability matrix,

however, reveals a persistent low volatility regime, with expected durations of

5.68, 6.74, 3.95 and 6.43 weeks, for the four indices respectively. The high

volatility regime is more heterogenous, with expected durations ranging between

2.39 weeks for the S&P500 and 6.06 weeks for the RUSSELL, and acts in most

cases as the layer of transition between the low and extreme volatility regimes.

In fact, except for the RUSSELL, the probability plj is virtually zero. This

evidence is less striking in the opposite direction with pjl smaller than one

percent only for DJIA and RUSSELL.

We estimate the occurrence of the extreme variance events as the observa-

tions for which the jump state posterior probability is the highest. Using the

notation in [29], the latter probability is computed as max
(
P (st+τ |ψt+τ )

)
=

P (j|ψt+τ ), where P (st+τ |ψt+τ ) is the posterior probability of the state st+τ ∈

[l, h, j] and ψt+τ is the information set up to t+ τ . Table 3 provides details on

the major events that generated extreme variance swap payoffs. The longest

lasting event is the global financial crisis with an estimated length of about

seven months, with average variance swap payoff favouring the long side of the

contract for all indices, particularly so for the S&P500 with average gains of 158

times the notational. The global financial crisis thus constitutes an example of

a period where the effect of surprises dominate over fears. The collapse in oil

prices in August 2015 is an example of relatively short lasting episode of 1.5

months. Regarding this event, three out of the four indices exhibit gains for the

long position up to 33.4 times the notational, with the exception of the RUS-

SELL for which the average payoff favours the short side of the swap contract
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with average gains of 8.45 times the notational.

The latent state Πt,t+τ has an unconditional level in line with Section 3.1

and a high degree of persistence for all indices. The estimated autoregressive co-

efficient φ is substantially higher than the one estimated on the raw payoff data,

stressing the downward bias due to the presence of extreme payoff realisations,

see Table 2.

Figure 2 displays variance swap payoffs (grey), the smooth part of the VRP

(red), and the detected extreme variance events (vertical grey lines) for the four

indices. As indicated by the parameter estimates in Table 2, Πt,t+τ is slowly

moving and above its mean in volatile periods and below its mean in periods of

calm financial markets. Over the period for which we have data for all indices,

we see from Figure 3 that the respective Πt,t+τ estimates are moving closely

together. The pairwise correlations between the variance premia is the highest

between S&P500 and DJIA (90 percent) and the lowest between the NASDAQ

and the RUSSELL (76 percent). Figure 3 also shows that episodes of extreme

variance events, indicated by the shaded grey areas, largely overlap both in

terms of occurrences and duration.

3.3. Fear and surprise

Once endowed with the filtered VRP and the posterior probabilities associ-

ated to the states st, we infer the occurrence of abnormal variance swap payoffs

and determine whether and to what extent they are caused by fears or surprises.

Figure 4 displays the difference between the payoff and the smooth part of the

VRP, i.e. Pt,t+τ − Πt,t+τ , for all indices. This quantity represents the mea-

surement error for regimes l and h, while it represents the sum of measurement

error and the extent of the fear/surprise for regime j. The difference in mag-

nitude between normal and extreme regimes (indicated by the shaded areas) is

striking as the magnitude of FSt,t+τ dominates the measurement error. We see

that positive deviations, associated to fears (red), mirror negative deviations,

associated to surprises (green) both in absolute size and magnitude, with the

exception of the unique events coinciding with the peak of the financial crisis in
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Table 3: Extreme variance clusters

Event Market Start End N P̄t,t+τ Π̄t,t+τ

Asian Crisis S&P500 1997-10-29 1997-12-24 8 0.58 16.29

Russian Crisis
S&P500 1998-08-12 1998-12-02 14 23.35 14.99
DJIA 1998-09-02 1998-12-09 13 27.86 13.23

09/11
S&P500 2001-09-26 2001-12-05 10 45.50 17.45
DJIA 2001-09-19 2001-12-12 11 23.08 15.00

Dot-com bubble burst
S&P500 2002-07-24 2002-11-27 13 -8.83 9.57
DJIA 2002-07-24 2002-12-11 16 5.22 8.49

Global financial crisis

S&P500 2008-09-17 2009-05-27 28 -158.54 10.35
DJIA 2008-09-17 2009-05-27 30 -40.34 3.59
NASDAQ 2008-09-24 2009-05-27 27 -49.05 15.08
RUSSELL 2008-09-17 2009-05-27 30 -80.04 7.26

Flash crash

S&P500 2010-05-12 2010-07-28 8 6.72 15.31
DJIA 2010-05-12 2010-06-02 4 -28.54 14.83
NASDAQ 2010-05-12 2010-07-07 6 -16.30 18.92
RUSSELL 2010-05-05 2010-07-07 8 -12.15 17.73

US debt downgrade

S&P500 2011-08-10 2011-11-02 8 -46.38 9.76
DJIA 2011-08-10 2011-11-02 7 -43.79 9.10
NASDAQ 2011-08-10 2011-11-02 11 -19.38 6.68
RUSSELL 2011-08-10 2011-11-02 8 -118.68 9.70

Collapse in oil prices

S&P500 2015-08-26 2015-09-30 6 -20.46 7.89
DJIA 2015-08-26 2015-09-30 6 -18.63 7.39
NASDAQ 2015-08-26 2015-09-30 6 -33.44 6.53
RUSSELL 2015-08-26 2015-09-23 5 8.45 6.65

Notes: This table reports extreme variance swap payoff clusters over the period January, 1990, to September,
2015. N denotes the number of extreme variance weeks in the period between Start and End. The variables
P̄t,t+τ and Π̄t,t+τ are respectively the average payoff and smooth VRP over the extreme variance weeks. The
sample frequency is weekly and starts on February 1, 1990 for S&P500, November 26, 1997 for DJIA, August
26, 2003 for NASDAQ, and February 3, 2004 for RUSSELL. The sample ends on July 29, 2016 for all indices.
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Figure 2: Variance swap payoffs (grey), Pt,t+τ , the smooth part of the VRP (red), Πt,t+τ ,
and detected extreme variance events (vertical grey areas for the four indices. From the top
we plot S&P500, DJIA, NASDAQ and RUSSELL, respectively.
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Figure 3: The smooth part of the VRP, Πt,t+τ , for all for indices together. S&P500 (grey),
DJIA (red), NASDAQ (blue) and RUSSELL (green). The vertical dashed lines mark the
beginning of the sample of each market. The dark grey areas indicate extreme variance events
detected in the four markets. The light grey areas indicate extreme variance events detected
in 3 markets or less.

September and October of 2008.

To isolate the extent of fears and surprises, we offset the normal regime

by intersecting Pt,t+τ − Πt,t+τ with the indicator Ist=j . The resulting variable

represents the extent of the fear or surprise generated by a realized extreme

shock on the market occurred in the period between t−τ and t. More precisely,

we define fear as Ft,t+τ = (Pt,t+τ−Πt,t+τ )I{st=j ∩ (Pt,t+τ−Πt,t+τ )>0} and surprise

as St,t+τ = |Pt,t+τ −Πt,t+τ |I{st=j ∩ (Pt,t+τ−Πt,t+τ )<0}. We switch the sign of the

surprise effect in the following so that its coefficient in the predictive regression

analysis below represents the direction of the pricing of the risk factor.

Table 4 gives descriptive statistics for the Ft,t+τ and St,t+τ variables. Fears

and surprises show a similar number of occurrences, as seen in Figure 4, with the
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Figure 4: Positive (negative) part of Pt,t+τ − Πt,t+τ in red (green) and detected extreme
variance events (vertical grey lines) for the four indices. From the top we plot S&P500, DJIA,
NASDAQ and RUSSELL, respectively.
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Table 4: Fear and surprise variables associated with extreme market conditions

Mean Std. dev. Minimum Maximum N

Fear (Ft,t+τ )

S&P500 45.716 33.351 18.813 203.88 73

DJIA 50.040 33.587 19.655 192.695 51

NASDAQ 54.137 34.529 24.562 177.491 33

RUSSELL 73.889 53.625 33.313 214.128 21

Surprise (St,t+τ )

S&P500 87.161 98.015 21.613 458.156 69
DJIA 87.923 86.096 23.574 414.373 53
NASDAQ 119.10 121.79 32.085 478.893 36
RUSSELL 138.05 121.42 22.830 434.604 41

Notes: Fears and surprises are computed as Ft,t+τ = (Pt,t+τ − Πt,t+τ )I{st=j ∩ (Pt,t+τ−Πt,t+τ )>0} and St,t+τ =
|Pt,t+τ − Πt,t+τ |I{st=j ∩ (Pt,t+τ−Πt,t+τ )<0} respectively. N is the number of nonzero values over which the
descriptive statistics are computed.

exception of RUSSELL where surprises are twice as frequent as fears. The fear

variable is on average between four and five times larger than the estimated

unconditional level of the VRP reported in Table 2, and at the minimum at

least twice as large. The surprise variable exhibits in general a more extreme

behaviour. As discussed in Section 3.1, these statistics are largely affected by a

handful of extremely negative variance swap payoffs observed during the peak

of the global financial crisis.

4. Predictive return regressions

4.1. Smooth component of the VRP

The importance of the VRP as a predictor for future aggregate market re-

turns has been pointed out by many authors, see [11], [12], [33], and [13] among

others. We use the variance swap payoffs Pt,t+τ as a proxy for the VRP as in

[9] and [10] to assess its contribution to future market returns.

Return predictability is quantified by estimating the following predictive
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regression model

1

h

h∑
j=1

rt+τ+j = a0(h) + a1(h)Xt,t+1 + ut(h), (9)

where h denotes the horizon, rt denotes the excess return for week t and X

a predictor. To correct for the highly overlapping dependent variable, Hansen-

Hodrick corrected standard errors are reported. Using Datastream, we construct

the weekly aggregated market returns in excess of the three-month T-bill rate

over horizons from one week (h=1) up to one year (h=52). Predictability is

measured by the adjusted R2 of the regression.

Table 5 provides parameter estimates and adjusted R2s for the regression

model in (9) using Pt,t+τ as a predictor. For the S&P500 and NASDAQ, the

slope coefficients are significant from short to medium-long horizons (one to

six months). The significant coefficients are associated with R2s reaching 3.19

and 4.40 for the S&P500 and DJIA respectively. Similarly, the DJIA shows

significant slope coefficients at medium-long horizons (three to nine months),

while for the RUSSELL coefficients are significant at the medium horizon only

(three to five months). In the four cases, we observe the usual inverse U-shape

found in the literature.

Comparing the return predictability of Πt,t+τ with that of the variance swap

payoffs Pt,t+τ , a different pattern appears. In general, we find that signs of re-

turn predictability emerge at rather short horizons and peak at the two-three

months mark. For the S&P500, we find positive significant slope coefficients

a1(h) up to two months with the highest adjusted R2s showing the aforemen-

tioned inverse U-shape peaking at 2.12. For the DJIA, R2s reach 3.50 percent

at the three month horizon, although it is significant at five percent only up to

the two month horizon. The NASDAQ is the only index that does not show

any significant slope coefficients. The RUSSELL has only significant R2s at the

three to five month horizons, with the largest R2 of 3.06 percent at the four

month horizon.
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Table 5: Smooth VRP predictive regressions

Horizon 1 4 8 12 16 20 24 36 52

S&P500

Πt,t+τ 1.951 2.148 1.785 1.384 0.933 0.665 0.536 0.277 0.224
(0.973) (0.943) (0.878) (0.840) (0.724) (0.645) (0.634) (0.532) (0.486)

R2 0.21 1.51 2.12 1.92 1.14 0.67 0.48 0.14 0.11

Pt,t+τ 0.306 0.361 0.202 0.265 0.278 0.260 0.176 0.069 0.016
(0.359) (0.182) (0.102) (0.041) (0.050) (0.040) (0.029) (0.039) (0.027)

R2 0.14 1.28 0.78 2.16 3.19 3.41 1.77 0.33 -0.05

DJIA

Πt,t+τ 1.982 2.086 2.024 1.719 1.361 1.133 0.919 0.363 0.268
(0.984) (1.019) (1.003) (1.030) (0.890) (0.773) (0.746) (0.655) (0.616)

R2 0.23 1.50 3.03 3.50 3.07 2.60 1.94 0.36 0.26

Pt,t+τ 0.119 0.172 0.092 0.216 0.288 0.284 0.215 0.100 0.026
(0.390) (0.235) (0.156) (0.069) (0.070) (0.055) (0.024) (0.042) (0.025)

R2 -0.07 0.18 0.07 1.41 3.65 4.40 2.88 0.84 -0.03

NASDAQ

Πt,t+τ 0.863 0.982 1.535 1.707 1.549 1.567 1.428 0.887 0.686
(1.067) (1.188) (1.204) (1.243) (1.181) (1.114) (1.106) (1.009) (0.919)

R2 -0.10 0.12 1.10 2.13 2.37 3.06 2.99 1.76 1.55

Pt,t+τ 0.512 0.480 0.198 0.247 0.239 0.225 0.137 0.022 -0.028
(0.347) (0.138) (0.067) (0.071) (0.073) (0.049) (0.041) (0.040) (0.016)

R2 0.62 2.59 0.74 1.88 2.41 2.67 1.09 -0.12 -0.05

RUSSELL

Πt,t+τ 1.875 2.203 2.307 2.104 1.235 0.878 0.713 0.317 0.236
(1.288) (1.244) (1.152) (1.210) (1.049) (0.747) (0.503) (0.201) (0.216)

R2 0.09 1.35 3.15 4.05 1.87 1.09 0.78 0.14 0.08

Pt,t+τ 0.143 0.396 0.152 0.268 0.261 0.196 0.088 0.022 -0.031
(0.516) (0.226) (0.126) (0.056) (0.090) (0.077) (0.065) (0.029) (0.026)

R2 -0.10 1.87 0.44 2.72 3.67 2.47 0.45 -0.11 0.01

Notes: Estimation results for predictive return regressions 1
h

∑h
j=1 rt+τ+j = a0(h) +

a1(h)Xt,t+τ + ut+τ (h), with Xt+τ equal to Πt,t+τ or Pt,t+τ respectively and where h de-

notes the horizon. Hansen-Hodrick standard errors are in brackets. Coefficients significant

at five percent are in boldface. Adjusted R2s in percentages. The sample frequency is weekly

and starts on February 1, 1990 for S&P500, November 26, 1997 for DJIA, August 26, 2003

for NASDAQ, and February 3, 2004 for RUSSELL. The sample ends on July 29, 2016 for all

indices.
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4.2. Fears and surprises

Besides the smooth VRP (Πt,t+1), our model infers the agents’ reaction to

realized extreme variance events, namely fears (Ft,t+1) and surprises (St,t+1).

The contribution of these variables is expected to generate significantly larger

return predictability in periods when such events occur. To test this hypothesis,

we augment the predictive regression model in (9) as follows

1

h

h∑
j=1

rt+τ+j = a0(h) + a1(h)Πt,t+τ + a2(h)Ft,t+τ + a3(h)St,t+1 + ut+τ (h). (10)

Table 6 reports estimates for the parameters a1(h), a2(h) and a3(h) of the

model in (10) as well as their associated adjusted R2s. The smooth VRP slope

estimates, a1(h), hardly change with respect to Table 5 for all indices, con-

firming the orthogonal nature of the regressors. Fear is positive and significant

at medium and long horizons for all indices. RUSSELL also shows significant

negative coefficients at very short horizons. This suggests that fear for large

volatility shifts although possibly driving down returns in the very short term,

constitutes a risk factor, to which agents do not react immediately, but that they

distinctly price for long periods. Surprise is typically significant and negative

at the medium horizons but they switch sign at the long horizons.

In sum, our results show evidence of systematic longer lasting response of the

expected average returns triggered by unexpected (at least in their magnitude)

realized large shocks and fear of future extreme shocks. Comparing the decom-

position proposed in our model with the predictability generated by Pt,t+τ , we

find substantial increases in the R2s at all horizons for all indices. While the

S&P500 preserves the inverse U-shape, the remaining indices show longer term

predictability, which does not die out before the one year horizon.

We have shown that fears and surprises, i.e., direction and size of agents’

reaction to extreme shocks to the market, have a relevant effect on future mar-

ket performances. We argue that such an effect is likely to be asymmetric

and systematically related to the current market conditions at the moment the

shock occurs. To test this hypothesis, we further extend the predictive re-
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Table 6: Premium, fear & surprise predictive regression

Horizon 1 4 8 12 16 20 24 36 52

S&P500

Πt,t+τ 1.828 2.010 1.746 1.278 0.796 0.527 0.446 0.248 0.223
(0.893) (0.876) (0.838) (0.801) (0.683) (0.621) (0.633) (0.530) (0.496)

Ft,t+τ -0.207 -0.232 -0.388 0.129 0.283 0.304 0.306 0.226 0.202
(0.608) (0.402) (0.466) (0.235) (0.098) (0.082) (0.060) (0.144) (0.113)

St,t+τ -0.317 -0.356 -0.181 -0.193 -0.219 -0.217 -0.114 0.006 0.051
(0.360) (0.099) (0.058) (0.062) (0.074) (0.068) (0.051) (0.035) (0.027)

R2 0.24 2.36 2.87 2.70 2.96 2.97 1.69 0.60 0.81

DJIA

Πt,t+τ 1.866 1.883 1.917 1.643 1.251 1.035 0.905 0.447 0.398
(0.907) (0.909) (0.952) (0.962) (0.804) (0.711) (0.753) (0.729) (0.720)

Ft,t+τ -0.336 -0.508 -0.539 -0.007 0.229 0.304 0.385 0.424 0.380
(0.853) (0.531) (0.501) (0.236) (0.074) (0.080) (0.104) (0.106) (0.110)

St,t+τ -0.095 -0.181 -0.040 -0.105 -0.199 -0.198 -0.099 0.023 0.010
(0.377) (0.127) (0.101) (0.098) (0.103) (0.095) (0.063) (0.053) (0.046)

R2 0.07 1.86 3.74 3.53 4.46 4.72 3.69 2.79 3.81

NASDAQ

Πt,t+τ 0.752 0.829 1.487 1.625 1.459 1.476 1.354 0.855 0.659
(1.014) (1.131) (1.188) (1.204) (1.132) (1.071) (1.074) (0.999) (0.919)

Ft,t+τ -0.462 0.347 -0.049 0.477 0.668 0.673 0.714 0.529 0.414
(0.553) (0.285) (0.335) (0.208) (0.051) (0.051) (0.051) (0.145) (0.118)

St,t+τ -0.662 -0.533 -0.223 -0.180 -0.144 -0.122 0.004 0.090 0.120
(0.353) (0.100) (0.081) (0.051) (0.036) (0.029) (0.042) (0.029) (0.019)

R2 0.65 2.67 1.68 3.51 4.94 6.07 6.08 5.04 5.64

RUSSELL

Πt,t+τ 1.112 1.664 1.962 1.932 1.123 0.816 0.798 0.520 0.478
(1.040) (1.034) (1.027) (1.113) (0.959) (0.722) (0.586) (0.404) (0.328)

Ft,t+τ -1.607 -0.227 -0.694 0.114 0.398 0.365 0.394 0.464 0.403
(0.716) (0.263) (0.361) (0.212) (0.113) (0.103) (0.060) (0.046) (0.067)

St,t+τ -0.356 -0.444 -0.164 -0.180 -0.187 -0.009 0.072 0.117 0.001
(0.449) (0.150) (0.082) (0.072) (0.077) (0.068) (0.052) (0.034) (0.035)

R2 0.73 2.94 4.48 4.76 3.97 2.68 1.64 2.85 4.54

Notes: Estimation results for predictive return regressions 1
h

∑h
j=1 rt+τ+j = a0(h) +

a1(h)Πt,t+τ + a2(h)Ft,t+τ + a3(h)St,t+τ + ut+τ (h), where h denotes the horizon. Hansen-
Hodrick standard errors are in brackets. Coefficients significant at five percent are in boldface.
Adjusted R2s in percentages. The sample frequency is weekly and starts on February 1, 1990
for S&P500, November 26, 1997 for DJIA, August 26, 2003 for NASDAQ, and February 3,
2004 for RUSSELL. The sample ends on July 29, 2016 for all indices.
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gression model by discriminating fears and surprises according to the signed

jump variation defined as the difference between positive and negative real-

ized semivariances, i.e., the differential between partial sums of squared neg-

ative and positive jumps, denoted by ∆J =
∑I
i=1 r

2
t+i(I{rt+i>0} − I{rt+i<0}),

see [34]. This hypothesis, which relates to the concept of good versus bad

volatility developed in [35] and [36], allows us to capture the asymmetry with

respect to the type of the fear/surprise triggering shock. Defining F+
t,t+τ =

(Pt,t+τ−Πt,t+τ )I{st=j ∩ (Pt,t+τ−Πt,t+τ )>0∩∆J>0} and other variables accordingly,

the extended predictive regression model becomes

1

h

h∑
j=1

rt+τ+j = a0(h) + a1(h)Πt,t+τ + a+
2 (h)F+

t,t+τ + a−2 (h)F−t,t+τ

+a+
3 (h)S+

t,t+τ + a−3 (h)S−t,t+τ + ut+τ (h). (11)

Table 7 reports the results for the model defined in (11). It turns out that

when conditioning on the sign of the jump variation more fear and surprise vari-

ables coefficients become significant. This is particularly the case for NASDAQ

and RUSSELL, where most of the return predictability, if not all of it, stems

from fear and surprise. In case of the S&P500, the fear variable associated with

negative jump variation, i.e. F−t,t+τ , is significant and positive from the four

month horizon onwards while in contrast F+
t,t+τ is significant only at the five

and six month horizons. This result is in line with the notion of leverage effect

and its implication in terms of intertemporal risk-return tradeoff. The surprise

variable related to the positive jump variation, S+
t,t+τ , is significant and negative

between the medium and long horizon, while S−t,t+τ is significant and negative

between the one and five month horizon, becoming positive at the one year

mark. Except for the S&P500, the inverse U-shape pattern for the R2s becomes

milder as the long horizon R2s stay as high as, or sometimes even higher than,

the medium horizon R2s.
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Table 7: Premium, signed fear & surprise (signed jump variation) predictive regression

Horizon 1 4 8 12 16 20 24 36 52
S&P500

Πt,t+τ 1.870 2.013 1.745 1.281 0.798 0.527 0.448 0.247 0.222
(0.901) (0.880) (0.834) (0.799) (0.683) (0.621) (0.633) (0.528) (0.496)

F+
t,t+τ -0.601 -0.233 -0.531 -0.008 0.168 0.226 0.201 0.146 0.139

(0.582) (0.360) (0.496) (0.236) (0.124) (0.103) (0.094) (0.162) (0.122)

F−t,t+τ 1.731 -0.219 0.288 0.779 0.830 0.669 0.807 0.600 0.498
(1.255) (0.784) (0.494) (0.434) (0.188) (0.143) (0.078) (0.169) (0.149)

S+
t,t+τ 0.040 -0.102 -0.977 -0.759 -0.703 -0.596 -0.566 -0.519 -0.309

(0.956) (0.343) (0.525) (0.195) (0.193) (0.376) (0.359) (0.304) (0.149)

S−t,t+τ -0.327 -0.365 -0.154 -0.173 -0.203 -0.204 -0.098 0.012 0.064
(0.359) (0.094) (0.070) (0.072) (0.087) (0.081) (0.057) (0.039) (0.025)

R2 0.35 2.23 3.36 3.22 3.45 3.22 2.30 1.40 1.35
DJIA

Πt,t+τ 1.939 1.858 1.962 1.664 1.278 1.045 0.923 0.477 0.424
(0.914) (0.910) (0.967) (0.967) (0.816) (0.716) (0.765) (0.740) (0.734)

F+
t,t+τ -0.520 -0.348 -0.688 -0.080 0.135 0.258 0.310 0.302 0.266

(0.607) (0.408) (0.544) (0.235) (0.131) (0.126) (0.164) (0.124) (0.097)

F−t,t+τ 0.272 -1.005 -0.060 0.230 0.530 0.450 0.621 0.812 0.741
(1.992) (0.969) (0.450) (0.295) (0.080) (0.061) (0.063) (0.108) (0.128)

S+
t,t+τ -0.609 -0.261 -0.258 -0.204 -0.315 -0.216 -0.154 -0.057 0.048

(0.312) (0.059) (0.157) (0.060) (0.052) (0.043) (0.060) (0.046) (0.047)

S−t,t+τ 0.262 -0.129 0.114 -0.035 -0.117 -0.185 -0.059 0.081 0.139
(0.452) (0.201) (0.186) (0.155) (0.152) (0.154) (0.101) (0.073) (0.053)

R2 0.18 1.80 4.24 3.57 4.76 4.57 3.75 3.60 4.67
NASDAQ

Πt,t+τ 0.773 0.820 1.474 1.614 1.454 1.470 1.350 0.862 0.662
(1.038) (1.129) (1.188) (1.201) (1.129) (1.067) (1.065) (0.998) (0.921)

F+
t,t+τ -0.730 0.139 -0.283 0.313 0.543 0.612 0.593 0.558 0.429

(0.379) (0.208) (0.313) (0.174) (0.017) (0.058) (0.038) (0.081) (0.102)

F−t,t+τ 0.697 1.238 0.958 1.180 1.206 0.931 1.215 0.410 0.352
(1.860) (0.840) (0.273) (0.321) (0.098) (0.130) (0.129) (0.624) (0.100)

S+
t,t+τ -1.168 -0.600 -0.260 -0.181 -0.187 -0.088 -0.008 0.016 0.080

(0.105) (0.085) (0.067) (0.032) (0.018) (0.016) (0.024) (0.016) (0.013)

S−t,t+τ -0.457 -0.504 -0.207 -0.178 -0.126 -0.135 0.010 0.120 0.136
(0.494) (0.119) (0.096) (0.065) (0.043) (0.040) (0.049) (0.037) (0.020)

R2 0.69 2.62 1.96 3.61 4.99 5.87 6.19 4.92 5.35
RUSSELL

Πt,t+τ 1.124 1.671 1.964 1.936 1.127 0.824 0.806 0.524 0.484
(1.047) (1.054) (1.057) (1.128) (0.969) (0.732) (0.597) (0.423) (0.345)

F+
t,t+τ -1.194 -0.43 -1.086 -0.108 0.210 0.237 0.222 0.350 0.314

(0.620) (0.281) (0.387) (0.245) (0.070) (0.094) (0.056) (0.060) (0.079)

F−t,t+τ -3.531 0.820 1.196 1.193 1.310 1.014 1.232 1.006 0.822
(1.102) (0.294) (0.440) (0.235) (0.167) (0.171) (0.221) (0.130) (0.132)

S+
t,t+τ -0.052 0.580 0.746 0.503 0.383 0.715 0.718 0.331 0.364

(1.375) (1.134) (0.632) (0.280) (0.282) (0.218) (0.220) (0.366) (0.140)

S−t,t+τ -0.375 -0.494 -0.212 -0.216 -0.217 -0.182 -0.047 0.058 0.105
(0.473) (0.133) (0.063) (0.080) (0.075) (0.080) (0.072) (0.033) (0.040)

R2 0.66 3.56 7.14 6.29 5.48 5.25 4.41 3.71 5.45

Notes: Estimation results for predictive return regressions 1
h

∑h
j=1 rt+τ+j = a0(h) +

a1(h)Πt,t+τ + a+
2 (h)F+

t,t+τ + a−2 (h)F−t,t+τ + a+
3 (h)S+

t,t+τ + a−3 (h)S−t,t+τ + ut+τ (h) where
h denotes the horizon. Hansen-Hodrick standard errors are in brackets. Coefficients signifi-
cant at five percent are in boldface. Adjusted R2s in percentages. The sample frequency is
weekly and starts on February 1, 1990 for S&P500, November 26, 1997 for DJIA, August 26,
2003 for NASDAQ, and February 3, 2004 for RUSSELL. The sample ends on July 29, 2016
for all indices.
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5. Market VRP and CAPM regressions

Our choice of the four US stock market indices is not coincidental. Although

heterogenous in terms of size, composition and degree of diversification, they

all ultimately convey information about the aggregate US stock market. From

the previous analysis, we find a high degree of similarity among the variance

swap payoffs of the four indices. In fact, besides the high degree of correla-

tion, a principal component analysis reveals that the first component explains

95 percent of the total payoff variation. To avoid the impact of the extreme

payoff realisations, we perform the principal component analysis on the filtered

VRP’s and we find that the relative weight of the first component amounts to

88 percent.

The previous evidence suggests existence of a common and dominant source

of variance risk driving the four indices, i.e. a market variance risk premium

(MVRP). We estimate this common variance risk factor by building a joint

model that exploits the intra-market cross-sectional dimension. The state space

form and the Kalman filter provide advantage because they allow to exploit

information coming from multiple measurements to improve the estimation ac-

curacy of a common latent factor.

Defining Pit,t+τ the variance swap payoff for the market index i =S&P500,

DJIA, NASDAQ and RUSSELL, the model in (7) of Section 2 with N = 3, can

be written as

Pit,t+τ = (VIXi
t,t+τ )2 −RV it,t+τ

= Πi
t,t+τ + Ist=jµi + eit+τ + Ist=jη

i
t+τ . (12)

The variance premium Πi
t,t+τ can be written as the sum of an affine transfor-

mation (centered and rescaled) of a common factor Gt,t+τ and an idiosyncratic

i.i.d. factor εit+τ , i.e. Πi
t,t+τ = Π

i
+ βiGt,t+τ + εit+τ . Then the measurement

equation above becomes

Pit,t+τ = Π
i
+ βiGt,t+τ + Ist=jFSi + ẽit+τ , (13)
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where ẽit+τ = εit+τ + eit+τ + Ist=jη
i
t+τ is a Gaussian noise term with state de-

pendent variance σ2
ẽi = (σ2

εi + σ2
ei + Ist=jσ

2
ηi). Note that the variances of εit+τ

(idiosyncratic component) and eit+τ (prediction error) are identified in the sum,

which is sufficient for the purpose of our model, but not individually. Also, iden-

tification restrictions on the variance of the common factor require βS&P500 = 1.

The common factor Gt,t+τ , denoting the MVRP, is assumed to evolve as a first

order autoregressive process, i.e. Gt,t+τ = φGt−1,t+τ−1 + ξt+τ with variance

of ξt+τ equal to σ2
ξ . The MVRP is not a proper VRP since it is centered and

normalized. However, up to the affine transformation Π
i
+ βiGt,t+τ it becomes

the linear predictor for the VRP of index i. Heteroskedasticity is accounted for

in the same fashion as in Section 2.

Table 8 reports quasi-maximum likelihood parameter estimates for the com-

mon factor model. Compared to the S&P500, the estimated common factor βi

loads less than proportionally on the other indices. The estimated persistence,

measured by φ, amounts to 0.98 confirming slowly evolving VRP’s for all in-

dices, see also Figure 5 which shows the VRP’s implied by the common factor

model. The expected durations for the normal, high and extreme regimes are

respectively 17.11 , 2.68 and 2.07 weeks. Figure 5 shows that the third regime

representing episodes of fear and surprises, with a steady state probability equal

to 0.14, exhibits three major clusters associated with, respectively, the global

financial crisis, the flash crash and the US debt downgrade.

In an intertemporal CAPM framework of [37], we test whether the estimated

MVRP contains relevant information about the perceived level of variance risk

that is actually priced in financial assets, see e.g. [38]. The three factor model of

[39] and the five factor model of [40] extend the CAPM of [41] and [42] to describe

patterns in the return variation left unexplained by the market risk factor. More

elaborated models and factor selection tools exist, see e.g. [43], but are beyond

the scope of this paper. The model is designed to capture the relation between

the average return and factors like size (market capitalisation), price ratios like

book-to-market, profitability (the difference between the returns on diversified

portfolios of stocks with robust and weak profitability) and investment (the
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Table 8: Quasi-maximum likelihood estimates of the common factor model

Parameter Common S&P500 DJIA NASDAQ RUSSELL

σei,l 1.84 2.06 5.27 5.13
σei,h 11.46 6.38 9.04 12.51
σηi 39.00 35.15 31.03 44.75

Π
i

11.53 5.79 11.86 14.50
βi 1.00 0.62 0.93 0.88

σε,l 0.74
σε,h 1.01
φ 0.98

pll 0.94
plh [0.04]
phh 0.63
phj 0.23
pjj 0.52
pjh 0.48

LLF -11.0547
T 641

Steady-state prob.
l 0.62
h 0.24
j 0.14

Expected duration
l 17.11
h 2.68
j 2.07

Notes: LLF denotes the average loglikelihood and T the number of observations. Steady

state probabilities are computed according to (4.49) in [29]. Expected duration is computed

as 1/(1− pii), i ∈ [l (low), h (high), j (jump)]. Identification restrictions on the variance of

the common factor require βS&P500 = 1. The [ ] brackets indicate insignificant parameters.

The parameter FS is set to zero as it turns out to be insignificant. The sample frequency is

weekly between February 3, 2004 and July 29, 2016.
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(d) RUSSELL

Figure 5: VRP’s implied by the common factor model.

difference between the returns on diversified portfolios of the stocks of low and

high investment firms).

Although not being a risk factor immediately comparable in essence to the

five Fama-French factors, as it is not the return on a tradable portfolio, the

MVRP represents the level of agents’ volatility risk aversion and it is directly

proportional to the cost of hedging against volatility risk. Correlations between

the five Fama-French factors and the MVRP, show that while the Fama-French

factors are substantially correlated among themselves, the MVRP is significantly
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correlated only with the market factor at 28%. Hence, the MVRP potentially

contains novel information to capture the variation in the expected return of

financial securities and portfolios.

Following [40], we consider returns on five portfolio sorts based on the follow-

ing four characteristics: beta, variance, residual variance and net share issues.

Details on the construction of the portfolios and data are available from Ken-

neth R. French’s online data library. Being standardised by construction, adding

the MVRP in the Fama-French regression preserves the comparability with [40]

and does not introduce distortion in the estimation of the intercepts. Following

practice in the CAPM literature, e.g. [44], we resample the data at a monthly

frequency.

Tables 9 and 10 report parameter estimates of the Fama-French five-factor

model and the MVRP. The latter contributes significantly to explain the portfo-

lios return variations for the sorts based on beta, variance and residual variance,

and only marginally for the ones based on net share issues. More specifically,

Table 9 Panel A reports results for the portfolio sorted with respect to the indi-

vidual companies’ beta. Portfolios of stocks with large betas, thus more sensitive

to market fluctuations, show positive exposure to variance risk with respective

loadings significant at the 1% level. For a given level of perceived variance risk,

portfolios more exposed to the market incorporate a higher remuneration. Con-

versely, portfolios with market exposure smaller than one, react in the opposite

direction showing the existence of a negative premium for stability. Panel B of

Table 9 shows that, as expected, for the five portfolios sorted according to the

assets’ variance, the exposure to variance risk increases as we move from low

to high. Positive exposure to volatility risk reflects the compensation required

to face the higher cost of hedging against such risk. Table 10 Panel A shows

that similar patterns hold for portfolios sorts based on residual variance. The

results in Table 10 Panel B show a weaker link between the expected return of

portfolios based on growth, measured by net share issues, and the MVRP.
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Table 9: CAPM regressions

Panel A: Portfolio sorts based on βs

α βMKT βSMB βHML βRMW βCMA βMVRP R2

Low 0.043 0.805 -0.266 -0.047 0.174 0.254 -0.034 0.88
(0.427) (25.653) (-5.393) (-0.700) (2.668) (2.856) (-2.574)

2 0.096 0.982 -0.044 0.120 0.153 -0.192 -0.015 0.97
(1.537) (41.924) (-1.340) (3.330) (3.220) (-3.406) (-1.751)

3 -0.006 1.059 0.060 0.097 0.053 -0.164 0.034 0.97
(-0.085) (35.296) (1.704) (1.872) (0.818) (-2.148) (3.328)

4 -0.049 1.203 0.231 0.124 -0.128 -0.320 0.050 0.95
(-0.377) (26.644) (4.034) (1.388) (-1.562) (-3.908) (3.436)

High -0.107 1.292 0.406 -0.093 -0.551 0.070 0.089 0.90
(-0.462) (17.366) (4.246) (-0.506) (-3.554) (0.435) (3.328)

Panel B : Portfolio sorts based on Variance

α βMKT βSMB βHML βRMW βCMA βMVRP R2

Low 0.130 0.786 -0.204 -0.067 0.136 0.248 -0.011 0.91
(2.006) (33.74) (-4.700) (-1.261) (2.575) (3.100) (-1.143)

2 0.030 1.043 0.037 -0.008 0.097 -0.051 -0.002 0.97
(0.421) (54.41) (0.949) (-0.195) (2.282) (-0.704) (-0.181)

3 -0.106 1.207 0.089 0.044 -0.014 -0.172 0.004 0.94
(-1.060) (33.85) (1.683) (0.448) (-0.148) (-1.112) (0.282)

4 -0.065 1.309 0.326 0.148 -0.152 -0.281 0.040 0.91
(-0.420) (23.94) (3.131) (1.435) (-1.116) (-2.173) (2.039)

High -0.246 1.308 0.610 0.384 -0.765 -0.748 0.049 0.88
(-1.180) (12.97) (5.430) (2.335) (-4.516) (-2.828) (2.470)

Notes: Estimation results CAPM regressions. MKT is the market return in excess of the risk-free

interest rate, SMB is small minus big, HML is high minus low, RMW is robust minus weak and CMA

is conservative minus aggressive. The β sorts are based on univariate market beta. The variance

sorts are based on individuals assets’ variance. The sample frequency is monthly between February,

2004 and July, 2016. The t-statistics (in parentheses) are based on Newey-West standard errors.
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Table 10: CAPM regressions

Panel A: Portfolio sorts based on Residual variance

α βMKT βSMB βHML βRMW βCMA βMVRP R2

Low 0.061 0.853 -0.200 -0.044 0.130 0.259 -0.020 0.94
(1.070) (46.15) (-5.769) (-1.130) (2.583) (3.959) (-2.071)

2 0.035 1.034 0.046 0.087 0.034 -0.041 0.007 0.96
(0.492) (46.99) (1.064) (2.101) (0.861) (-0.701) (0.660)

3 -0.082 1.134 0.108 0.059 -0.067 -0.305 0.012 0.95
(-0.996) (34.90) (1.940) (1.072) (-0.842) (-2.955) (0.853)

4 0.030 1.269 0.238 0.061 -0.169 -0.450 0.031 0.91
(0.195) (25.85) (2.981) (0.464) (-1.658) (-3.216) (1.609)

High -0.299 1.304 0.630 0.144 -0.539 -0.535 0.078 0.87
(-1.317) (16.29) (5.493) (0.687) (-2.730) (-2.221) (2.405)

Panel B : Portfolio sorts based on Net Share Issues

α βMKT βSMB βHML βRMW βCMA βMVRP R2

Low 0.031 0.952 -0.090 -0.001 -0.081 0.044 0.023 0.91
(0.285) (29.447) (-1.713) (-0.010) (-0.889) (0.455) (1.580)

2 0.047 0.998 0.111 -0.062 -0.042 0.011 -0.008 0.92
(0.370) (23.686) (2.058) (-0.800) (-0.429) (0.112) (-0.529)

3 0.185 1.089 0.126 -0.095 -0.011 -0.302 0.004 0.92
(1.480) (29.497) (1.544) (-1.295) (-0.098) (-2.295) (0.263)

4 0.000 1.079 0.213 -0.232 -0.133 -0.349 0.068 0.91
(0.003) (21.593) (3.553) (-2.717) (-1.299) (-3.225) (3.522)

High 0.063 1.015 0.118 0.098 -0.670 -0.377 0.010 0.93
(0.400) (24.123) (1.768) (1.096) (-5.684) (-3.864) (0.526)

Notes: Estimation results CAPM regressions. MKT is the market return in excess of the risk-free

interest rate, SMB is small minus big, HML is high minus low, RMW is robust minus weak and

CMA is conservative minus aggressive. The residual variance sorts are based on variance of the

residuals from the Fama-French three-factor model. The Net Share Issues sorts are shares’ growth

rate. The sample frequency is monthly between February, 2004 and July, 2016. The t-statistics (in

parentheses) are based on Newey-West standard errors.
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6. Conclusion

This paper estimates the Variance Risk Premium (VRP) directly from syn-

thetic variance swap payoffs. Our approach provides measurement error free es-

timates of the part of the VRP related to normal market conditions, and allows

constructing variables indicating agents’ expectations under extreme market

conditions. In particular, though the VRP significantly predicts future market

returns at shorter horizons, across S&P500, DJIA, NASDAQ and RUSSELL

indices, sizeable increases in predictability are found when the agents’ reactions

to extreme events are included in the predictive regressions. This return pre-

dictability substantially dominates the one obtained from using the variance

swap payoff as a benchmark proxy. Finally, we filter out a common factor in-

terpretable as a market variance risk premium (MVRP). The MVRP shares

the properties that the individual VRPs have and allows identifying common

extreme events. When compared to other well-known asset pricing factors, the

MVRP is significantly correlated only with the market factor and it is priced

when considering the returns on several of the five Fama and French (2015)

portfolio sorts.
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