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We investigate the asymptotics for two geometric measures, geometric quantiles and halfspace depths. While much literature is known on the population side, we fill out some gaps there to obtain a full picture, before turning to the sample versions, where the questions on asymptotics become crucial in view of applications. This is the core of the paper: We provide rates of convergence for the sample versions and address the extremal behaviour of the geometric measures according to the type of underlying distribution.

Introduction

Although the development of tools to better understand the geometric structure of datasets is not a new endeavor, it has regained significant attention in the past decade, primarily due to advancements in high-dimensional statistics. Numerous multivariate quantiles and statistical depth functions have been proposed to establish ranks and identify outliers in multivariate data. While quantiles are defined analytically using the inverse of the cumulative distribution function, depth functions take a more geometric approach, employing halfspaces, paraboloids, and projections to measure centrality from a global perspective. This results in an ordering of observations from the center outward. Consequently, the philosophies behind quantiles and depth functions appear to be distinct. However, both concepts offer a geometric perspective on ordering in a multivariate setup. In fact, in the case of univariate data, quantiles and depth functions are conceptually related through a functional relationship, making them inseparable.

These geometric tools of depths and quantiles offer nonparametric descriptions of a data set in a multidimensional space, making them quite useful for statistical inference problems (e.g. [START_REF] Serfling | Depth functions in nonparametric multivariate inference[END_REF]), among which classification and regression (see e.g. [START_REF] Cuevas | Robust estimation and classification for functional data via projection-based depth notions[END_REF], [START_REF] Dutta | Multi-scale classification using localized spatial depth[END_REF], [START_REF] Hallin | Multivariate quantiles and multiple-output regression quantiles: From l 1 optimization to halfspace depth[END_REF], [START_REF] Hubert | Robust classification for skewed data[END_REF], [START_REF] Paindaveine | Computing multiple-output regression quantile regions[END_REF], [START_REF] Rousseeuw | Characterizing angular symmetry and regression symmetry[END_REF], [START_REF] Struyf | Halfspace depth and regression depth characterize the empirical distribution[END_REF]), for learning theory (see e.g. [START_REF] Bousquet | Some local measures of complexity of convex hulls and generalization bounds[END_REF], [START_REF] Giné | Concentration inequalities and asymptotic results for ratio type empirical processes[END_REF], [START_REF] Koltchinskii | Local rademacher complexities and oracle inequalities in risk minimization[END_REF][START_REF] Koltchinskii | Oracle inequalities in empirical risk minimization and sparse recovery problems: École D'Été[END_REF], [START_REF] Koltchinskii | Empirical margin distributions and bounding the generalization error of combined classifiers[END_REF], [START_REF] Panchenko | Symmetrization approach to concentration inequalities for empirical processes[END_REF]), for bootstrap (e.g. [START_REF] Cuevas | On the use of the bootstrap for estimating functions with functional data[END_REF]), outliers or anomaly detection (e.g. [START_REF] Staerman | Functional anomaly detection: A benchmark study[END_REF]), applications to geometry (e.g. [START_REF] Kong | Quantile tomography: Using quantiles with multivariate data[END_REF]) and multivariate risk analysis.

Numerous depth functions have been introduced and studied, starting with Mahalanobis distance depths [START_REF] Liu | A quality index based on data depth and multivariate rank tests[END_REF], [START_REF] Mahalanobis | Mahalanobis distance[END_REF], [START_REF] Zuo | General notions of statistical depth function[END_REF]), the well-known and used Tukey or halfspace depth [START_REF] Tukey | Mathematics and picturing data[END_REF]), going on, for instance, with simplicial (volume) depths [START_REF] Liu | On a notion of data depth based on random simplices[END_REF], [START_REF] Oja | Descriptive statistics for multivariate distributions[END_REF]), onion depths [START_REF] Barnett | The ordering of multivariate data[END_REF], [START_REF] Eddy | Convex hull peeling[END_REF]), all notions of spatial depths [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF], [START_REF] Dudley | The spatial quantiles[END_REF], [START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF], [START_REF] Möttönen | Multivariate generalized spatial signed-rank methods[END_REF], [START_REF] Vardi | The multivariate l 1 -median and associated data depth[END_REF]), the projection depth [START_REF] Donoho | Breakdown properties of location estimates based on halfspace depth and projected outlyingness[END_REF], [START_REF] Dutta | On robust classification using projection depth[END_REF], [START_REF] Nagy | Uniform convergence rates for the approximated halfspace and projection depth[END_REF], [START_REF] Zuo | Projection-based depth functions and associated medians[END_REF]), the zonoid depth [START_REF] Dyckerhoff | Zonoid data depth: Theory and computation[END_REF], [START_REF] Koshevoy | Lift-zonoid and multivariate depths[END_REF], [START_REF] Koshevoy | Zonoid trimming for multivariate distributions[END_REF]), local depths [START_REF] Agostinelli | Local depth[END_REF], [START_REF] Paindaveine | From depth to local depth: a focus on centrality[END_REF]). We refer to [START_REF] Chernozhukov | Monge-kantorovich depth, quantiles, ranks and signs[END_REF], [START_REF] Hallin | Multivariate quantiles and multiple-output regression quantiles: From l 1 optimization to halfspace depth[END_REF], [START_REF] Kuelbs | Convergence of quantile and depth regions[END_REF], [START_REF] Mosler | Multivariate dispersion, central regions and depth: The lift zonoid approach[END_REF][START_REF] Mosler | Depth statistics. In Robustness and complex data structures[END_REF], [START_REF] Mosler | Choosing among notions of multivariate depth statistics[END_REF], [START_REF] Nagy | Uniform convergence rates for the approximated halfspace and projection depth[END_REF][START_REF] Nagy | Flexible integrated functional depths[END_REF], [START_REF] Nagy | Halfspace depth: Theory and computation[END_REF] and references therein, for theoretical and practical aspects (as well as computational) of depth functions, in particular halfspace depths.

Our motivation lies in exploring asymptotics, specifically the examination of the behaviour of multivariate quantiles as they approach extreme regions, both in terms of population and empirical measures. Furthermore, our objective is to comprehend the connection between the extreme behaviour of a probability measure (whether it exhibits a light or heavy tail) and the corresponding geometric measures associated with it.

We focus on two prominent geometric measures: geometric quantiles, introduced by [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF], and halfspace depth, as described by [START_REF] Tukey | Mathematics and picturing data[END_REF]. The selection of these specific geometric measures stems from the core objective of our research. The fundamental question of characterising the tail behaviour of a probability measure using these geometric measures inherently addresses whether they capture any essential aspects of the underlying probability distribution. In fact, it was demonstrated by [START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF] and subsequently utilized by [START_REF] Dhar | Comparison of multivariate distributions using quantile-quantile plots and related tests[END_REF] to propose a test statistic that geometric quantiles uniquely identify the underlying probability measure. However, the same does not hold true for halfspace depth, as shown by [START_REF] Nagy | Halfspace depth does not characterize probability distributions[END_REF]. On the other hand, [START_REF] Struyf | Halfspace depth and regression depth characterize the empirical distribution[END_REF] established that halfspace depth uniquely identifies measures with finite support (e.g., empirical measures).

Numerous results are already available for the population-based analysis of these geometric measures, particularly in terms of their asymptotic (extreme) behaviour. For geometric quantiles, refer to [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF], [START_REF] Paindaveine | On the behavior of extreme d-dimensional spatial quantiles under minimal assumptions[END_REF]. For halfspace depth, assuming multivariate regularly varying distributions, the work by [START_REF] He | Estimation of extreme depth-based quantile regions[END_REF] is noteworthy. Our aim is to recapitulate and summarize the key properties while bridging certain gaps in the existing research to obtain a comprehensive understanding of these geometric measures.

Considering practical applications, the questions regarding asymptotics become even more critical when examining sample versions of these two geometric measures. This forms the essence of the paper: We establish convergence rates for the sample versions and investigate the extreme behaviour of the geometric measures based on the type of the underlying distribution.

Concerning geometric quantiles, proofs are developed with classical tools of probability, extending results by [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF] in the population setting, and using results by [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF], [START_REF] Paindaveine | On the behavior of extreme d-dimensional spatial quantiles under minimal assumptions[END_REF] and the Glivenko-Cantelli theorem for the sample version.

In the case of halfspace depth, recall that (see [START_REF] Donoho | Breakdown properties of location estimates based on halfspace depth and projected outlyingness[END_REF]), as the sample size increases, the halfspace depth for a sample converges almost surely to the halfspace depth for the underlying distribution. To obtain rates of decay of halfspace depth, our approach builds mainly on the theory of empirical processes [START_REF] Shorack | Empirical processes with applications to statistics[END_REF]) and weighted empirical processes indexed by sets by [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF]. The latter paper and its powerful results, helped us prove our own results in a rather direct and elegant way. [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF] is also the foundation stone in [START_REF] Giné | Concentration inequalities and asymptotic results for ratio type empirical processes[END_REF] to obtain concentration inequalities and asymptotic results for ratio type empirical processes.

In the scenario where the tail of the distribution is light, [START_REF] Burr | Uniform convergence rates for halfspace depth[END_REF] employed a novel geometric methodology to derive uniform convergence rates for halfspace depth. Through the reorganization of halfspaces into one-dimensional families, the authors successfully attained improved convergence bounds for the sample version of halfspace depth, surpassing the typical Glivenko-Cantelli bounds. This advancement was particularly evident when considering exponential decay in the underlying distribution.

Our approach allows one to establish convergence results for both light and heavy tails.

Our main results are illustrated for the population and sample versions. The geometric quantiles have been programmed on python using the algorithm developed by [START_REF] Dhar | Comparison of multivariate distributions using quantile-quantile plots and related tests[END_REF], while the computation of halfspace depth uses R-packages developed in [START_REF] Liu | Fast computation of tukey trimmed regions and median in dimension[END_REF], [START_REF] Pokotylo | Depth and depth-based classification with R package ddalpha[END_REF] to evaluate Tukey depth and contours. In this latter case, the method relies on an approximation of the true depth proposed by [START_REF] Dyckerhoff | Data depths satisfying the projection property[END_REF] (see also [START_REF] Dyckerhoff | Approximate computation of projection depths[END_REF]), for which rates of convergence have been obtained by [START_REF] Mosler | Choosing among notions of multivariate depth statistics[END_REF], [START_REF] Nagy | Uniform convergence rates for the approximated halfspace and projection depth[END_REF]. We note here that the computation of depths is indeed quite a challenge, taken by various research teams to develop relevant softwares (see also e.g. [START_REF] Genest | Depth: Nonparametric depth functions for multivariate analysis. R package version[END_REF], [START_REF] Liu | CompPD: A MATLAB package for computing projection depth[END_REF], [START_REF] Mahalanobish | depth. plot: Multivariate analogy of quantiles[END_REF]).

Notation. All the analysis in this paper is on R d , unless otherwise stated. The centered unit open ball and the unit sphere in R d are denoted by B d and S d-1 , while •, • and • , denote the Euclidean inner product and l 2 -norm, respectively, in R d .

Structure of the paper. The paper primarily consists of two main sections. The first section focuses on exploring the asymptotic properties of the population versions of the two geometric measures: geometric quantiles and halfspace depths. In the second section, a similar analysis is conducted for their empirical counterparts.

In Section 2, we present the obtained results regarding the asymptotics of geometric quantiles and halfspace depth. Moving on to Section 3, we investigate the asymptotic behaviour of their sample versions in relation to the sample size. We provide illustrative examples using samples drawn from bivariate distributions with both light and heavy tails. The proofs for all the results are presented in Section 4, followed by the concluding remarks in Section 5.

Multivariate geometric measures

As in the univariate case, it is expected that multivariate quantiles or depth functions encode the tail behaviour of the underlying probability measure. It is this line of thought that we explore in this section, studying the asymptotic behaviour of geometric quantiles and halfspace depth vis-à-vis of the tail characteristics of the underlying probability measure, while also discussing the status quo of the subject to contextualise our results.

Geometric quantiles

The motivation for geometric quantiles can be traced to univariate notion of quantiles, which are defined as generalized inverse of cumulative distribution function. However, such definition does not have a natural extension to the multivariate case: firstly, a cumulative distribution does not have a clear interpretability in higher dimensions and, secondly, the generalized inverse of a cumulative distribution function in higher dimensions would be a subset of the domain, and not a point as in the case of univariate distribution, again raising the concerns of interpretability.

It is well known that univariate quantiles can also be characterised as solutions to a certain optimisation problem [START_REF] Ferguson | Mathematical statistics: a decision theoretic approach[END_REF]). In particular, the α-th quantile of P is defined as

arg min q∈R {E[|X -q| -|X|] -(2α -1)q}.
where E denotes expectation w.r.t. P. This univariate representation of quantiles forms the basis for the following generalisation.

State of the art: Definitions and Properties

Definition 2.1 (Geometric quantile [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF]) Let X be a R d -valued random vector for d ≥ 1, and u ∈ R d be such that u < 1. The geometric quantile q X (u) is defined as the solution of the following optimisation problem:

arg min q∈R d {E X -q -X -u, q }.
(2.1)

In the literature, u is called the index vector that controls the centrality of the quantile: When u is close to the origin, the corresponding quantiles are close to the center of the distribution and referred to as central quantiles, and, when u is close to the boundary of the unit ball, then the corresponding quantiles are referred to as extreme quantiles. Writing

ψ(u, q) = E X -q -X -u, q ,
the existence and uniqueness of the solution of the optimisation problem (2.1) for every fixed u is a consequence of the strict convexity and continuity of ψ, together with the fact that ψ → ∞ as q → ∞.

Note that the argument for uniqueness breaks down in d ≥ 2 whenever the distribution of X is supported on a single straight line. However, when d = 1, the geometric quantile coincides with the usual univariate quantile defined as generalised inverse of a cumulative distribution function. In this case, the optimisation problem (2.1) may not have a unique minimiser, since the distribution lies on a straight line. We refer the reader to [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF] for all detailed proofs and arguments.

As is the case with most optimisation problems, getting closed form expressions for the solution of (2.1) is very difficult, even for simple probability distributions. Therefore, one often looks for characterising properties of the solution in order to gain insight into the solution. We shall list below some known properties of geometric quantiles for non-atomic distributions whose support is not contained in any unit dimensional affine subspace. We refer the readers to the original references for the precise statements and proofs.

Properties 2.2 (General characteristic properties from [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF] and [START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF])

• From [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF] (i) The quantile map q X : u → q X (u) defined in (2.1) is an homeomorphism from B d (0) to R d . (See also [START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF].)

(ii) For any fixed u ∈ B d (0), there exists a unique q ∈ R d such that (2.1) holds iff the pair

(u, q) ∈ R d × R d satisfies u = -E X -q X -q (2.2)
This characterisation of geometric quantiles is often more useful for analysis.

(iii) The quantile map is positive homogeneous, i.e. writing q X for the geometric quantile of the distribution of X, we have q c X (u) = c q X (u) for any positive constant c > 0.

(iv) For any

C ∈ R d , q X+C (u) = q X (u) + C. (v)
The geometric quantile is rotational equivariant, i.e. q AX = A q X for any orthogonal matrix A.

• From [START_REF] Koltchinskii | M-estimation, convexity and quantiles[END_REF] (vi) Geometric quantiles uniquely characterise the distribution. (See also [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF] for a discussion.)

Additionally, more analytical results can be extracted by imposing further restrictions on the underlying distribution. Specifically:

Properties 2.3 (From [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF]) Assume that the distribution of X is rotationally symmetric about the origin. Then, (i) The quantile map u → q X (u) commutes with every linear isometry of R d . The norm of q X (u) only depends upon the norm of u. As a result, the iso-quantile contours are spheres centered at the center of symmetry.

(ii) The directions of the quantile q X (u) and the index vector u are the same if u = 0.

(iii) The function u → q X (u) is a continuous strictly increasing function on [0, 1).

(iv) q X (u) → ∞ as u → 1.

(v) q X (v) q X (v) → u, as v → u ∈ S d-1 , v < 1.
Remark 2.4

• Similar results can be obtained when the distribution is assumed to be symmetric around a point other than the origin.

• Quantile contours, even for elliptically symmetric distributions, are not convex; see Figure 1.

In particular, quantile contours are not convex for non-spherical distributions. Observe that the convexity present in the underlying sampling distribution is not reflected in the isoquantile contours.

• Some asymptotic properties stated above for spherically symmetric distributions hold true even for non-symmetric distributions. For instance, q(u) → ∞ as u → 1 for any distribution -even atomic; see (Girard and Stupfler, 2017, Theorem 2.1). A simple and interesting consequence of this property is that the quantile contours do not remain contained within the convex hull of the support of the distribution.

• Additionally, the asymptotic direction of a geometric quantile matches that of its index vector -for any distribution including the atomic ones; see [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF], Theorem 2.1).

Discriminating tail behaviours

As pointed previously, all geometric quantiles increase to infinity. A natural question is then to investigate the rate of increase of these quantiles for different distributions. While in the univariate case, the asymptotic behaviour of quantiles characterises the tail behaviour of the distribution, we may want to question this property for multivariate quantiles. A first answer has been given in (Girard and Stupfler, 2017, Theorem 2.2), where the authors analyse the asymptotic behaviour of geometric quantiles for non atomic distributions by introducing an appropriate normalisation, obtaining a first order expansion of both magnitude and direction of q X (αu). The authors also observe that this asymptotic behaviour appears counter intuitive as the extreme quantiles appear to be dependent on central parameters like covariance. In particular, if two distributions have the same covariance matrix, then their first order asymptotic expansion of quantiles are identical.

In order to address this issue, we further investigate the asymptotic behaviour of geometric quantiles, seeking for higher order asymptotic expansions that may help distinguish between distributions. Here, we focus mainly on second order expansions of both magnitude and direction of q(αu). Similar higher order asymptotic expansions can be worked out with additional moment conditions. It must be noted that, in this way, we obtain the rate of convergence, as α → 1, of q X (αu) 2 (1 -α) to its limit 1 2 (trΣ -u T Σu),Σ denoting the covariance matrix of the vector X.

Theorem 2.5 Let u ∈ S d-1 and {u, w 1 , ..., w d-1 } be an orthonormal basis of R d .

(i) If E X 2 < ∞, we have q X (αu) q X (αu) -q X (αu) u + E(X -X, u u)

-→ α→1 - 1 2 E(X -X, u u) 2 u + d-1 k=1 cov( X, u , X, w k ) w k . (2.3) (ii) If E X 3 < ∞, then, as α → 1, q X (αu) q X (αu) 2 (1 -α) - 1 2 (tr Σ -u T Σu) -→ (2.4) E X, u X -X, u u 2 -X, E (X -X, u u) - k cov( X, u , X, w k ) E( X, w k ).
Note that this result is informative for a very heavy tail distribution, for which there is no second moment, or a moderate heavy one, for which the third moment exists. Nevertheless, a gap remains in the case when there exists a second moment but not a third one; this drawback is due to the chosen approach, using an expansion in our analysis.

Finally, let us mention some recent results obtained in [START_REF] Paindaveine | On the behavior of extreme d-dimensional spatial quantiles under minimal assumptions[END_REF], Theorems 1 & 2), which set the stage for our results in Section 3.1 when turning to sample quantiles.

Halfspace depth

We now introduce our next object of interest: depth functions.

Definitions

Definition 2.6 (Depth function) A depth function corresponding to a distribution F is a nonnegative function D(x, F ) defined at every point x ∈ R d , which provides an outward ordering from the center of the distribution.

It is desirable that depth functions decrease to zero in every direction from the median/center. Note that the center for most univariate distributions corresponds to the median. However, since the concept of median needs to be carefully spelt out in the multivariate case, the center is taken as the point of maxima of the depth function relative to the distribution at hand. In case the maximum is attained at multiple (finitely many) points then the centroid of all such points is called the median (and the center).

Several depth functions have been introduced in the literature. We refer the reader to [START_REF] Serfling | Quantile functions for multivariate analysis: Approaches and applications[END_REF], [START_REF] Mosler | Choosing among notions of multivariate depth statistics[END_REF] and [START_REF] Liu | Multivariate analysis by data depth: descriptive statistics, graphics and inference[END_REF] for expansive surveys on different depth functions, and their corresponding properties.

We shall focus on the following notion of halfspace depth. It is widely used, and is also a good representative of the class of depth functions, as it satisfies most of the desirable properties for depth functions (see [START_REF] Mosler | Choosing among notions of multivariate depth statistics[END_REF], Table 2).

Definition 2.7 (Halfspace depth; [START_REF] Tukey | Mathematics and picturing data[END_REF]) For a probability distribution P defined on R d , the halfspace depth is given by:

HD(x, P) = inf{P(H) : H ∈ H x }, H x denoting the set of halfspaces in R d containing x ∈ R d .
Specifically, if P has a probability density function f , then

HD(x, P) = inf |p|=1 {y:p T (y-x)≥0}
f (y) dy.

Intuitively, a high depth point indicates that it is more central, while a low depth point denotes a relatively extremal point. This is illustrated in Figure 2, when considering a Gaussian sample, using the R-Package from [START_REF] Barber | TukeyRegion: Tukey region and median. R package version[END_REF], based on [START_REF] Liu | Fast computation of tukey trimmed regions and median in dimension[END_REF]. Note that the symmetry present in the underlying sampling distribution may not be seen precisely in the simulated sample. Contours or Tukey regions are drawn for different values of depth; observe that the asymmetry is more evident in the extremes, than in the bulk region. When no possible confusion, we will denote HD(x, P) by HD(x). 

Decay rate of halfspace depth

Recall that our motivation to study the multivariate quantiles is to understand the connection between the extremal behaviour of a probability measure and properties of multivariate quantile functions. It is, therefore, natural to analyse and understand the asymptotics of depth functions along the same lines as in the case of geometric quantiles. First, we consider the important example of asymptotically elliptically symmetric distributions. Then, we question the halfspace asymptotic decay depending on the light or heavy-tailed of the extremal behaviour of the underlying probability measure. While the heavy-tailed case has been studied in [START_REF] He | Estimation of extreme depth-based quantile regions[END_REF], we complete the study considering also the light tail case, providing then a full picture of the extremal behaviour of the halfspace depth.

Elliptical symmetric case -As observed earlier, distributional symmetry is a useful assumption to arrive at a preliminary understanding of the asymptotic behaviour of depth functions. The following result illustrates a geometric relationship between asymptotic behaviours of probability density functions and their corresponding halfspace depths.

Theorem 2.8 If the probability density function f of a distribution is asymptotically elliptically symmetric, then its halfspace depth contour will also be asymptotically elliptically symmetric. In other words, for

x ∈ R d , if f (tx) f (tΣx) → t→∞ 1 for some symmetric positive definite matrix Σ, then HD(tx) HD(tΣx) -→ t→∞ 1.
Note that we dropped the dependence of halfspace depth on the measure corresponding to f for notational simplicity.

General case -Next, we shall state a generic result comparing asymptotic joint distribution with that of the induced halfspace depth, when marginals of the joint distribution may have different asymptotic behaviours.

For that, we first recall another equivalent way to define the halfspace depth in terms of one dimensional distributions (see e.g. [START_REF] Donoho | Breakdown properties of location estimates based on halfspace depth and projected outlyingness[END_REF]), as follows.

Let P be a probability measure on (R d , B(R d )). For any unit vector h ∈ R d , let us define P h : R d → R as P h (x) = h, x . Writing F h for the cumulative distribution function of the probability measure P h induced by the push forward of P under the map P h , we have

HD(x, P) = min h:|h|=1 (1 -F h ( h, x )) (2.5)
From this definition, we can deduce the following simple but interest result by choosing h to be an appropriate element of the canonical basis of R d in (2.5).

Proposition 2.9 Let P be a probability measure on (R d , B(R d )) with cumulative distribution function F and marginals F i , 1 ≤ i ≤ d. Then, we have

HD(t x, P) ≤ min 1≤i≤d (1 -F i (t x i )) .
where x i denotes the i-th coordinate of x.

This result means that the halfspace depth decays faster than any of the marginal survival functions. As a consequence, if the i-th marginal distribution has a light tail (i.e. with exponentially fast decay), then the halfspace depth decays at most exponentially fast in any direction. If all marginals are heavy-tailed, then the bound will correspond to the one with the smallest tail index. This gives us a simple tool to discriminate between light and heavy tails.

Note that the result given in Proposition 2.9 also applies to projection depth functions, which are of great use because of their properties (see e.g. [START_REF] Mosler | Choosing among notions of multivariate depth statistics[END_REF] for definitions and illustrations).

In fact, we can go further and obtain the precise decay of the halfspace depth in the light tail case, namely:

Theorem 2.10 Let P be a probability measure on (R d , B(R d ))

(i) If its moment generating function M P (h) = R d e h,y P(dy) exists for some h = 0, then, the halfspace depth is also light tailed:

HD(tx, P) = O(e -t ) as t → ∞.
(2.6)

In particular, if any marginal distribution of P has exponential moments, then (2.6) holds true.

(ii) Assume there exists a positive function f such that

lim inf R→∞ inf θ∈S d-1 P θ, X ≥ R f (R) > 0.
(2.7)

Then, we have HD(tx, P) ≥ c f (t x ), for large t, (2.8)

for some constant c > 0 that does not depend on x.

Remark 2.11

1. Combining Proposition 2.9 with (2.6), we obtain

HD(tx, P) = O e -t ∧ min 1≤i≤d (1 -F i (t x i )) as t → ∞,
where F i are the marginal distributions of P.

2. Combining this result with the lower bound given in Theorem 2.10 gives the following decay for the halfspace depth in the light tail case,

c f (t x ) ≤ HD(tx, P) ≤ K e -t ∧ min 1≤i≤d (1 -F i (t x i )) ,
for any x = 0 with K, c > 0.

3. An immediate consequence of the lower bound is that, whenever P satisfies condition (2.7), we have

P(H) ≥ c f (t x ), ∀ H ∈ H tx .
Theorem 2.10 completes the study on the relationship between the asymptotic behaviour of the halfspace depth and its underlying probability measure, since, in the heavy-tailed case, the decay rate has been provided by [START_REF] He | Estimation of extreme depth-based quantile regions[END_REF], Proposition 2) under some classical conditions when considering a regularly varying framework. Recall that a positive measurable function G is said to be regularly varying (RV) at infinity with index -β, with β > 0, denoted by

G ∈ RV -β , if for any x > 0, G(tx) G(t) -→ t→∞ x -β (if β = 0,
G is said to be slowly varying at infinity).

Let us enunciate Proposition 2 in [START_REF] He | Estimation of extreme depth-based quantile regions[END_REF] when assuming that the probability measure has a density that is RV.

Proposition 2.12 (Proposition 2 in [START_REF] He | Estimation of extreme depth-based quantile regions[END_REF], adapted to our notation and case) Let P be a probability measure on (R d , B(R d )) with non-vanishing continuous density f on R d , such that the map y → y d f (y) is bounded in every compact neighbourhood of the origin, and there exist a positive function λ : R d → R + and a function V ∈ RV -α , with α > 0, such that

f (ty) t -d V (t)
-λ(y) -→ t→∞ 0, ∀y = 0, and sup

y =1 f (ty) t -d V (t) -λ(y) -→ t→∞ 0.
Then, we have

lim t→∞ HD(tx, P) V (t) = inf |p|=1 p T x>0 {z:p T (z-x)≥0}
λ(z)dz.

(2.9)

Therefore, in view of the results obtained, we conclude that the asymptotic behaviour of halfspace depth reflects well the asymptotic behaviour of the underlying probability measure.

We shall also question if depth functions are invariant to the tail behaviour of the underlying distribution, when going from population to sample versions; this is what we investigate in Section 3.

Sample versions and applications

While our results concerning asymptotic behaviour of multivariate quantiles are of theoretical interest, they also set the stage for the sample versions of multivariate quantiles for which results on rates of convergence are crucial for applications.

There are several statistical problems wherein our results can readily be used, for instance, comparing statistical distributions through their respective samples. Note that this is an old problem and mostly, ill-defined given a finite sample. This is why several simplifying assumptions are needed to make the problem tractable.

Empirical multivariate geometric quantiles

Since our motivation is grounded in applications, it is needed to provide appropriate asymptotic estimates of empirical quantiles.

Early theoretical results on the sample asymptotics of empirical geometric quantiles have been obtained in [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF]. Drawbacks on the characterisation of the tail behaviour of a distribution via the corresponding geometric quantiles were pointed in [START_REF] Girard | Extreme geometric quantiles in a multivariate regular variation framework[END_REF], showing a similar behaviour for extreme quantiles for distributions sharing the same covariance matrix. Some improvement has been provided in [START_REF] Paindaveine | On the behavior of extreme d-dimensional spatial quantiles under minimal assumptions[END_REF] by considering the joint asymptotics of the sample size and the α-level of the geometrical quantile. Nevertheless, although very useful, these existing results fall short of being readily applicable as they are established for non-atomic measures. In this paper, this restriction has been circumvented. Our results can serve as tools for distinguishing various distributions based on their tail behaviour.

Let us begin with recalling the definition of the empirical or sample version of the multivariate geometric quantile.

Definition 3.1 (Sample geometric quantile; Chaudhury (1996)) Let X 1 , X 2 , . . . , X n be i.i.d random vectors. Assume u ∈ R d be such that u 2 < 1. Then the sample geometric quantile, denoted by qn (u), is defined as (dropping the dependence on the distribution for notational simplicity)

qn (u) = arg min q∈R d 1 n n i=1 X i -q 2 -X i 2 -u, q . (3.1)
As can be observed immediately from the definition of sample geometric quantiles, the underlying measure does not satisfy the smoothness properties needed to prove the results stated in the previous section. Therefore, we begin with elementary asymptotic estimates in Theorem 3.2, which can be seen as improvements of Theorems 2 & 3 of [START_REF] Paindaveine | On the behavior of extreme d-dimensional spatial quantiles under minimal assumptions[END_REF]. The proof of Theorem 3.2 is developed in Section 3.2.

The broad set of assumptions needed for the underlying measure P on R d are: 

(A1)
α n = 1 and ∞ n=1 exp(-n(1 -α n ) 2 ) < ∞. (3.2) For u, v ∈ S d-1 , we have: (i) If E X 1 < ∞, then, qn (α n u) α n u - qn (α n u) qn (α n u) , v -→ n→∞ -E X -X, u u, v a.s. (3.3) (ii) If E X 1 2 < ∞ and n(1 -α n ) 3 → ∞ as n → ∞, then, qn (α n u) 2 α n u - qn (α n u) qn (α n u) , qn (α n u) qn (α n u) -→ n→∞ - 1 2 E X -X, u u 2 . (3.4)
where qn (α n u) is considered as a function of

{X i } n i=1 .
The next result is to be seen as an empirical version of (Girard and Stupfler, 2017, Theorem 2.2). Nevertheless, our results constitute a significant improvement over the existing asymptotic estimates, since we show that, in some cases, the assumption of non-atomic probability measure can be relaxed.

Theorem 3.4 Let {X n } n≥1 be i.i.d. sample drawn from P satisfying assumptions (A1) and (A2). Let {α n } n≥1 ⊂ (0, 1) be such that lim n→∞ α n = 1 and Condition (3.2) holds. For u ∈ S d-1 , we have:

(i) If E X 1 < ∞, then, qn (α n u) - qn (α n u) u + 1 n n i=1 (X i -X i , u u) -→ n→∞ 0 a.s. (ii) If E X 1 2 < ∞ and n(1 -α n ) 3 → ∞ as n → ∞, then qn (α n u) 2 (1 -α n ) -→ n→∞ 1 2 (tr Σ -u T Σu) a.s. (3.5)
where Σ denotes the covariance matrix corresponding to P (so, satisfying (tr Σ-u T Σu) > 0).

Note that we could also provide further decay rates assuming higher moments, as done for the population version.

Empirical multivariate halfspace depth

As noted earlier in the introduction, our motivation for studying geometric quantiles and halfspace depths is that they are known to capture certain behaviour of the underlying distribution. Contrary to geometric quantiles, the halfspace depths do not uniquely characterise the underlying distribution (see [START_REF] Nagy | Halfspace depth does not characterize probability distributions[END_REF]). However, in [START_REF] Nagy | Halfspace depth: Theory and computation[END_REF], the author listed eight situations for which the halfspace depths uniquely identify the underlying distribution, the empirical measure being one among them, as proven in [START_REF] Struyf | Halfspace depth and regression depth characterize the empirical distribution[END_REF].

While analysing the rate of decay of halfspace depth of empirical measures, it is appealing to compare the decay rate of halfspace depths of empirical measures with those of the measures from which the samples have been generated. It is what is done in the following theorem.

Theorem 3.5 Let P be a probability measure defined on (R d , B(R d )), and let g be capacity function corresponding to P, as defined in Alexander (1987)[p.382]. Consider a sequence {γ n } n≥1 satisfying the following conditions

(C1) n -1 log(g(γ n )) = o(γ n ) and n -1 log log n = o(γ n ),
and a sequence {t n } n≥1 with t n → n→∞ ∞, such that (C2) HD(t n x, P) > γ n for large enough n.

Let {X k } k≥1 be an i.i.d. sample drawn from P, and HD(•, P n ) be the halfspace depth for the empirical measure

P n = 1 n n i=1 δ X i .
Then, for any x = 0, we have

HD(t n x, P n ) HD(t n x, P) -1 → n→∞ 0 a.s. (3.6)
Remark 3.6 Condition (C2) implies that, in order to apply the above result in any setting, we must have a reasonable way of estimating HD(t n x, P). This is the case, as we have provided estimates for halfspace depths in Section 2.2.2, which we are going to use for this purpose. Moreover, as will be seen in the proof, the condition of the halfspace depth is transferred to an appropriate decay condition on the tail probabilities of the measure P.

The expression of interest (3.6) in Theorem 3.5 is difficult to work with, hence we shall first simplify this expression in a straightforward way, with the bound given in Lemma 3.7. It will need to be adapted to our context (see Proposition 4.3) when developing the proof of the theorem in Section 4.

Lemma 3.7 For t n → ∞ as n → ∞, and for any x = 0, we have the following inequality:

HD(t n x, P n ) HD(t n x, P) -1 ≤ sup H∈Ht nx P n (H) P(H)
-1 , for large n.

The bound thus obtained has been analysed by many researchers in one or the other form. Specifically, the rate of convergence of sup H∈Htx P n (H) P(H)

-1 has been an object of interest since long, the Glivenko-Cantelli theorem being one of the earliest in this direction. Later, the rate of convergence was obtained by several authors, e.g. [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF], [START_REF] Burr | Uniform convergence rates for halfspace depth[END_REF], [START_REF] Giné | Concentration inequalities and asymptotic results for ratio type empirical processes[END_REF], [START_REF] Shorack | Empirical processes with applications to statistics[END_REF], [START_REF] Wellner | Empirical processes in action: A review[END_REF] in different scenarios with specific assumptions. It is noteworthy that most of the results in this direction use the specific structure of H x and Dvoretzky-Kiefer-Wolfowitz (DKF) inequality [START_REF] Dvoretzky | Sequential decision problems for processes with continuous time parameter. testing hypotheses[END_REF]). The specific structure we refer to is called the Vapnik-Chervonenkis (VC) class; see [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF], [START_REF] Dudley | A course on empirical processes[END_REF], [START_REF] Talagrand | Vapnik-chervonenkis type conditions and uniform donsker classes of functions[END_REF], [START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF]. The idea of VC class has its roots in statistical learning wherein one is interested in identifying the class of functions to characterise convergence of probability measures. Specifically, a class S of sets shatters a finite set F if, given G ⊂ F , ∃S ∈ S for which G = F ∩ S. A class S of sets is called a VC class if for some integer n, S does not shatter any set of cardinality n. In our analysis, we shall use the approach of [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF] on VC class (without resorting to the DKF inequality). Specifically, we shall invoke Theorem 5.1 of the [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF], as it is a powerful and crucial result for the proof of Theorem 3.5.

Notice that, without any assumption on P, Theorem 3.5 presents a general result about the rate of decay of the empirical halfspace depth and allows one to compare the halfspace depth of the parent measure P and of the empirical measure P n . Indeed, (3.6) can be expressed as

1 -ε ≤ HD(t n x, P n ) HD(t n x, P) ≤ 1 + ε, ∀ε > 0,
from which we can deduce that there exist positive constants c 1 ≤ c 2 such that, for n large enough,

c 1 HD(t n x, P) ≤ HD(t n x, P n ) ≤ c 2 HD(t n x, P). (3.7)
However, as seen in Section 2.2.2, the rate of decay of halfspace depth is closely related to the tail behaviour of P, which, in view of (3.7), implies that the rate of decay of the empirical halfspace depth can be estimated as a function of the tail behaviour of the parent measure P. The following two theorems establish this connection.

When assuming a multivariate regularly varying framework as in Proposition 2.12 (for geometrical quantiles), we obtain the following rate of convergence for the empirical halfspace depth:

Theorem 3.8 Let P be a probability measure on (R d , B(R d )) with non-vanishing continuous density f on R d , such that the map y → y d f (y) is bounded in every compact neighbourhood of the origin, and there exist a positive function λ : R d → R + and a function V ∈ RV -α , with α > 0, such that

f (ty) t -d V (t)
-λ(y) -→ t→∞ 0, ∀y = 0, and sup

y =1 f (ty) t -d V (t) -λ(y) -→ t→∞ 0.
Let {X n } n≥1 be an i.i.d sample drawn from P, and g be the capacity function corresponding to P.

We have, for any x = 0,

lim n→∞ HD(t n x, P n ) V (t n ) = inf |p|=1 p T x>0 {z:p T (z-x)≥0}
λ(z)dz, (3.8) Example 3.9 Consider a multivariate regularly varying distribution with index -α, then V (t) = t -α . Therefore Theorem 3.8 holds if t n ∞ and

whenever (t n ) ∞ with n is such that V (t n ) > γ n (
t n ≤ γ 1/α n . Now, by choosing γ n = n -β with 0 < β < 1, the condition V (t n ) > γ n gives a speed of t n ≤ n -β/α .
Let us turn to the light tail case, for which we can provide, under distinct conditions, a lower and an upper bound for the asymptotics of the halfspace depth. Through examples, we observe that the general bounds can be tight as in the exponential case (see Example 3.12), with the lower bound of the order of the upper one, showing that this order is optimal in the general case. In the Gaussian case, the gap between the bounds is much larger and can be improved via a direct computation as given in Example 3.12. Theorem 3.10 Let P be a probability measure on (R d , B(R d )). Let {X n } n≥1 be an i.i.d sample drawn from P, and g be the capacity function corresponding to P. Let x be any unit vector.

(i) Assume that the moment generating function M P (h) = R d e h,y P(dy) of P exists for some h = 0. Choosing (γ n ) satisfying Condition (C1) in Theorem 3.5, we have,

HD(t n x, P n ) = O(e -tn ) when t n -→ n→∞ ∞ and t n < log(γ -1 n ).
(ii) Assume there exists a positive function f satisfying (2.7), then, we have

HD(tx, P n ) ≥ c f (t), for large t, (3.9) 
for some constant c > 0 that does not depend on x.

(iii) Combining the conditions of (i) and (ii), and choosing t n such that f (t n ) > γ n , we can write c γ n ≤ HD(t n x, P n ) ≤ K e -tn , with K a positive random number and c > 0.

Remark 3.11 Using Proposition 2.9 for the empirical measure P n and the relation (3.7) between halfspace depth of P and of P n , the upper bound given in (i) can be refined as

HD(t n x, P n ) ≤ K e -tn ∧ min 1≤i≤d (1 -F i (t n x i )) as t n → ∞ with n, (3.10)
where F i denotes the i-th marginal distribution of P, and x i denotes the i-th component of x,

for i = 1, • • • , d.
Example 3.12 1. Exponential case. Let Y be a random vector with probability density function h given by h(y) = ke -y for y ∈ R d . Then, we have

lim R→∞ inf θ∈S d-1 P θ, Y ≥ R e -R > 0. (3.11)
In order to prove (3.11), observe that, for any

θ 1 , θ 2 ∈ S d-1 , P θ 1 , Y ≥ R = P θ 2 , Y ≥ R ,
due to the spherical symmetry of the distribution of Y . Therefore, we can consider any direction and, choosing θ = (1, 0, ..., 0) and using Minkowski inequality, we can write,

inf θ∈S d-1 P θ, Y ≥ R = P Y 1 ≥ R = ∞ -∞ • • • ∞ -∞ ∞ R ke -y dy ≥ ∞ -∞ • • • ∞ R ke -(|y 1 |+...+|y d |) dy = K ∞ R e -y 1 dy 1 = Ke -R ,
for some positive constant K. From which, we deduce that

inf θ∈S d-1 P θ, Y ≥ R e -R > 0 for large enough R, hence (3.11).
2. Gaussian case. Consider a multivariate standard normal distribution. We choose f (R) = e -R 2 2 (based on the Mill's ratio). Now, setting γ n = n -β with 0 < β < 1, the condition f (t n ) > γ n gives t n ≤ √ 2β log n, and, for such t n , we have

HD(t n x, P n ) > c n -β .
The upper bound as given in (i), of order e -tn , is then quite large compared with the lower bound. Nevertheless, it can be improved, simply by considering the Gaussian marginal distributions as in (3.10). In such a case, the upper bound for t n = 2β log n becomes

HD(t n x, P n ) ≤ C n -β
for some constant C > 0.

Illustration and discussion

In view of the various theoretical results obtained on the sample multivariate geometric quantiles and halfspace depths, in terms of rates of growth or decay, respectively, or of tail behaviour, we turn to empirical illustrations of those results, considering light and heavy tailed-distributions. Geometric quantiles are evaluated using the algorithm given in [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF], while halfdepth contours are evaluated using the R-package developed in [START_REF] Pokotylo | Depth and depth-based classification with R package ddalpha[END_REF].

Geometric quantiles

We illustrate the application of Theorem 3.4 in Figures 3 &4, using the second order characterisation of geometric quantiles, considering the bivariate (d = 2) standard Gaussian distribution for a light tail example and Pareto(δ) for a heavy tail one, for clear comparison. For both bivariate distributions, we assume for simplicity the components (marginals) to be independent and identically distributed. For Pareto(δ)-distribution (with marginal survival distribution given by x -δ , for x > 1), we vary the parameter δ to have the existence of the 3rd moment, or lack thereof, but always a finite 2nd moment (δ > 2). The second moment condition is necessary to illustrate our results. Recall Theorem 3.4, where under some conditions, together with the existence of the 2nd moment, we have

y(α n ) := qn (α n u) 2 (1 -α n ) - 1 2 (tr Σ -u T Σu) -→ n→∞ 0 a.s. (3.12)
We evaluate y(α n ) as a function of α n , and plot it in Figures 3 &4. Besides comparing its convergence towards 0 with regard to the tail behaviour of the underlying probability measure, we also test the rate of convergence depending on the sample size, fixed or growing, considered to compute the quantiles.

We note here that, although our aim is to study the tail asymptotics of the underlying distribution via the two chosen geometric measures (as seen in Section 2.1.2), the real applications would invariably involve finite samples drawn from the parent distribution. Therefore, the numerical illustrations necessarily have to rely on finite samples drawn from the probability distribution.

Nevertheless, any finite sample, how large it can be, cannot mimic the tail behaviour of the parent distribution. We, therefore, present our illustrations in two scenarios: one with fixed sample size, and the other scenario in which we increase the sample size with increasing α n .

Here, in the case of increasing sample size, we further consider two sub-scenarios: α n 's increase exponentially to 1, and for each increment in α n , the sample size is increased linearly. In the second sub-scenario, α n is made to vary as a function of the sample size at an optimal rate, as identified through Condition (3.2). The explicit relationship between tail decay and rate of growth of geometric quantiles is exhibited in Figure 5 by plotting y(α n ) for different distributions: a centered Gaussian and the Pareto(δ) family of distributions such that they share the same second moment. We perform this experiment for δ = 2.2 and δ = 3.2, respectively, to illustrate Theorem 2.5 obtained at the population level, where we proved that the third moment can help distinguish the asymptotic behaviour of the geometric quantile whenever the distributions share the same covariance matrix. For simplicity, all the illustrations are shown for the case when u = (1, 1).

It clearly appears in all figures that plotting y(α n ) as a function of α n gives a visual test to differentiate between distributions based on their tail behaviour. In Figure 3, we can clearly identify the difference of behaviour for the various distributions: the lighter the tail, the faster the convergence.

Note also that increasing the number of observations when increasing α n does not have much impact on the observed pattern, when comparing the left and right plots of Figure 3. We surmise that it is due to the large number of (simulated) observations, 10 5 .

Let us turn to Figure 4, where the plot y(α n ) is made when taking into account the theoretical bound for α n given in Theorem 3.4, (ii). Note that the plot corresponds to the average of y(α n ) computed 10 times, each with different seed.

In Figure 4, we also observe a distinct behaviour of the function y(α n ) according to the tail of the distribution. The convergence towards the limit 0 is evidently very slow, especially for the Pareto(2.2)-distribution (with no third moment). Nevertheless, note that α n is still 'far' from 1, with the range of α n corresponding only to the first interspace on the x-axis of Figure 3. In Figure 5, the curve corresponding to Pareto(δ) is closer for δ = 3.2 to that of the Gaussian than for δ = 2.2, as expected. Larger the δ, faster the convergence. Nevertheless, the function y(α(n))

for Pareto(δ) remains distinct from that for Gaussian even asymptotically, for α(n) extremely close to 1, as can be seen on the right plots. While expected for δ = 3.2 due to the theoretical result on the rate of convergence under the assumption of a finite third moment, it looks more surprising for δ = 2.2.

Tukey depths

Now, we illustrate Theorems 3.8 & 3.10, considering the asymptotic behaviour of half-depth (or Tukey depths) for light and heavy tailed distributions. We take the same examples as for geometric quantiles, namely Gaussian and Pareto distributions for comparison, as we have characterised the rate of convergence according to the tail behaviour.

In Figure 6, we draw HD(t n x, P n ) as a function of t n growing linearly, choosing for x the direction (1, 1), P n coming from bivariate standard Gaussian and Pareto(δ) distributions, with independent components, and δ = 2.2 and 3.2, but also, since we do not have any condition on moments in our theoretical results, δ = 1.9 to consider a very heavy tail. As previously for the geometric quantiles, we compare t n when taking a fixed sample (left plot) and when taking a growing one (right plot).

Comparing the different depths according to the type of distributions, from very light to moderate heavy (with no third moment), we clearly observe a different rate of convergence towards 0. The heavier is the distribution, the slower is the convergence. Next, building on the rate of convergence found in the light tail (see Theorem 3.10 and Example 3.12 ) and the heavy tail case (see Theorem 3.8), we draw HD(t n x, P n ) as a function of t n .

Given the very different speeds of convergence obtained for the light versus heavy tails, we first give a plot for the Gaussian sample only, then a plot for Pareto(δ) samples with varying δ, so that we can appreciate the different behaviour and convergence depending on the heaviness. The sequence {t n } is chosen according to the type of distribution. For the Gaussian case (see Figure 7, left plot), t n = √ log n (choosing β = 1/2 in Example 3.12, Gaussian case). For Pareto distributions (see Figure 7, middle plot), we consider t n = n -β 2δ , with 0 < β < 1 also chosen as 1/2 and the Pareto parameter δ corresponding to the less heavy, i.e. δ = 3.2 (since the lighter tail, the faster the convergence towards 0). Finally, we provide a last plot (see Figure 7, right plot) comparing the Gaussian and Pareto cases, choosing the scaling t n associated with the Gaussian distribution, for better visualizing the difference of behaviours and speeds of convergence.

The three plots given in Figure 7 highlight the difference of rates of decay of the halfspace depths according to the tail behaviour of the measure. The left and middle plots point out the fast convergence of halfspace depth for the Gaussian sample (decreasing from 2.6% to less than 1% (0.83%) on the given range for t n (Gaussian)), and the impact of the heaviness for the Pareto samples, with a decrease from 26.7% to 16% on the given range for t n (Pareto(3.2)) for the Pareto with 3rd moment, from 39% to 30% for the Pareto(2.5), while from 43% to 35% for the heaviest Pareto (with no 2nd moment), hence a very slow decrease compared with Pareto(3.2). The third plot allows for a direct comparison between light and heavy tails, considering the Gaussian scaling for t n ; the relation between the rate of decay of the halfspace depth to 0 and the tail behaviour becomes even more obvious. Note that it would have been nice to look at the convergence towards 1 of the normalized halfspace depth function HD(t n x, P n )/N (t n ) (rather than HD(t n x, P n )), as a function of t n , where N (t n ) corresponds to the speed of convergence, namely of order N (t n ) = n -η for the Gaussian case (see Example 3.12) and N (t n ) = V (t n ) as defined in Theorem 3.8 for the Pareto one. Nevertheless, to observe something informative in terms of convergence, it would require a huge number of observations (more than 10 20 ), which is computationally not feasible with the R-package we are using. We conjecture that a possible way to circumvent this computational hurdle would be to use the geometry of isoquantile (isodepth) contours, as they secrete immense amount of information about the underlying distribution.

Which descriptive and inferential tool to use, geometric quantile or halfspace depth function?

If one were to wonder which one of the two geometric measures to use as an inferential tool to identify the tail behaviour of the underlying measure, as usual, the answer cannot be binary. So it would depend on the data set to be tackled.

As we know, geometric quantiles uniquely characterise the underlying distribution, whereas halfspace depths characterise the underlying distribution only in certain cases [START_REF] Nagy | Halfspace depth: Theory and computation[END_REF]. It seems apparent then to believe that geometric quantiles should be a natural choice as an inferential tool. However, there are clear advantages of using halfspace depths in certain scenarios. For instance, halfspace depths provide an immediate visual estimate of the support of the underlying distribution, which geometric quantiles fail to provide in an easy way. Halfspace depth contours show close resemblance to the isodensity contours, and thus provide a visual tool in identifying the underlying measure, whereas the iso-geometric quantile contours of even an elliptically symmetric distribution do not appear convex near the extremes. Nevertheless, for a 'nice' dataset, the geometric quantiles exhibit a much faster convergence than the halfspace depth, and can be computed for dimension higher than 2, while it becomes quite a computational challenge for halfspace depth.

Proofs

4.1 Proof of Theorem 2.5

We begin with the proof of (2.3) by expressing all the terms involved in terms of the orthonormal basis {u, w 1 , ..., w d-1 } of R d . Let b(α) and {β k (α)} d-1 k=1 be real numbers defined by

q(αu) q(αu) = b(α)u + d-1 k-1 β k (α)w k . (4.1) Therefore, q(αu) -q(αu) u = q(αu) (b(α) -1) u + q(αu) d-1 k-1 β k (α)w k . Also, observe that E[X -X, u u] = d-1 k=1 w k E X, w k .
In view of the above two equations, can write

q(αu) q(αu) -q(αu) u -E(X -X, u u) = q(αu) 2 (b(α) -1) u + q(αu) 2 d-1 k-1 β k (α)w k -q(αu) d-1 k=1 E X, w k w k ,
which forms the expression of interest in Equation (2.3).

Introducing the desired limit to this expression, we have

q(αu) q(αu) -q(αu) u -E(X -X, u u) + 1 2 E(X -X, u u) 2 u - d-1 k=1 cov( X, u , X, w k )w k = q(αu) 2 (b(α) -1) + 1 2 E(X -X, u u) 2 I u + d-1 k-1 q(αu) 2 β k (α) -q(αu) E X, w k -cov( X, u , X, w k ) w k . II (4.2)
Using Lemma 6.4 in [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF], we can write

q(αu) 2 β k (α) -q(αu) E X, w k -cov( X, u , X, w k ) → 0 as α → 1, (4.3) 
which concludes that part-II in the above equation converges to 0 as α → 1.

Next, let us consider part-I. First, observe that we can write

q(αu) 2 (1 -b(α)) = 1 2 q(αu) 2 (1 -b 2 (α)) 1 + 1 -b(α) 1 + b(α) . (4.4) Now, notice that b(α) → 1 as α → 1 (by Property 2.2), and b 2 (α) + d-1 1 β 2 k (α) = 1. Therefore, Equation (4.4) simplifies to q(αu) 2 (1 -b(α)) = 1 2 q(αu) 2 d-1 k=1 β 2 k (α) 1 + o(1) . (4.5)
However, by the definition of β k (α) and orthogonality of the basis {u, w 1 , . . . , w d-1 }, we have q(αu) β k (α) = q(αu) q(αu) q(αu) -αu, w k . Now, using Lemma 6.2 in [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF], we have

q(αu) β k (α) = q(αu) q(αu) q(αu) -αu, w k -→ α→1 E X -X, u u, w k .
Therefore,

q(αu) 2 (1 -b(α)) -→ α→1 1 2 d-1 k=1 [E X -X, u u, w k ] 2 = 1 2 E (X -X, u u) 2 , (4.6) 
which proves that part-I of (4.2) converges to 0 as α → 1. This, together with (4.3), proves the first part of the theorem.

We now prove the second part of Theorem 2.5. Using once again Lemmas 6.2 & 6.3 in [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF], we can write

q(αu) q(αu) 2 β 2 k (α) -|E X, w k | 2 = q(αu) q(αu) β k (α) -|E X, w k | q(αu) β k (α) + E X, w k -→ α→1 cov( X, u , X, w k ) 2E X, w k . (4.7)
Using the decomposition (4.1) and Proposition 6.3 in [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF] under the assumption E X 3 < ∞, we have

q(αu) q(αu) 2 (1 -αb(α)) - 1 2 E X -X, u u 2 -→ α→1 E X, u X -X, u u 2 -X, E(X -X, u u) ∆ = f X (u). (4.8)
Therefore, from Equations (4.7) and (4.8), we can conclude that

q(αu) q(αu) 2 1 -αb(α) - 1 2 E X -X, u u 2 - 1 2 q(αu) 2 β 2 k (α) -|E X, w k | 2 -→ α→1 f X (u) - d-1 k=1 E X, w k cov( X, u , X, w k . (4.9)
Notice that the left hand side of Equation (4.9) can be rewritten as

q(αu) q(αu) 2 1 2 1 -α 2 + (b(α) -α) 2 - 1 2 d-1 k=1 var X, w k , by observing that (1 -b 2 (α)) = d-1 k=1 β 2 k (α)
, and some further algebraic manipulation. Moreover, q(αu) 3 (α -b(α)) 2 → α→1 0 since, via Proposition 6.3 in [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF],

q(αu) (α -b(α)) → α→1 0 and q(αu) 2 (α -b(α)) → α→1 0. We deduce that q(αu) q(αu) 2 1 -α -trΣ -u Σu -→ α→1 f X (u) - d-1 k=1 E X, w k ) cov( X, u , X, w k ,
which proves (2.4). 2

Proof of Theorem 2.8

Since f is elliptically symmetric, there exists a function g : R → R such that f (x) = g(x T Σx).

After applying a suitable change of variables, we can make f spherically symmetric. Therefore, it is sufficient to prove the result for spherically symmetric distributions, namely, assuming Σ to be orthogonal matrix, it suffices to show that lim t→∞ HD(tx) HD(tΣx) = 1.

We shall begin with using Definition 2.7 of halfspace depth to express the ratio as Notice that, by choosing t large enough, the ratio f (tz) f (tΣz) can be made smaller than (1 + ) for any > 0, uniformly in z. Hence, for t large enough, we obtain HD(tx) HD(tΣx)

HD(tx) HD(tΣx) = inf |p|=1 
≤ (1 + ).

Using similar arguments, we can also show that HD(tx) HD(tΣx) ≥ 1 1 + .

Combining the above two inequalities, we conclude the following uniform convergence, from which the first result follows.

HD(tx) HD(tΣx) → 1, as t → ∞.
(ii) Recall the Tukey definition of halfspace depth for any measure P given in Definition 2.7, but also the alternative way to rewrite this definition (see (2.5)), using the standard parameterisation of a halfspace in terms of its distance from origin, and its normal vector, namely: HD(x, P) = inf

θ∈S d-1 P [ θ, X ≥ θ, x ] .
Let c > 0 be such that, for all sufficiently large values of R,

inf θ∈S d-1 P[ θ, X ≥ R] f (R) > c > 0. (4.10)
Invoking the definition of halfspace depth, we can write

HD(tx, P) = inf θ∈S d-1 P [ θ, X ≥ t θ, x ] ≥ inf θ∈S d-1 P [ θ, X ≥ t x ] ≥ c f (t x ),
hence the lower bound.

Proof of Theorem 3.2

We shall begin with some regularity estimates for the function (x, q) → x -q x -q , which is going to play a crucial role in the proof of Theorem 3.2.

Lemma 4.1 Let {q n } n≥1 ⊂ R d be such that q n -→ n→∞ q ∞ . Define f : R d × R d → R d by, f (x, q) = x-q x-q x = q 0 x = q. (4.11)
Then, for n large enough,

f (x, q n ) -f (x, q ∞ ) < K M q n -q ∞ , whenever x -q ∞ > M > 0,
where K M is a constant depending on M .

Proof: Observe that, for x = q,

∇ q f (x, q) = - 1 x -q I d×d - (x -q) T (x -q)
x -q 2 . (4.12)

If x -q n > M 2 , then writing • F for the Frobenius norm, we have

∇ q f (x, q n ) F ≤ 2 M × d(d + 1). (4.13)
Since q n → n→∞ q ∞ , there exists k 0 large enough such that q n -q ∞ < M 2 , ∀n ≥ k 0 . Then, whenever x satisfies x -q ∞ > M , it follows that, for all n ≥ k 0 , x -q n > M 2 . Thereby, for such an x,

f (x, q n ) -f (x, q ∞ ) < 2d(d + 1) M q n -q ∞ , ∀n ≥ k 0 ,
which concludes the proof. 2

In addition to the above observation, we also need primary estimates for the asymptotic behaviour of n i=1 (X i -qn (α n u)) X i -qn (α n u) -1 , for u ∈ S d , and α n ∈ (0, 1). Recall from Theorem 2.12 in [START_REF] Chaudhury | Multivariate location estimation using extension of r-estimates through u-statistics type approach[END_REF] that

1 n n i=1 X i =qn(αnu) X i -qn (α n u) X i -qn (α n u) + α n u ≤ 1 n #{i : X i = qn (α n u)}.
Since P [#{i : X i = qn (α n u)} > 1] = 0 for samples drawn from any continuous distribution, we have

lim n→∞ 1 n n i=1 X i =qn(αnu) X i -qn (α n u) X i -qn (α n u) + α n u = 0 a.s.
In other words,

lim n→∞ 1 n n i=1 X i =qn(αnu) X i -qn (α n u) X i -qn (α n u) = -u a.s. (4.14)
Proof of Theorem 3.2. We shall prove the result by contradiction. For part (i), let us assume that {q n (α n u)} is a bounded sequence; so, we can always extract a convergent subsequence. To implying that

-u = 1 = E X -q ∞ X -q ∞ .
(4.17)

Since the distribution of X does not lie on a single straight line, we have

E X -q ∞ X -q ∞ < E X -q ∞ X -q ∞ = 1,
which contradicts (4.17). Therefore, qn (α n u) → n→∞ ∞, proving part (i) of the theorem.

Let us turn to (ii) of the theorem, which we again prove via contradiction.

Assume that there exists a subsequence of qn(αnu) qn(αnu)

that converges, as n → ∞, to some

v ∈ S d-1 such that v = u.
For simplicity, let us keep the same notation for the subsequence, i.e., qn(αnu) qn(αnu) n≥1

.

Recall Equation (4.14) and let us prove that its left hand side converges to -v almost surely, which will imply u = v, thus contradicting the assumption. We can write, using similar arguments as previously, Next, observe that

1 n n i=1 X i -qn (α n u) X i -qn (α n u) 1 {X i =qn(αnu)} + 1 n n i=1 v ≤ 1 n + 1 n n i=1 X i -qn (α n u) X i -qn (α n u) + v 1 {X i =qn(αnu)} ≤ 1 n + 1 n n i=1 X i qn(αnu) -qn(αnu) qn(αnu) X i qn(αnu) -qn(αnu) qn(αnu) + v 1 {X i =qn(αnu), |X i |≤M } + 2 1 n n i=1 1 {|X i |>M } .
1 n n i=1 1 {|X i |>M } ≤ 1 n n i=1 1 {|X i |>M } -(1 -F |X| (M )) + (1 -F |X| (M )).
Now, invoking the Glivenko-Cantelli theorem again, there exist M 0 > 0 and N 1 integer such that

1 n n i=1 1 {|X i |>M } ≤ 8 ∀M > M 0 and n > N 1 . (4.20)
Thus, combining Equations (4.19) and (4.20) with (4.18), we have

1 n n i=1 X i -qn (α n u) X i -qn (α n u) 1 {X i =qn(αnu)} + 1 n n i=1 v ≤ 2 + 1 n n i=1 X i qn(αnu) -qn(αnu) qn(αnu) X i qn(αnu) -qn(αnu) qn(αnu) + v 1 {X i =qn(αnu), |X i |≤M } .
(4.21)

Now recall that we have proved that qn (α n u) → n→∞ +∞. Therefore, under our assumption that qn (α n u) qn (α n u) → n→∞ v, we have that, whenever |X i | ≤ M and X i = qn (α n u),

X i qn (α n u) - qn (α n u) qn (α n u) X i qn (α n u) - qn (α n u) qn (α n u) -1 → n→∞ -v a.s.
and this convergence is uniform in i ≤ n. Therefore, the middle term in (4.18) can be made smaller than /3 by choosing a sufficiently large n. Thus, concluding that

lim n→∞ 1 n n i=1 X i -qn (α n u) X i -qn (α n u) 1 {X i =qn(αnu)} = -v, (4.22) 
together with (4.14), contradicts the assumption about the existence of v = u, thereby completing the proof of part (ii) of Theorem 3.2. 2

We now state (and prove) the following auxilliary result that provides an upperbound on the rate of growth of the sample geometric quantiles, and this will form a necessary part in the proof of Theorem 3.3.

Proposition 4.2 Let {X n } n≥1 be an i.i.d. sample drawn from distribution P on R d , whose support is not contained in any one dimensional affine subspace of R d . Let {δ n } n≥1 , {k n } n≥1 and {α n } n≥1 be sequences of real numbers satisfying the following conditions:

• δ n be such that ∞ n=1 exp (-nδ 2 n ) < ∞ • k n be such that P( X i > k n ) ≤ δ n • α n ∈ (0, 1) be such that (1 -4δ n -α n ) > 0 and α n → n→∞ 1.
Then, we have qn (α n u) ≤ (M n + 2)k n a.s.

for any unit vector u and any

M n satisfying M n > α n + 2δ n 1 -4δ n -α n .
Proof of Proposition 4.2: Let {k n } n≥1 and {δ n } n≥1 be sequences of non-negative real numbers such that k n ↑ ∞ and δ n ↓ 0 as n → ∞, such that

P( X > k n ) ≤ δ n , (4.23) 
for all n ≥ 1 (exact form of δ n will be chosen later). Now invoking Theorem A as stated on p.201 of [START_REF] Serfling | Approximation theorems of mathematical statistics[END_REF]) (used in Chaudhury (1992)), Fact 5.1), we introduce

p n (X i ) = 1 { X i >kn} -P( X i > k n ).
Clearly, p n is symmetric and |p n (.)| ≤ 2, for all n. Also, E[p n (X i )] = 0 and

σ 2 = var(p n (X i )) = P ( X i > k n ) P ( X i ≤ k n ) < 1
Let us consider the expression α n u -qn(αnu) qn(αnu) , v . Using (4.30) to estimate α n u, v , we obtain

α n u - qn (α n u) qn (α n u) , v ≤ - 1 n n i=1 X i =qn X i -qn (α n u) X i -qn (α n u) , v + 1 n n i=1 X i =qn |v| - qn (α n u) qn (α n u) , v .
Adding and subtracting the sample average of X i qn(αnu) , v , rearranging the terms, and denoting

W (x, q) = x q - q q -1 -1 x q - q q ,
we rewrite the above inequality as

α n u - qn (α n u) qn (α n u) , v = - 1 n n i=1 X i =qn W (X i , qn (α n u)), v + 1 n n i=1 X i =qn |v| + 1 n n i=1 X i =qn X i qn (α n u) - qn (α n u) qn (α n u) , v - 1 n n i=1 X i qn (α n u) , v .
Multiplying the above with qn (α n u) , we further have

qn (α n u) α n u - qn (α n u) qn (α n u) , v + 1 n n i=1 x i =qn qn (α n u) W (X i , qn (α n u)), v + 1 n n i=1 X i , v ≤ qn (α n u) |v| n #{i : X i = qn (α n u)}.
Similarly, by replacing v with -v in the above inequality, we have

qn (α n u) α n u - qn (α n u) qn (α n u) , v + 1 n n i=1 x i =qn qn (α n u) W (X i , qn (α n u)), v + 1 n n i=1 X i , v ≤ qn (α n u) |v| n #{i : X i = qn (α n u)}.
Finally, to conclude the proof of the theorem, we shall need to prove the following two claims:

Claim 1:

lim n→∞ 1 n n i=1 X i =qn qn (α n u) W (X i , qn (α n u)), v = -u, v E X, u . (4.31) Claim 2: lim n→∞ qn (α n u) n = 0. (4.32) Proof of Claim 1. Set F n,i = qn (α n u) W (X i , qn (α n u)), v 1 {X i =qn(αnu)} + u, v X i , u and 
F n = 1 n n i=1 F n,i .
Clearly, it suffices to show that |F n | → 0 almost surely, as n → ∞, to obtain (4.31).

We shall break the sum in two parts

F n = 1 n n i=1 F n,i 1 { X i ≤M } + 1 n n i=1 F n,i 1 { X i ≥M } ,
where M > 0 will be chosen later accordingly, and show that each of the two terms converges to 0 almost surely. For the second term, we recall the following estimate (see the proof of Lemma 6.2 in [START_REF] Girard | Intriguing properties of extreme geometric quantiles[END_REF], p.134),

qn (α n u) W (X i , qn (α n u)), v 1 {X i =qn(αnu)} ≤ 3 v X i , which implies |F n,i | ≤ 4 v X i .
Thus, we have

1 n n i=1 F n,i 1 { X i ≥M } ≤ 4 v 1 n n i=1 X i 1 { X i ≥M } -→ n→∞ 4 v E X 1 { X ≥M } . (4.33) Let M be large enough enough so that 4 v E X 1 X ≥M < 2 .
Next, considering the first term, F n,i 1 { X i ≤M } , observe that, whenever X i = qn (α n u), W (X i , qn (α n u))

can be rewritten as

qn (α n u) W (X i , qn (α n u)) = qn (α n u) X i qn (α n u) - qn (α n u) qn (α n u) -1 1 - X i qn (α n u) - qn (α n u) qn (α n u) 2 × 1 + X i qn (α n u) - qn (α n u) qn (α n u) -1 X i qn (α n u) - qn (α n u) qn (α n u) = X i qn (α n u) - qn (α n u) qn (α n u) -1 - X i 2 qn (α n u) + 2 X i , qn (α n u) qn (α n u) × 1 + X i qn (α n u) - qn (α n u) qn (α n u) -1 X i qn (α n u) - qn (α n u) qn (α n u) .
Since qn (α n u) → 

(α n u) W (X i , qn (α n u)), v + u, v X i , u 1 {X i =qn(αnu), X i ≤M } -→ n→∞ 0. (4.34)
Observe that the above convergence is uniform in i ≤ n. Therefore, for any > 0 and ω ∈ { X i ≤ M }, there exists a random number N (ω) < ∞ such that

1 n n i=1 F n,i (ω) 1 { X i ≤M } <
where M > 0 will be chosen appropriately to make both the terms arbitrarily small.

Let us analyse the second term. First, notice that, from the proof of (Girard and Stupfler, 2017, Lemma 6.3)

, qn (α n u) 2 Z ni ≤ 2 X i 2 . Therefore, 1 n n i=1 qn (α n u) 2 Z n,i - 1 2 X i -X i , u u 2 1 {|X i |≥M } ≤ 1 n n i=1 3 X i 2 1 {|X i |≥M } .
Now, for a fixed > 0, there exists N M ( ) such that, for all n ≥ N M ( ),

1 n n i=1 X i 2 1 |X i |≥M ≤ 4 + E[|X 1 | 2 1 |X 1 |>M ].
Next, by integrability of X 1 2 , there exists M large enough such that

E[ X 1 2 1 {|X 1 |>M } ] ≤ 4 .
Collating the above results provides

1 n n i=1 qn (α n u) 2 Z n,i - 1 2 X i -X i , u u 2 1 |X i |≥M ≤ 3 4 . (4.39)
We now analyse the first part of (4.38), by rewriting Z n,i , defined in (4.36), as

Z n,i = X i qn (α n u) - qn (α n u) qn (α n u) -1 × X i qn (α n u) - qn (α n u) qn (α n u) -1 - 1 qn (α n u) X i , qn (α n u) qn (α n u) = A i,n × B i,n qn (α n u) 2 , where A i,n := X i qn (α n u) - qn (α n u) qn (α n u) -1 × X i qn (α n u) - qn (α n u) qn (α n u) + 1 - 1 qn (α n u) X i , qn (α n u) qn (α n u) -1 -→ 1 2 as n → ∞ and B i,n := X i -X i , qn (α n u) qn (α n u) qn (α n u) qn (α n u) , X i -→ n→∞ X i -X i , u u, X i , using Theorem 3.2.
Moreover, observe that, when the X i 's are bounded, these convergences are uniform for 1 ≤ i ≤ n, namely, if X i < M , then, for > 0, there exists a random N M ( ) such that, almost surely,

qn (α n u) 2 Z n,i - 1 2 X i -X i , u u 2 1 |X i |<M <
Therefore, combining (4.42) and (4.43) together with (4.41), we obtain

qn (α n u) 1 -b (n) (α n ) = qn (α n u) 1 -b (n) (α n ) 2 (1 + b (n) (α n )) = d-1 k=1 qn (α n u) β (n) k (α n ) 2 1 + b (n) (α n ) → n→∞ 0. (4.44)
Now, by combining (4.43), (4.44) and the strong law of large numbers, we can conclude that

qn (α n u) -qn (α n u) u - 1 n n i=1 (X i -X i , u ) n→∞ -→ 0 a.s.,
which proves the first part of the theorem.

Let us move to the second part of the theorem for which we recall that Σ denotes the covariance matrix corresponding to P.

Observe that, using a combination of (4.43) and the continuous mapping theorem, we can write qn (α n u) β (4.45) for all k = 1, . . . , d -1. From Theorem 3.3 (ii) and Equation 4.41, we have, almost surely, 

(n) k (α n u) 2 -→ n→∞ E X -X, u u, w k 2 = (E X, w k ) 2 ,
qn (α n u) 2 [α n b (n) (α n ) -1] -→ n→∞ - 1 2 E X -X, u u 2 = - 1 2 d-1 k=1 E X,
qn (α n u) 2 1 -α n b (n) (α n ) - 1 2 d-1 k=1 β (n) k (α n ) 2 + (α n -b (n) (α n )) 2 -→ n→∞ 1 2 d-1 k=1
Var X, w k a.s.

Finally, observe that

qn (α n u) 2 (1 -α n ) -qn (α n u) 2 1 -α n b (n) (α n ) - 1 2 d-1 k=1 β (n) k (α n ) 2 + (α n -b (n) (α n )) 2 = o(1),
which concludes the proof since d k=1 Var X, w k = tr (Σ). 2 4.7 Proof of Theorem 3.5

The proof is articulated in three steps, the first one based on the observation made in Lemma 3.7, the second one adapting the latter result to the framework given in Theorem 3.5, the third and last step using Theorem 5.1 in [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF].

Step 1. First notice that Lemma 3.7 follows directly from the observations that:

If HD(t n x, P n ) ≥ HD(t n x, P), then for H tnx such that P( H tnx ) = HD(t n x, P), we can write Hence the proposition. 2

HD
Step 3. This step is based on Theorem 5.1 in [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF].

First, note that the collection H of all halfspaces is a VC class, so that Theorem 5.1 from [START_REF] Alexander | Rates of growth and sample moduli for weighted empirical processes indexed by sets[END_REF] 4.8 Proof of Theorems 3.8 and 3.10.

Note that the statement of Theorem 3.5 also has certain growth conditions on the sequence t n , which in turn are related to γ n .

Proof of Theorem 3.8.

Observe that HD(t n x, P n ) V (t n ) = HD(t n x, P) V (t n ) 1 + HD(t n x, P n ) HD(t n x, P) -1 (4.52)

Now, from Theorem 2.12, for large n, there exists c > 0 such that, HD(t n x, P) > c V (t n ).

Combining this last inequality with the given condition V (t n ) > γ n gives HD(t n x, P) > c γ n .

Finally, the result follows from Theorem 3.5. 2

Proof of Theorem 3.10.

(i) The proof for the upper bound follows the same line of arguments as for the proof of Theorem 3.8, together with the result of Theorem 2.10.

(ii) The result is straightforward, combining the lower bound given in Theorem 2.10, (ii), with (3.7), considering a unit vector x.

Conclusion

Much literature has been developed so far on the two types of geometric measures we consider in this paper, geometric quantiles and halfspace depth functions, mainly looking at their properties, such as continuity, convexity, affine equivariance, invariance through (orthogonal) transformations, etc. Our focus is on the asymptotic properties of these geometric measures, in particular questioning their relation with the tail behaviour of the underlying distribution.

First, we have considered the population side, completing the asymptotics literature to get a full picture and laying the basis for the sample side. Then we ask the same questions on the asymptotics of the two geometric measures when considering the empirical distribution. This is a very important problem in view of applications, questioning the relevance of those tools when working on samples. It is worth recalling that geometric quantiles uniquely identify the underlying probability measure, but this property is not always true for halfspace depth, as recently proven in [START_REF] Nagy | Flexible integrated functional depths[END_REF]. Nevertheless, the characterisation is unique when having measures with finite support, as is the case of empirical measures. This motivated us to study further the halfspace depth for samples.

We were able to provide rates of growth for geometric quantiles and rates of decay for halfspace depth functions when considering the empirical distribution, but also specify these rates depending on the type of tail behaviour of the measure, light or heavy (one of the main questions in risk analysis). These results are important, theoretically, but also in view of providing adequate tools to tackle extremes when analysing data sets.

The two geometric measures studied in this paper already satisfy some 'must have' properties, each one depending on the context, or on the use of it, as there exists no ideal or perfect tool. Nevertheless, we believe that our results contribute to obtain a better idea on these tools, as well as to validate their empirical use depending on the framework. Our next interest is to study another type of geometric measure based on the alternative approach of optimal transport maps.

Figure 1 :

 1 Figure 1: Samples of size 1000 are drawn from a Gaussian distribution with mean 0 and diagonal covariance matrix diag(1, 100). Observe that the convexity present in the underlying sampling distribution is not reflected in the isoquantile contours.

Figure 2 :

 2 Figure 2: Representation of the Tuckey contours for 6 different depths, considering a sample of 1000 observations (black points) from a mean zero Gaussian distribution with covariance diag(1, 100).

  for any large n), and (γ n ) satisfies Condition (C1) given in Theorem 3.5.

Figure 3 :

 3 Figure 3: Comparing the convergence for different types of tail distributions, using the 2nd order characterisation of geometric quantiles. The x-scale is chosen for the α-values to look equispaced. Left plot: Number of observations n = 10 5 is fixed; quantiles are computed corresponding to the index α ∈ {α(k) = 1 -10 -k , k = 1, • • • , 10} and the unit vector u in the direction (1, 1). Right plot: Growing sample at each point (i.e. for each α n ); 10% regularly growing sample, from 10 4 to 10 5 simulated values (α n = 1 -10 -n/10 4 for n = 10 4 , • • • , 10 5 ).

Figure 4 :

 4 Figure 4: Slowly growing sample at each point (i.e. for each α n ), up to 10 5 simulated values, choosing α n satisfying Condition (3.2) (e.g. α n = 1 -2 log n/n), which gives values of α n going roughly from 0.90 to 0.99 (with a partition of 10, i.e. 10 values of α n ). Direction at which quantiles are computed is (1, 1).

Figure 5 :

 5 Figure 5: Plot of y(α n ) in terms of α n = 1 -10 -n 10 -4 , n = k 10 4 for k = 1, 2, • • • , n, for a bivariate centered Gaussian and Pareto(δ) distributions sharing the same covariance matrix. First row: δ = 2.2, 2nd row: δ = 3.2. On each row, the right plot does a zoom on the last 3 values of α n . The y-scale is chosen as y 1/2 .

Figure 6 :

 6 Figure 6: Tukey depths are computed at points in direction x = (1, 1) and given in terms of (t n ) growing linearly in n (t n = 1.8 + n.10 -4 , with n = k.10 5 /50, k = 1, 2 • • • , 50). Samples are taken from independent bivariate Pareto with parameter 2.2 and 3.2, respectively, and Gaussian distribution with diagonal covariance matrix diag(2, 2). Number of observations is 10 5 . Left plot: fixed sample. Right plot: growing sample, with a partition of 50

Figure 7 :

 7 Figure 7: Tukey depths are computed at points in direction x = (1, 1) given in terms of (t n ). Samples are taken from independent bivariate Pareto with parameter 1.9, 2.2 and 3.2, respectively, and Gaussian distribution with diagonal covariance matrix diag(2, 2). Number of observations is 10 5 . Left plot: Halfspace depth for the Gaussian sample. Middle plot: Comparing the halfspace depth behaviours when considering Pareto(δ) samples, varying δ, t n corresponding to t n (Pareto(3.2)). Right plot: Halfspace depth behaviours for Gaussian and Pareto(δ) samples (choosing δ > 2) and for t n = t n (Gaussian).

  {y:p T (y-tx)≥0} f (y)dy inf |p|=1 {y:p T (y-tΣx)≥0} f (y)dy . Set p t = Σ -1 arg min |p|=1 {y:p T (y-tΣx)≥0} f (y)dy . Thus, we have HD(tx) HD(tΣx) ≤ {y:(pt) T •(y-tx)≥0} f (y)dy {y:(Σpt) T •(y-tΣx)≥0} f (y)dy . Now, using the transformation y = tz in the numerator and y = tΣz in the denominator, we obtain HD(tx) HD(tΣx) ≤ {z:(pt) T •(z-x)≥0} f (tz)t d dz {z:(pt) T •(z-x)≥0} f (tΣz)|Σ -1 |t d dz = {z:(pt) T •(z-x)≥0} f (tz) f (tΣz) f (tΣz)dz {z:(pt) T •(z-x)≥0} f (tΣz)dz .

24. 3

 3 Proof of Theorem 2.10 (i) The proof of the upper bound is based on a simple application of Markov inequality. Indeed, we can write, for any Y with distribution P, HD(tx, P) = inf |p|=1 P[e p T Y ≥ e tp T x ] ≤ inf |p|=1 e -tp T x E[e p T Y ],

Fix > 0

 0 and choose N 0 such that n > 4, ∀n ≥ N 0 . (4.19)

  n u) 2 1 -α n b (n) (α n )from Theorem 3.3, qn (α n u) α n u -qn (α n u) qn (α n u) , u -→ n→∞ 0, which then implies qn (α n u) 2 (α n -b (n) (α n ))

  The support of P is neither discrete, nor contained in any unit dimensional affine subspace of R d . Theorem 3.2 Let {X n } n≥1 be an i.i.d. sample on R d drawn from P satisfying Assumptions (A1) and (A2). Let {α n } n≥1 ⊂ (0, 1) be such that lim Then, for every u ∈ S d-1 , the sample geometric quantile qn (α n u), as a function of {X i } n Let {X n } n≥1 be an i.i.d sample on R d drawn from P satisfying assumptions (A1) and (A2). Let {α n } n≥1 ⊂ (0, 1) be such that lim

			i=1 , satisfies
	(i) lim n→∞ qn (α n u) = +∞, a.s.
	(ii) lim n→∞	qn (α n u) qn (α n u)	= u, a.s.
	Subsequently, we graduate to finer results revealing the asymptotic character of sample geometric
	quantiles in Theorems 3.3 and 3.4, which proofs are developed in Sections 4.5 & 4.6, respectively.
	Theorem 3.3 n→∞

(A2) The density function of P is bounded on any compact subset of R d . n→∞ α n = 1.

  (t n x, P n ) HD(t n x, P) -1 = HD(t n x, P n ) HD(t n x, P) -1 ≤ P n ( H tnx ) Similarly, if HD(t n x, P n ) ≤ HD(t n x, P), then for H * tnx s.t. P n (H * tnx ) = HD(t n x, P n ), we haveHD(t n x, P n ) HD(t n x, P) -1 = 1 -HD(t n x, P n ) HD(t n x, P)Step 2. In view of Condition (C2) of Theorem 3.5, we need to consider a subset of H, hence to adapt Lemma 3.7 to this smaller class, as follows:Proposition 4.3 Under Condition (C2) of Theorem 3.5, we have, for large n,The arguments for the proof of Proposition 4.3 are identical to those used to prove Lemma 3.7, but taking into account Condition (C2) of Theorem 3.5. We shall prove it in one case, the alternative one following the same lines. So, let us consider the case when HD(t n x, P n ) ≥ HD(t n x, P), for which we have (4.49). Then, Condition (C2), namely HD(t n x, P) ≥ γ n , implies that P(H) ≥ γ n for all H ∈ H tnx , leading to HD(t n x, P n ) HD(t n x, P) -1 ≤ sup P

	P( H tnx )	H∈Ht nx -1 ≤ sup	P(H) P n (H)	-1 . (4.49)
	≤ 1 -	P n (H * tnx ) P(H * tnx )	H∈Hnx ≤ sup	P(H) P n (H)	-1 .

HD(t n x, P n ) HD(t n x, P) -1 ≤ sup P n (H) P(H) -1 : H ∈ H tnx , P(H) ≥ γ n . (4.50) n (H) P(H) -1 : H ∈ H tnx , P(H) ≥ γ n .

  holds for the halfspaces.Next, since the domain of supremum in Proposition 4.3 is a subset of H, as a consequence of Alexander's theorem, we can conclude that Combining this last result (4.51) with Proposition 4.3 concludes to Theorem 3.5.

	lim sup n→∞	sup	P n (H) P(H)	-1 : H ∈ H tnx , P(H) ≥ γ n	≤ lim sup n→∞	sup	P n (H) P(H)	-1 : C ∈ H, P(H) ≥ γ n
					= 0 a.s.			(4.51)
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avoid complexity of notation, let us consider lim n→∞ qn (α n u) = q ∞ and q ∞ < +∞. We can write

where the first term is coming from Lemma 4.1, and the second term from the triangle inequality.

Let us set > 0 small. Then, by the Glivenko-Cantelli theorem, there exists a small enough M such that,

a.s. for sufficiently large n.

Now, choose n large so that qn (α n u) -q ∞ < 3K M and 1 n < 3 . Therefore, we obtain

Since is arbitrary, we conclude that

Now, using the strong law of large numbers, we obtain

Combining Equations (4.14), (4.15) and (4.16) provides

Therefore, applying (Serfling, 1980, Theorem A) for large n with m = 1 and b = 2 gives:

Note that the first assumption on δ n in the statement of Proposition 4.2 ensures that

Hence, by Borel-Cantelli, we conclude that

s. for all but finitely many n.

Therefore, using the assumption on {k n } (in the same proposition), we have

for all but finite many n, meaning,

s. for all but finitely many n.

(4.25)

Having obtained the preliminary estimates, we are now set to estimate qn (α n u) . Recall that,

So, let us study the objective functional, which we can write as

where we used Cauchy-Schwartz inequality for the last term, and the triangle inequality in two different ways in the last inequality. Now, setting q > (M n + 2)k n for some M n > 1, whose exact form will be chosen later, we have, whenever

Therefore, the above objective functional can be further reduced to

31 Subsequently, using Equations (4.24) and (4.25) in the previous inequality provides

As observed in (4.26), the objective functional stays positive whenever q > (M n + 2)k n . On the other hand, the objective functional equals 0 for q = 0. Therefore, qn (

Similarly, for x = 0, lim

Observe that the function 1 n n i=1 φ(u, X i -q) is strictly convex in q, therefore if qn (u) is a solution of this optimisation problem, then, for any h ∈ R d ,

which implies, using (4.27) when x = 0, and (4.28) otherwise,

By replacing h with -h in (4.29), we can conclude that

The claim follows by collating the estimates obtained above and in (4.33).

Proof of Claim 2. We shall invoke Proposition 4.2 to prove this claim. Let us set

Since E X i < ∞, a simple application of Markov's inequality gives us

Now the assumption

) < ∞ guarantees that we can apply Proposition 4.2.

Therefore, qn (α n u)

where M n is any number greater than 

Then, we have

Similarly,

Combining the two estimates, and setting

we conclude

Equivalently,

To finalize the proof of the theorem, we prove the following two claims:

Proof of Claim 3: We will use Proposition 4.2 to prove this claim. Setting δ n = 1 -α n 8 , we have

Then, by Chebyshev's inequality, we have

Therefore, using Proposition 4.2, we can write

where M n is any number greater than

, the previous inequality becomes

Recall that, by assumption, n(1

which establishes the identity stated in Claim 3.

Proof of Claim 4. We shall begin by breaking the primary expression in two parts:

Hence, for n ≥ N M ( ), we have

Combining (4.39) and (4.40), we get, for n ≥ max{N M ( ), NM ( )},

Since is arbitrary, the claim is proved, which in turn concludes the proof of Theorem 3.3. 2

4.6 Proof of Theorem 3.4.

We shall begin with the proof of the first part, by expressing all the terms involved in terms of the orthonormal basis {u, w 1 , ..., w